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Abstract

This paper presents a method for selecting Regions of Interest (ROI) in brain Magnetic Resonance Imaging (MRI) for
diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the
distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological
disorder. Tissue distribution of normal and abnormal images is modelled by a Self-Organizing map (SOM), generating a set
of representative prototypes, and the receptive field (RF) of each SOM prototype defines a ROI. Moreover, the proposed
method computes the relative importance of each ROI by means of its discriminative power. The devised method has been
assessed using 818 images from the Alzheimer’s disease Neuroimaging Initiative (ADNI) which were previously segmented
through Statistical Parametric Mapping (SPM). The proposed algorithm was used over these images to parcel ROIs
associated to the Alzheimer’s Disease (AD). Additionally, this method can be used to extract a reduced set of discriminative
features for classification, since it compresses discriminative information contained in the brain. Voxels marked by ROIs
which were computed using the proposed method, yield classification results up to 90% of accuracy for controls (CN) and
Alzheimer’s disease (AD) patients, and 84% of accuracy for Mild Cognitive Impairment (MCI) and AD patients.
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Introduction

Nowadays, neurodegenerative disorders affect over 30 million

people around the world. Due to the increasing life expectancy

and ageing of the population in developed nations, they are

expected to affect 60 million people worldwide over the next 50

years. A distinctive example of these neurodegenerative disorders

is the Alzheimer’s Disease (AD). Indeed, the latest estimates argue

for global prevalence of AD to be quadrupled by 2050. slow,

degenerative disease related to pathological amyloid depositions

and hyperphosphorylation of structural proteins in the brain [1].

Its progression depends on every individual, and it usually begins

showing signs of mild memory problems which turn into severe

brain damage some years later. As for other neurological

disorders, there is currently no cure for the AD; however early

diagnosis may help to slow down the rapid advance of the disease.

Although the development of the disease depends on the

individual, aging, etc. there are many common symptoms in

addition to structural changes in the brain. Some specific image-

based diagnostic methods for AD and other neurological disorders

that use functional imaging have been developed previously. Since

AD causes loss of brain function, affecting the areas of the brain

related to memory, thought and language, it is possible to deal

with automatic diagnosis tools by learning patterns associated to

brain functions. In fact, there exist some methods that aim to

detect functional brain variations [2–6] by exploiting the
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information contained in the images to learn patterns associated to

cerebral damage.

AD can usually be diagnosed by means of neuropsychological

tests [7], but at an early stage of the disease, when symptomatic

cognitive problems are perceptible, a noticeable neurodegenera-

tion has already occurred [8]. However [9,10], suggest that

pathological manifestations of AD can be detected some years

earlier, before cognitive problems arise. This would allow to start

specific therapy for the patient at early stages of the disease. In

fact, works such as [1,8,11–14] are focused in the use of both

different statistical and artificial intelligence methods to reveal

patterns in MCI patients relating to either structural artrophy in

MRI or functional patterns that allow to differentiate them from

AD or control patients (CN). The most functional imaging-based

techniques use Single Emission Computed Tomography (SPECT)

[2,3,15] or Positron Emission Tomography (PET) images [4,16] to

detect decreased blood perfusion or decreased glucose metabolism

in brain areas associated to AD. These methods aim to build

models from a set of labelled images to be used for further

classification of new patients. In this way, Gaussian mixture

models (GMM) are used in [4,17] to model functional images in

order to select regions of interest (ROIs) for AD. Unfortunately,

GMM-based methods are not straightforward to apply for ROI

computation in MRI due to the high number of voxels and the

high number of Gaussian components to be estimated. Conse-

quently, it may result unfeasible in practice. See [18] for a

comprehensive explanation of the maximum likelihood method

and a performance comparison with other existing methods. That

work concludes that the maximum likelihood estimates are the

most accurate, closely followed by the regression-type estimates,

quantile method, and finally, the method of moments. The only

disadvantage of the maximum likelihood estimation is that this

technique is most computationally expensive.

Other works such as [19,20] use principal component analysis

to extract relevant features for AD diagnosis linked to discrimi-

native regions, though. Similarly [21], defines association rules

over discriminative regions. Nevertheless, such works use func-

tional images to reveal discriminative regions and to classify brain

images.

Neurodegeneration relating to AD produces abnormal struc-

tural changes in the brain, which eventually result on extreme

shrinkage of the hippocampal volume or extreme reduction of its

cortical thickness, as well as a severe enlargement of the internal

ventricles. However, some structural changes associated to early

AD are revealed to be similar to those caused by natural ageing

process. Therefore, despite AD diagnosis can be addressed by

detecting these structural changes [22–27], it is not straightforward

to distinguish them in early stages of the disease, when only minor

symptomatic cognitive dysfunctions are evidenced (i.e. progressive

MCI patients) [28]. A review of different methods for automatic

classification of AD using MRI images from the ADNI database

can be found in [13].

