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Abstract

Inferring gene regulatory networks (GRNs) is a major issue in systems biology, which explicitly characterizes regulatory
processes in the cell. The Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI) is a well-known
method in this field. In this study, we introduce a new algorithm (IPCA-CMI) and apply it to a number of gene expression
data sets in order to evaluate the accuracy of the algorithm to infer GRNs. The IPCA-CMI can be categorized as a hybrid
method, using the PCA-CMI and Hill-Climbing algorithm (based on MIT score). The conditional dependence between
variables is determined by the conditional mutual information test which can take into account both linear and nonlinear
genes relations. IPCA-CMI uses a score and search method and defines a selected set of variables which is adjacent to one of
X or Y. This set is used to determine the dependency between X and Y. This method is compared with the method of
evaluating dependency by PCA-CMI in which the set of variables adjacent to both X and Y, is selected. The merits of the
IPCA-CMI are evaluated by applying this algorithm to the DREAM3 Challenge data sets with n variables and n samples
(n~10,50,100) and to experimental data from Escherichia coil containing 9 variables and 9 samples. Results indicate that
applying the IPCA-CMI improves the precision of learning the structure of the GRNs in comparison with that of the PCA-CMI.
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Introduction

Bayesian networks (BNs) provide an efficient and effective

representation of the joint probability distribution of a set of

variables. The identification of the structure of a BN from the data

is known to be an NP-hard problem [1]. There are many learning

algorithms for automatically building a BN from a data set. These

are generally classified into three classes, namely constraint-based

methods [2–5], score and search methods [6–11] and hybrid

methods [12–14].

Gene Regulatory Networks (GRNs) explain how cells control

the expression of genes. GRN is a collection of DNA segments in a

cell. These segments interact indirectly with each other and with

other substances in the cell and thereby governing the rates at

which genes in the network are transcribed into Messenger RNA.

Modeling the causal interactions between genes is an important

and difficult task, and indeed, there are many heuristic methods

for inferring GRNs from gene expression data [15,16]. BN is one

of the popular methods which have been successfully implemented

in learning GRNs [17].

There is a great potential for improvement of current

approaches for learning GRNs [18,19]. The purpose of this study

is to introduce a new algorithm, ‘‘Improved Path Consistency

Algorithm based on Conditional Mutual Information (IPCA-

CMI)’’. The algorithm is applied to a number of gene expression

data sets in order to evaluate the accuracy of it for inferring GRNs.

IPCA-CMI is a combination of the PCA-CMI [5] and the Hill

Climbing(HC) algorithm (based on mutual information test (MIT))

[11].

Being based on conditional mutual information (CMI), IPCA-

CMI can take into account both linear and nonlinear genes

relations. This is an improvement over linear testing methods.

IPCA-CMI applies the HC algorithm (based on MIT score) to

define weight values for each variable X . Then, a selected set

which contains variables with weight values more than a defined

threshold, is created. The method of evaluating dependency

between two adjacent variables X and Y is represented by CMI

test given a subset of genes of the selected set. To evaluate the

accuracy of IPCA-CMI, it was employed to a number of gene

expression data sets. For this purpose, the Dialogue for Reverse

Engineering Assessments and Methods (DREAM) program was

first introduced as a new efficient computation methods that help

researchers to infer reliable GRNs [18]. The data sets comprised

DREAM3 Challenge with n variables and n samples

(n~10,50,100) and Escherichia coil gene expression data containing

9 variables and 9 samples.

Preliminaries
Bayesian network. Bayesian networks (BNs) [20,21], also

known as belief networks, belong to the family of probabilistic

graphical models. Each vertex in the graph represents a random

variable and the edges between the vertices represent probabilistic
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dependencies among the corresponding random variables. A

directed edge, Y?X , describes a parent and child relation in

which X is the child and Y is the parent of X . Let ADJ(X )
denotes the set of variables in the graph which are adjacent to X .

In addition, each vertex in graph has a conditional probability

distribution specifying the probability of possible state of the

variable given possible combination of states of its parents. These

conditional dependencies in the graph are often estimated by using

known statistical and computational methods. Hence, BNs

combine principles from Graph Theory, Probability Theory,

Computer Science and Statistics. BNs are represented as a

directed acyclic graph (DAG) that is popular in Statistics and

Machine Learning subjects. We typically denote random variables

with capital letters and sets of random variables as bold capital

letters. Following the above discussion, a more formal definition of

a BN can be given. A Bayesian network, B, is an annotated

directed acyclic graph that represents a joint probability distribu-

tion over a set of random variables X~fX1,:::,Xng. The network

is defined by a pair B~SG,hT, where G is the DAG with vertex

set fX1,X2,:::,Xng and the direct dependencies between these

variables is represented by directed edges. The graph G encodes

independence assumptions, by which each variable Xi is

independent of its non descendants given its parents in G. Let

PaB(X ) denote the parent set of X . The second component h
describes the set of conditional probability distributions. This set

contains the parameter hxi DPaB(xi)~PB(xi DPaB(xi)), where xi

denotes some value of the Xi and PaB(xi) indicates some set of

values for Xi’s parents. If Xi has no parent, then P(Xi DPaB(Xi)) is

equal to P(Xi). By using these conditional distributions, the joint

distribution over X can be obtained as follows:

P(X1,X2,:::,Xn)~ P
Xi[X

P(Xi DPaB(Xi)):

Definition 1. If P(X ,Y DZ)~P(X DZ)P(Y DZ), then two vari-

ables X and Y are conditionally independent given Z.

Definition 2. A path p from X to Y in G is said to be blocked

by a set of variables Z if and only if:

1. p contains a chain X?K?Y or a fork X/K?Y such that

K[Z, or

2. p contains a collider X?K/Y such that K and all the

descendants of K are not in Z.

Definition 3. A set Z is said to d-separate X from Y in G if

and only if Z blocks every path from X to Y .

Definition 4. A v-structure in G is an ordered triplet (X ,Y ,K)
such that G contains the directed edges X?Y and K?Y, so that

X and K are not adjacent in G.

For the following discussion, suppose that the set of parents of

Xi is fXi1,:::,Xisi
g, where si denotes the number of parents of

Xi(DPa(Xi)D~si). The BN deals with:

N Discrete variables i.e. the variable Xi and its parents take

discrete values from a finite set. Then, PfXi DXi1,:::,Xisi
g is

represented by a table that specifies the probability of values

for Xi for each joint assignment to fXi1,:::,Xisi
g.

N Continuous variables i.e. the variable Xi and its parents take

real values. In this case, there is no way to represent all possible

densities. A natural choice for multivariate continuous

distributions is the use of Gaussian distributions [15].

N Hybrid networks i.e. the network contains a mixture of discrete

and continuous variables.

Information Theory. Gene expression data are typically

modeled as continuous variables. The following steps are applied

to calculate mutual information (MI) and CMI for continuous

variables. MI has been widely used to infer GRNs because it

provides a natural generalization of association due to its

capability of characterizing nonlinear dependency [22]. Further-

more, MI is able to deal with thousands of genes in the presence of

a limited number of samples [23].

Entropy function is a suitable tool for measuring the average

uncertainty of a variable X . Let X be a continuous random

variable with probability density function f (x), the entropy for X
is:

H(X )~{

ð
R

f (x) log f (x)dx: ð1Þ

The joint entropy for two continuous variables X and Y with joint

density function f (x,y) is:

H(X ,Y )~{

ð
R

ð
R

f (x,y) log f (x,y) dx dy: ð2Þ

The measure of MI indicates the dependency between two

continuous variables X and Y , which is defined as:

MI(X ,Y )~

ð
R

ð
R

f (x,y) log
f (x,y)

f (x)f (y)
dx dy: ð3Þ

Variables X and Y are independent when MI has zero value. The

measure of MI can also be determined in terms of entropy as

follows:

MI(X ,Y )~H(X )zH(Y ){H(X ,Y ): ð4Þ

In the GRN the dependency of two genes needs to be determined.

CMI is a suitable tool for detecting the joint conditional linear and

nonlinear dependency between genes [5,24]. CMI between two

variables X and Y , given the vector of variables Z is:

CMI(X ,Y DZ)~

ð
Rp

ð
R

ð
R

f (x,y,z) log
f (x,yDz)

f (xDz)f (yDz)
dx dy dz, ð5Þ

where p is the dimension of vector Z and f (x,y,z) denotes the joint

density function for variables and f (xDz) is the conditional density

distribution of X given Z. CMI between X and Y given Z can

also be expressed by:

CMI(X ,Y DZ)~H(X ,Z)zH(Y ,Z){H(Z){H(X ,Y ,Z), ð6Þ

where H(X ,Y ,Z) denotes the joint entropy between X , Y and Z.

Theorem 1 [25]: Let X~(X1,:::,Xn)T be an n-dimensional

Gaussian vector with mean m~(m1,:::,mn)T and covariance matrix

C(X)~E(X{m)(X{m)T , i.e. X*N(m ,C(X)). The entropy of X
is:

H(X)~log½(2p e)n=2 det(C(X))1=2�~ 1

2
log½(2p e)ndet(C(X))�, ð7Þ

where det(C(X)) indicates the determinant of C(X). With the

widely adopted hypothesis of Gaussian distribution for gene

expression data, the measure of MI according to Eqs. 4 and 7 for

two continuous variables X and Y can be easily calculated using

IPCA-CMI for Inferring Gene Regulatory Networks
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the following equivalent formula [5,26]:

MI(X ,Y )~
1

2
log

s2
X :s

2
Y

sXY

, ð8Þ

where s2
X , s2

Y and sXY indicate the variance of X , the variance of

Y and the covariance between X and Y . Similarly, according to

Eqs. 6 and 7, CMI for continuous variables X and Y given Z can

be determined by [5]:

CMI(X ,Y DZ)~
1

2
log

det(C(X ,Z)):det(C(Y ,Z))

det(C(Z)):det(C(X ,Y ,Z))
, ð9Þ

in which C(X ,Y ,Z) denotes the covariance matrix of variables X ,

Y and Z. When X and Y are conditionally independent given Z,

then CMI(X ,Y DZ)~0. In order to test whether a CMI is zero,

Z{statistic is calculated in two steps [5,27,28]:

In step 1, the MI and CMI, respectively, are normalized as

follows:

M̂MI(X ,Y )~
MI(X ,Y )

H(X )zH(Y )
,

CM̂MI(X ,Y jZ)~
CMI(X ,Y jZ)

H(X ,Z)zH(Y ,Z)
:

ð10Þ

In step 2, the Z{statistic of MI and CMI, respectively, are

calculated by:

Z{statisticX ,Y ~
1

2
log(

1zM̂MI(X ,Y )

1{M̂MI(X ,Y )
),

Z{statisticX ,Y jZ~
1

2
log(

1zCM̂MI(X ,Y jZ)

1{CM̂MI(X ,Y jZ)
):

ð11Þ

In order to determine the statistical test of conditional indepen-

dence, a confidence level a is fixed. Whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n{DZD{3
p

DZ{statisticDvW{1(1{
a

2
) then, the hypothesis of

conditional independence of X and Y given Z is accepted (at the

significance level a); otherwise the hypothesis is rejected. Here W(:)
denotes the cumulative distribution function of the standard

normal distribution and DZD indicates the dimension of vector Z.

Score and Search Algorithms
Score and search algorithms can be completely described by

specifying two components: a scoring function and a search

procedure. The score and search algorithms try to identify a

network with maximum score.

In this study, we apply the HC algorithm as a search procedure

where MIT score is used as a scoring function. Gene expression

data are typically continuous variables. The MIT score deals with

discrete variables. Therefore, continuous variables have to be

discretized. We do this based on the procedure proposed by [29–

32].

Discretization methods. To draw inferences about a GRN

based on the set of genes X~fX1,:::,Xng, we start with a data set

D~fX1(1),:::,Xn(1)�g,:::,fX1(N),:::,Xn(N)g, where n indicates

the number of genes and N is the number of measurements of

these genes. An n by N matrix D is used to denote gene expression

data. Xs(t) indicates the expression value of gene s at time t. Xs( : )
denotes expression data of gene s at all time. The equal width

discretization (EWD) and equal frequency discretization (EFD)

methods are applied to discretize continuous gene expression

data [30–32]. EWD method for s-th gene divides the line

between min½Xs( : )� and max½Xs( : )� into k intervals of

equal width. Thus the intervals of gene s have

width, w~
max½Xs( : )�{min½Xs( : )�

k
, with cut points at

min½Xs( : )�zw,min½Xs( : )�z2w,:::,min½Xs( : )�z(k{1)w. In

EWD, k is a positive integer and is a user predefined parameter.

EFD method for s-th gene divides the sorted Xs( : ) into m

intervals so that each interval contains approximately the same

number of expression values. Similarly, in EFD, m is a positive

integer and is a user predefined parameter.

In this study, gene expression data sets related to DREAM3

Challenge lie in the interval [0, 1]. We applied EWD method to

discretize DREAM3 data sets. For instance, for each gene,

parameter k is considered to be equal to 10. EFD method is

applied to discretize SOS repair data. Gene expression data sets

related to SOS DNA repair network lie in the interval [20.2730,

26.6330] and the parameter m is considered to be equal to 9.

Scoring Function
There are many scoring functions to measure the degree of

fitness of a DAG G to a data set. These are generally classified as

Bayesian scoring functions [7,9,33] and information theory-based

scores [11,34–37]. The chosen score and search algorithm can be

more efficient if the scoring function has the decomposability

property.

Decomposability property: A scoring function g is decom-

posable if:

g(G : D)~
X
Xi[X

gD(Xi,PaB(Xi)), ð12Þ

where

gD(Xi,PaB(Xi))~gD(Xi,PaB(Xi) : NXi ,PaB(Xi )
), ð13Þ

and NXi ,PaB(Xi )
denotes the number of instances in data set D that

match with each possible configuration of fXig
S
fPaB(Xi)g.

Another property, which is particularly interesting if the score

and search algorithm searches in a space of equivalence classes of

DAGs, is called the score equivalence.

Theorem 2 [38]. Two DAGs are equivalent if and only if they

have the same skeletons and the same v-structures.

When two Bayesian networks are equivalent, they can represent

the same set of probability distributions. The relation of network

equivalence imposes a set of equivalence classes over Bayesian

network structures [39].

Score equivalence: A scoring function g is score equivalence

if the score assigns the same value to equivalent structures.

MIT Score. Mutual information test (MIT) belongs to the

family of information theory-based scores which is defined as

follows [11]:

gMIT (G,D)~

Xn

i~1,PaB(Xi )=1

(2NMID(Xi,PaB(Xi)){ max
si

Xsi

j~1

xa,li,si (j)
),

ð14Þ

where N denotes the total number of measurements in D and

MID(Xi,PaB(Xi)) is determined by:

IPCA-CMI for Inferring Gene Regulatory Networks
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MID(Xi,PaB(Xi))~
1

N

Xn

i~1

Xqi

j~1

Xri

k~1

Nijklog(
NNijk

MikNij

), ð15Þ

where Nijk represent the number of measurements in the data set

D for which Xi~k and PaB(Xi)~j, where j denotes a joint

configuration of all parent variables of Xi. Nij denotes the number

of measurements in D, in which PaB(Xi)~j. Similarly, Mik

indicates the number of measurements in D which the variable

Xi~k and li,si (j)
is defined by:

li,si (j)
~

(ri{1)(risi (j){1)P
j{1

k~1 risi (k) j~2,:::,si

(ri{1)(risi (1){1) j~1

(
ð16Þ

where si~½si(1),:::,si(si)� indicates any permutation of the index

set (1,:::,si) of the variables in PaB(Xi)~fXi1,:::,Xisi
g. Finally,

xa,li,si (j)
is the value such that P(x2(li,si (j)

)ƒxa,li,si (j)
)~a (the Chi-

squared distribution at significance level 1{a with li,si (j)
degrees

of freedom).

The MIT score has decomposability property and dose not

satisfy score equivalence, however, it satisfies less demanding

property. This property of the MIT score concerns another type of

space of equivalent of DAGs, namely restricted acyclic partially

directed graphs (RPDAGs) [40]. RPDAGs are partially directed

acyclic graphs (PDAGs) which represent sets of equivalent DAGs,

although they are not a canonical representation of equivalence

classes of DAGs (two different RPDAGs may correspond to the

same equivalence class).

Theorem 3 [11]. The MIT score assigns the same value to all

DAGs that are represented by the same RPDAG.

MIT score can be applied without any problem to search in

both the DAG and the RPDAG spaces [11]. In different studies,

the score equivalence could be concluded as a good or bad

property. The score equivalence property is appropriate when the

data are not applied to distinguish the equivalent structures. In

searching and scoring scheme for learning structure of Bayesian

networks, equivalent classes should be considered. This means

when more than two graphs are equivalent, those graphs have the

same dependency; therefore, two structures have identical scores.

As an example, two variables A and B may have two different

structures as A?B or A/B, however, as equivalent classes, these

two structures end up having the same score for any given data. In

order to detect causal relationships between genes, score

equivalence property does not necessarily impair the search

process, because equivalent structures represent different causal

relationships. In this study, we are interested to the scoring

functions which considered different scores for A?B or A/B. So,

MIT score is applied in the HC algorithm to compute the score of

DAGs. The non equivalence of the score function does not

necessarily impair the search process to learn BNs. The MIT score

is implemented within the Elvira system (a JAVA package for

learning the structure of BN [11]). The Elvira package can be

downloaded from http://leo.ugr.es/elvira/. The MIT score is

available at =bayelvira2=elvira=learning=MITMetrics:java: In

this study, we rewrite the MIT score program (Red.Pen) which, in

comparison to the Elvira system, reduces running time and

memory occupied by the algorithm. The source of the program

and data sets are available at http://www.bioinf.cs.ipm.ir/

software/IPCA-CMI/.

Search Procedure
Given a scoring function g, the task in this step relates to search

between possible networks to find G� such that:

G�~argmaxG[F (n) g(G : D), ð17Þ

in which g(G : D) denotes the degree of fitness of candidate G to

data set and F (n) indicates all the possible DAGs defined on X.

The challenging part of search procedure is that the size of the

space of all structures, f (n), is super-exponential in the number of

variables [41],

Table 1. The PC Algorithm based on CMI test (PCA-CMI) [5].

1: Start with a complete undirected graph S{1

2: i~0

3: Repeat

4: For each X[X

5: For each Y[ADJ(X )

6: Determine if there is M(VXY with DMD~i such that X and Y given M are independent

7: If this set exists

8: Remove the edge between X and Y from Si{1

9: i~iz1

10: Until iƒDVXY D

doi:10.1371/journal.pone.0092600.t001

Table 2. Zero order of the Improvement of PC Algorithm
based on CMI test.

1: Start with a complete undirected graph S{1 .

2: Repeat

3: For each X[X

4: For each Y[ADJ(X )

5: If X and Y are independent based on the measure of MI

6: Remove the edge between X and Y from S{1

7: The MIT score was utilized in the HC algorithm to construct G0 .

doi:10.1371/journal.pone.0092600.t002
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f (n)~
Xn

i~1

({1)i{1 n!

i!(n{i)!
2i(n{i) f (n{i): ð18Þ

So an exhaustive enumeration of all the structures is not possible.

Instead, researchers have considered heuristic search strategies

[9,42]. The Hill Climbing algorithm is particularly popular in this

field.

The Hill Climbing Algorithm. The Hill Climbing (HC)

algorithm is a mathematical optimization technique which belongs

to the family of local search. The HC algorithm traverses the

search space by starting from an initial DAG then, an iterative

procedure is repeated. At each procedure, only local changes such

as adding, deleting or reversing an edge are considered and the

greatest improvement of g is chosen. The algorithm stops when

there is no local change yielding an improvement in g.

Because of this greedy behavior the execution stops when the

algorithm is trapped in a solution that is mostly local rather than

global maximizer of g. Different methods are introduced to escape

from local optima such as restarting the search process with

different initial DAGs. It means that after a local optima is found

the search is reinitialized with a random structure. This

reinitialization is then repeated for a fixed number of iterations,

and the best structure is selected [20]. The local search methods

can be more efficient if the scoring function has the decompos-

ability property [11]. By considering the decomposability proper-

ty, by adding, deleting or reversing the edge between two

variables, the score values of this variables are updated while the

score values of other variables remain unchanged. In order to

apply the HC algorithm based on scoring function with the

decomposability property, the following differences are calculated

to evaluate the improvement obtained by local change in a DAG

[43]:

1. Addition of Xj?Xi: gD(Xi,PaB(Xi)
S
fXjg){gD(Xi,PaB(Xi))

2. Deletion of Xj?Xi: gD(Xi,PaB(Xi)\fXjg){gD(Xi,PaB(Xi))

3. Reversal of Xj?Xi: First the edge from Xj to Xi is deleted

then, a edge from Xi to Xj is added. So ½gD(Xi,PaB

(Xi)\fXjg){gD(Xi,PaB(Xi))�z½gD(Xj ,PaB(Xj)g
S
fXig){gD

(Xj ,PaB(Xj)� is computed.

Method

In this section the details of PCA-CMI and IPCA-CMI are

presented to show how the structure of GRN is learned from gene

expression data sets.

PC Algorithm based on CMI test (PCA-CMI)
The PCA-CMI is applied to infer the GRNs [5]. The PCA-

CMI is computationally feasible and often runs very fast on

networks with many variables. This algorithm starts with a

complete undirected graph over all variables. The following steps

are applied to assign skeleton Si from Si{1.

Step 1: Generate the complete undirected graph Si (i~{1).

Step 2: Set i~iz1. Suppose X and Y are adjacent in Si{1,

then VXY is defined by:

VXY ~fADJ(X )
\

ADJ(Y )g:

Suppose that, there are j number of genes in VXY (DVXY D~j). If

iƒj, for each i-subset of VXY such as M~fm1,:::,mig, the i-order

CMI(X ,Y DM) is computed according to Eq. 9. All the i-order

CMIs between X and Y given all possible combination of i genes

from j genes are computed and the maximum one was selected as

CMImax(X ,Y DM). If CMImax(X ,Y DM)vE, the edge between X

and Y is removed from Si{1. So, VXY includes the separator set

for X and Y. The algorithm is stopped when iwj. Let Si be the

skeleton of the constructed graph in this step and return to step 2.

The algorithm is stopped when Si{1~Si for the first i.

It is notable that in each step of the PCA-CMI, X[X is selected

from 1 to n and Y[ADJ(X ) is selected by the order of genes.

Details of PCA-CMI are given in table 1.

The Improvement of PC Algorithm based on CMI test
(IPCA-CMI)

The HC algorithm is the well-known approach to search

between possible DAGs to determine the best fit of network based

on defined scoring function. In addition, Zhang [5] have

implemented the PCA-CMI for inferring GRNs from gene

expression data, using CMI test in the process of dependency

determination between genes. The skeleton of a GRN in each

order of IPCA-CMI is determined by CMI test. Therefore, only

Table 3. i order (iw0) of the Improvement of PC Algorithm based on CMI test.

1: Start with G0

2: i~1

3: Repeat

4: For each X[X

5: For each Y[ADJ(X )

6: Test whether AH(RXY with DHD~i such that X and Y given H are independent.

7: If this set exists

8: Remove the edge between X and Y from Gi{1

9: The MIT score was utilized in the HC algorithm to direct the structure.

10: For each Z[fADJ(X )|ADJ(Y )g\fX ,Yg
11: The weight value for variable Z is determined by: WeightX (Z)~DA1Z DzDA2Z DzDA3Z D{DA4Z D

12: A selected set RXY of variables is created as: RXY ~fZDWeightX (Z)§k or WeightY (Z)§k,VZ[fADJ(X )|ADJ(Y )g\fX ,Ygg
13: i = i+1

14: Until iƒDRXY D

doi:10.1371/journal.pone.0092600.t003
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the local changes related to reversed edges between genes are

applied in the HC algorithm (step 3 of the algorithm) in order to

direct the edges of the skeleton.

When heuristic search algorithms are applied, we are not

guaranteed to find a global optima structure. Different methods

have been proposed to escape local optima.

In this study, during each iteration in the HC algorithm, a new

solution is selected from the neighborhood of the current solution

(random change including adding, deleting and reversing). If that

new solution has a better quality MIT score, then the new solution

becomes the current solution. The algorithm stops if no further

improvement are possible. We have to start with some (50

randomly generated) solution and evaluate it based on MIT score.

The HC algorithm can only provide locally optima that depends

on the starting solution. We have to start the HC algorithm from a

large variety of different solutions. The hope is that at least some of

these initial locations have a path that leads to the global optima.

We choose the initial solutions (50 DAGs) at random.

Details of the IPCA-CMI are presented in two parts. Part 1 is related

to the zero order of the IPCA-CMI. In this order, same skeletons are

obtained by PCA-CMI and IPCA-CMI, but the HC algorithm is

utilized in IPCA-CMI in order to direct the edges of the skeleton.

Details of the IPCA-CMI for order i (iw0) are presented in part 2.

Part 1: The details of IPCA-CMI for i~0. First, the IPCA-

CMI generates complete graph according to the number of genes.

Then, for each adjacent gene pair such as X and Y, the measure of

MI is computed according to equation [8]. The measures of MI

between X and Y are calculated to be compared with E. If

MI(X ,Y )vE, the edge between X and Y is removed from complete

graph. Finally, MIT score is applied in the HC algorithm in order to

direct the edges of skeleton to obtain the directed acyclic graph G0.

Details of zero order of IPCA-CMI are shown in table 2.

Part 2: The IPCA-CMI for iw0. Set i~0 and the following

process is applied to assign directed acyclic graph Gi from Gi{1:

Step 1: Set i~iz1. Let Z be an adjacent of X in Gi{1. Then,

Aqz for 1ƒqƒ4 are defined as follows:

A1Z~fW jX?Z?Wg, A2Z~fW jX/Z/Wg,

A3Z~fW jX/Z?Wg, A4Z~fW jX?Z/Wg:

The weight value for variable Z is determined by:

WeightX (Z)~DA1Z DzDA2Z DzDA3Z D{DA4Z D,

where DAqZ D for 1ƒqƒ4 denotes the size of AqZ .

Step 2: Let RXY be defined by:

RXY ~fZjWeightX (Z)§k or WeightY (Z)§k,

VZ[fADJ(X )|ADJ(Y )g\fX ,Ygg,

Figure 1. Comparing the result of the PCA-CMI and the IPCA-CMI for inferring the structure of DREAM3 contains 10 variables and
10 edges. (A) The true network with 10 variables and 10 edges. (B) Firs-order network inferred by the PCA-CMI. The edge with red line G2–G4 is false
positives, while the edges G1–G2, G3–G5 and G4–G9 are false negative. (C) First-order network obtained by the IPCA-CMI. The false positive edge G2–
G4 in (B) is successfully removed by the IPCA-CMI, in addition edges G1–G2 and G3–G5 are successfully found by this algorithm.
doi:10.1371/journal.pone.0092600.g001

Table 4. The result of Simulated and Real data sets in order 0.

Network TP FP ACC FPR FDR PPV F MCC TPR

DREAM10 9 1 0.95 0.02 0.10 0.9 0.90 0.87 0.90

DREAM50 36 54 0.92 0.05 0.6 0.4 0.43 0.39 0.46

DREAM100 70 58 0.96 0.01 0.45 0.55 0.47 0.46 0.42

SOS 18 4 0.72 0.33 0.18 0.82 0.78 0.40 0.75

The second row of the table shows the result of DREAM3 in size of 10 with threshold 0.05. The third row denotes the result of DREAM3 in size of 50 with threshold 0.1.
The forth row of the table indicates the result of DREAM3 in size of 100 with threshold 0.1. Finally the last row shows the result of SOS DNA repair network with
threshold 0.01.
doi:10.1371/journal.pone.0092600.t004
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where k denotes the median of weights related to all adjacent

variables of X or Y. It can be concluded that variables in set RXY

are selected from fADJ(X )|ADJ(Y )g\fX ,Yg in which at least

k number of paths started from X or Y are blocked by these

variables. Therefore, by considering these variables many paths

between X and Y are removed.

Step 3: Let X and Y be adjacent in Gi{1, we have done the

following process:

Suppose that, there are t genes in RXY (DRXY D~t). If iƒt, for

each i-subset of RXY such as H~fh1,:::,hig, the i-order

CMI(X ,Y DH) is computed according to equation [9]. All the i-

order CMIs between X and Y given all possible combination of i

genes from t genes are computed and the maximum result

(CMImax(X ,Y DH)) is compared with E. If CMImax(X ,Y DH)vE,
the edge between X and Y is removed from Gi{1. The algorithm

is stopped when iwt. Let Si be the skeleton of the constructed

graph in this step.

Step 4: MIT score is applied in the HC algorithm in order to

direct the edges of Si to obtain the directed acyclic graph Gi,

return to step 1.

The algorithm is stopped when Gi{1~Gi for the first i.Table 3

is related to the details of i order (i.0) of IPCA-CMI.

It is notable that in each step of the IPCA-CMI, X[X is selected

from 1 to n and Y[ADJ(X ) is selected by the order of genes.

The rational behind WeightX (Z) is in definitions 2 and 3.

WeightX (Z) indicates the number of paths started from X and

blocked by Z.

In fact the main difference between the IPCA-CMI and the

PCA-CMI is in choosing a selected set of variables which includes

the separator set. IPCA-CMI uses the HC algorithm and define a

selected set of variables which are adjacent to one of X or Y, with

weight values more than a defined threshold.

Software
Software in the form of MATLAB and JAVA codes. The source

of data sets and codes are available at http://www.bioinf.cs.ipm.

ir/software/IPCA-CMI/.

Results

In order to validate our algorithm, the true positive (TP), false

positive (FP), true negative (TN) and false negative (FN) values for

proposed algorithms are computed. Where TP is the number of

edges that are correctly identified, FP is the number of edges that

are incorrectly identified, TN is the number of edges that are

correctly unidentified and FN is the number of edges that are

incorrectly unidentified. In addition, some famous measures such

as the accuracy (ACC), false positive rate (FPR), false discovery

rate (FDR), positive predictive value (PPV), F-score measure,

Matthews correlation coefficient (MCC) and true positive rate

(TPR) are considered to compare algorithms, more precisely.

These measures are defined by:

ACC~
TPzTN

TPzFPzTNzFN
, FPR~

FP

FPzTN
,

FDR~
FP

FPzTP
, PPV~

TP

TPzFP
,

F~2
PPV|TPR

PPVzTPR
,

MCC~
TP|TN{FP|FN

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
,

TPR~
TP

TPzFN
:

ð19Þ

MCC is a convenient quantity for comparing predicted and actual

networks. MCC quantity for each algorithm indicates which

method is more efficient in predicting networks. The algorithm

which has higher values for measures TP, TN, ACC, PPV, F,

MCC and TPR is more efficient for predicting the skeleton of

networks.

The DREAM3 Challenge consists of 4 data sets that were

produced from in-silico networks. The goal of the in-silico

Challenge is the reverse engineering of gene networks from time

series data. The gold standard for DREAM3 Challenge were

determined from source networks of real species. In this study, we

tested the performance of IPCA-CMI on the DREAM3 data sets

Table 5. The result of gene expression data set DREAM3 Challenge with 10 genes and sample number 10.

Algorithm TP FP ACC FPR FDR PPV F MCC TPR

PCA1 7 1 0.91 0.03 0.13 0.87 0.78 0.73 0.7

IPCA1 8.8 0 0.98 0 0 1 0.94 0.93 0.88

Result of DREAM3 in size of 10 with first-order CMI test with threshold 0.05. The second row of the table indicates the result of first-order PCA-CMI (PCA1) the third row
of the table shows the result of first-order IPCA-CMI (IPCA1).
doi:10.1371/journal.pone.0092600.t005

Table 6. The result of gene expression data set DREAM3 Challenge with 50 genes and sample number 50.

Algorithm TP FP ACC FPR FDR PPV F MCC TPR

PCA1 24 23 0.93 0.02 0.49 0.51 0.39 0.37 0.31

PCA2 22 21 0.93 0.02 0.49 0.51 0.37 0.35 0.29

IPCA1 28 26.5 0.94 0.02 0.48 0.51 0.43 0.4 0.36

IPCA2 22.9 11.78 0.95 0.01 0.48 0.52 0.38 0.42 0.3

Result of DREAM3 in size of 50 with different CMI orders with threshold 0.1. The second and third rows of the table indicate the result of first-order PCA-CMI (PCA1) and
second-order PCA-CMI (PCA2), respectively. The forth and fifth rows of the table show the result of IPCA-CMI of first-order(IPCA1) and second-order(IPCA2), respectively.
doi:10.1371/journal.pone.0092600.t006
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with n variables and n samples (n~10,50,100) and to experimental

data from Escherichia coil containing 9 variables and 9 samples.

Data sets contain the expression values of genes, in which rows are

genes and columns indicate the samples. In order to compare

results of PCA-CMI and IPCA-CMI, in each algorithm, we used

the same threshold for CMI tests previously applied by Zhang [5].

IPCA-CMI, is a combination of a constraint-based method

named PCA-CMI with a score and search method named the HC

algorithm. Since the HC algorithm includes the process of

randomly selecting initial graphs, IPCA-CMI is supposed to run

hundred times and then we take the average as the final result. It

can be concluded that outcomes of Tables 1 to 5 are related to the

average of results which obtained from IPCA-CMI in hundred

times.

Fig. 1(A) shows the structure of true network for DREAM3

which contains 10 genes and 10 edges. The result obtained by

Zhang [5] illustrated in Fig. 1(B), and Fig. 1(C) is related to the

result of IPCA-CMI. In Fig. 1(B), edges that are correctly found by

PCA-CMI are shown in Black color and the edge that wrongly

inferred by this algorithm (edge G2–G4) is shown in red color. The

true edges, which found by IPCA-CMI, are indicated by Black

color and edge G4–G9 is a false negative. Fig. 1(C) is related to the

best result of IPCA-CMI in running it hundred times.

Table 4 indicates the result of PCA-CMI and IPCA-CMI with

zero-order CMI test for DREAM3 and SOS real gene expression

data. In zero-order two algorithms returned the same results, since

both algorithms contain the same procedure.

Table 5 indicates the result of PCA-CMI and IPCA-CMI for

DREAM3 data set in size of 10 genes with 10 edges. We set the

threshold value 0.05 of MI and CMI tests for dependency

determination. As shown by Table 5, TP, ACC, PPV, F, MCC

and TPR under PCA-CMI are less than those of IPCA-CMI. So,

it can be concluded that the IPCA-CMI is more suitable for

structure learning.

Results of applying PCA-CMI and IPCA-CMI for DREAM3

Challenge with 50 genes and 77 edges are collected in Table 6. We

chose 0.1 as the threshold value of MI and CMI tests to determine

the dependency between genes. IPCA-CMI can detect the true

network in 2 steps, FP value is reduced as a result of applying

algorithm step by step. According to Table 6 the FP value is

reduced from 21 to 11.78, as a result of using IPCA-CMI. The TP,

ACC, PPV, F, MCC and TPR measures receive higher values by

using IPCA-CMI for inferring GRNs which shows that the IPCA-

CMI performs better than the PCA-CMI.

Results of DREAM3 with 100 variables and 166 edges are

illustrated in Table 7. Threshold value 0.1 for MI and CMI tests is

considered to determine the dependency between genes. As shown

by Table 7 in the second-order network, the FP value is reduced

from 25 to 15.16. The TP, ACC, PPV, F, MCC and TPR

measures receive higher values by using IPCA-CMI for inferring

about DREAM3 with 100 variables. Results of applying PCA-

CMI and IPCA-CMI for the real data set with 9 genes and 24

edges are given in Table 8. We chose 0.01 as the threshold value.

Table 8 indicates that ACC, F and MCC measures receive higher

values by using IPCA-CMI for inferring about BNs which shows

that the IPCA-CMI performs better than the PCA-CMI.

According to Tables 4 to 8, the number of FP is decreased, as a

result of using IPCA-CMI. So it can be concluded that the IPCA-

CMI is more suitable for learning the structure of GRNs. Tables (4

to 8) show that IPCA-CMI not only can reduce the number of FP

but also it remarkably can find some true different edges in

comparison with PCA-CMI. As shown by these Tables (4 to 8),

some better results can be obtained by using IPCA-CMI. So, it can

be concluded that IPCA-CMI performs better than the PCA-CMI

for learning the structure of GRNs. Another comparison that can

be made between these algorithms is a determination of the

probability of selecting subgraph with k edges from graph G with m

edges. These probabilities are calculated for two mentioned

algorithms. The algorithm which receives smaller value of the

probability is efficient for predicting the skeleton of GRN. Results

of this comparison for networks which are obtained using

DREAM3 and SOS real gene expression data are given in

Table 9. As shown by Table 9, better results (e.g., smaller

probability values) are obtained by using IPCA-CMI. Therefore, it

can be concluded that the performance of IPCA-CMI is much

Table 7. The result of gene expression data set DREAM3 Challenge with 100 genes and sample number 100.

Algorithm TP FP ACC FPR FDR PPV F MCC TPR

PCA1 49 25 0.971 0.005 0.34 0.66 0.41 0.43 0.28

PCA2 46 25 0.971 0.005 0.35 0.64 0.38 0.41 0.27

IPCA1 53.11 29.77 0.972 0.006 0.35 0.65 0.43 0.44 0.32

IPCA2 46.55 15.16 0.973 0.003 0.24 0.75 0.4 0.45 0.28

Result of DREAM3 in size of 100 with different CMI orders with threshold 0.1. The second and third rows of the table indicate the result of first-order PCA-CMI (PCA1) and
second-order PCA-CMI (PCA2), respectively. The forth and fifth rows of the table show the result of IPCA-CMI of first-order (IPCA1) and second-order (IPCA2),
respectively.
doi:10.1371/journal.pone.0092600.t007

Table 8. The result of experimental data from Escherichia coil containing 9 genes and sample number 9.

Algorithm TP FP ACC FPR FDR PPV F MCC TPR

PCA1 18 4 0.72 0.33 0.18 0.82 0.78 0.40 0.75

IPCA1 18 1.8 0.73 0.32 0.17 0.82 0.79 0.41 0.75

The result of SOS DNA repair network in size of 9 with 24 edges. Results are related to the order 1 of CMI with threshold 0.01. The second row of the table indicates the
result of first-order PCA-CMI (PCA1). The third row of the table show the result of IPCA-CMI of first-order (IPCA1).
doi:10.1371/journal.pone.0092600.t008
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better than that of PCA-CMI based on the better determination of

the probability for selecting a subgraph in all data sets.

Discussion

In this study a new algorithm called IPCA-CMI for inferring

GRNs from gene expression data was presented. Results of this

study show that using IPCA-CMI improves the precision of the

learning the structure of GRNs, considerably. Zhang [5] reported

that the PCA-CMI performed better than linear programming

method [44], multiple linear regression Lasso method [45], mutual

information method [46] and PC-Algorithm based on partial

correlation coefficient [27] for inferring networks from gene

expression data such as DREAM3 Challenge and SOS DNA

repair network. Therefore, it can be concluded that the results of

IPCA-CMI will be more precise compared to the methods studied

by Zhang [5].

Our algorithm starts with a complete undirected graph over all

variables. IPCA-CMI constructs Si (the skeleton of order i)

according to CMI test. Then perform the HC algorithm to direct

the edges of Si. If X and Y are adjacent in Si, weight values are

defined for variables in set QXY ~fADJ(X )|ADJ(Y )g\fX ,Yg.
Subsequently, variables with high weight values were selected as

the members of the set RXY . The separator set being a subset of

RXY , makes defining the set RXY in the algorithm very important.

We adopted a method to select i number of genes from RXY .

Suppose that, there are t number of genes in RXY (DRXY D~t). In

order to construct the i-order (iƒt) network, all the i-order CMIs

between X and Y given all possible combination of i genes from t

genes are calculated and the maximum result compared with E
threshold to decide whether to keep the edge between X and Y or

to remove it.

The PC algorithm starts with a complete undirected graph over

all variables. In order to construct Si, the Chi-square test is applied

to determine dependency between variables. The separator set for

adjacent genes X and Y in Si are selected from QXY . The PC

algorithm is fast to learn networks with many variables. The

drawback of the PC algorithm is the requirement for large sample

sizes to perform high order conditional independence (CI). The

number of records in a microarray data set is rarely sufficient to

perform reliable high-order CI tests. Using IPCA-CMI statistical

error in the process of learning the skeleton of GRNs is reduced.

This is a result of the reduction of the size of the set which includes

the separator set.

On the other hand in PCA-CMI, only genes connected with

both X and Y are considered for dependency determination. It

means that the separator set for two adjacent genes X and Y are

selected from VXY ~fADJ(X )
T

A DJ(Y )g. So, small set of

variables are considered for dependency determination. It can

be concluded that some of the variables which play an important

role in dependency determination are not considered in separator

set. The achieved improvement of our algorithm in comparison

with PCA-CMI is related to the consideration of important

adjacent genes of one of X or Y. This method leads us to determine

the separator set for X and Y more precisely.

For the aforementioned problem for PC and PCA-CMI, in this

study we applied an iterative strategy to select RXY which includes

separator set for adjacent genes X and Y. It can be concluded that

DVXY DƒDRXY DƒDQXY D. It means that, we chose the set of variables,

among which to pick the separator set, in a somehow intermediate

way between the standard PC algorithm and the method of Zhang

et al. (2012). Therefore, the set of variables, among which we pick

the separator set, is bigger than those considered by Zhang et al.

(2012). The MIT scoring function is decomposable and is not

score equivalent. However, it satisfies a restricted form of score

equivalence which allows us to use it to search not only in the

DAG space but also in the RPDAG space. In the future work we

would like to investigate whether MIT score is more appropriate

for gene expression data than other scores. It has been previously

shown that the score equivalence is not an important feature to

learn Bayesian networks by searching in the DAG space. This

confirms the previous results stated by [11,47]. Gene expression

data are typically modeled as continuous random variables. The

MIT score can be applied in analyzing continuous random

variables, but only after the data has been discretized. In the future

work we would like to apply a more suitable method to discretize

gene expression data [29].
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