Unlike methods that use intensity voxels for classification [29],

most methods based on MRI begin with an image segmentation

into different tissues and, later, a comparison of tissue distribution.

Thus [30], uses an ensemble of sparse classifiers directly over the

segmented tissues [30], without parcelling ROIs. Other works,

however, take into account the tissue distribution in relevant brain

regions related to AD. These regions, namely Regions of Interest

(ROI), can be obtained by grouping voxels into anatomical regions

using a labelled atlas [13,31,32]. ROI-based methods such as [33]

parcel the brain into ROIs or segment the hippocampus [34,35]

by wrapping an anatomy atlas, in order to compare tissue volumes

in CN/AD or MCI/AD patients. These works report classification

accuracies up to 90% on diagnosed AD patients through post-

mortem analysis. Thus, as ROIs reveal brain areas linked to

neurodegeneration, selection of voxels belonging to ROIs plays an

important role in the classification task by allowing the classifier to

be fed with the most discriminative information. Therefore,

extracting relevant ROIs from training images that can be treated

as markers, can finally determine the classification results.

Current trend on studies focused on AD/CN and MCI/AD

classification consist on using a single imaging modality. As shown

above, some methods use functional imaging whereas other use

structural MRI, and the analysis of each image modality can

reveal different markers associated to the disease. For instance,

MRI analysis reports grey matter atrophy that usually results in

differences in both, the hippocampus and the entorhinal cortex.

Additionally, it has been proved that early changes in the

hippocampal volume and entorhinal cortex are related to

evidences of early AD, while this is not so obvious in other

cerebral structures [1,36]. In fact, our contribution shows that

incorporating patterns revealed from differences in white matter

helps to achieve better classification results.

Previous works such as [37] use MRIs from each class instead of

segmented images in order to compute ROIs. On the other hand,

in [37], class prototypes are computed by using the LVQ

algorithm [38] and new images are projected onto these

prototypes to extract features in a similar way to the eigenface

approach [39]. Besides, in [24], a method to extract ROIs from

MRIs avoiding segmentation is shown. In this case it is not

necessary to perform a MRI segmentation; conversely, image

preprocessing such as intensity normalization must be carried out.

However, the level of accuracy provided by this method is

significantly lower than the one provided by our approach,

especially for MCI/AD classification, since it deals with early AD

diagnosis.

In our work, structural MRI is used to automatically reveal 3D

brain regions associated to AD by means of analyzing the

distribution of WM and GM tissues in the brain. The computed

ROIs are later used as a mask in order to extract voxels from

relevant regions for subsequent analyses. Thus, regions linked to a

specific brain disorder are automatically computed by quantizing

the space into a number of regions that group similar voxels. This

way, it is not necessary to get additional information from any

anatomy atlas. Additionally, a measurement of relative importance

is calculated for each ROI on the basis of its discriminative

capability for AD diagnosis. This is accomplished by computing a

number of prototype vectors using the SOM algorithm that

quantize the space taking into account differences between CN

and AD images. Consequently, the receptive field of each SOM

unit represents a ROI on the image and its relative importance can

be computed by means of the discriminative power of each voxel.

Figure 1 shows the block diagram of the proposed method to

extract and to selecting ROIs. The devised method has been

evaluated in terms of its ability to classify new patients (not used in

the training stage) correctly, through extensive experiments

performed over the 1075-T1 ADNI database.

The main contributions of this work can be summarized in the

following:

1. A method for automatic ROI delineation is proposed, using

SOM to quantize the feature space composed by voxel

coordinates and information regarding voxel differences

between classes.

2. It automatically reveals brain areas (ROIs) according to

patterns learnt to differentiate CN and AD patients (or

MCI/AD patients).

Automatic ROI Selection in Structural Brain MRI
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3. A relative importance measurement is also computed for each

ROI, to indicate its discriminative capability.

4. The method has been assessed through extensive experiments

using 818 images from the 1075-T1 ADNI database, yielding

90% (AUC 0.92) and 84% (AUC 0.84) of classification

accuracy within CN/AD and MCI/AD, respectively.

The rest of this paper is organized as follows. Section materials

and methods shows the materials and methods used in this work,

including the necessary background to support the next sections

and details on the database used to assess the proposed method.

Examples of ROI computation are also provided in this section.

Experimental results section provides classification results using

ROIs computed with the proposed method over the database

previously described. Finally, conclusions are drawn in the

conclusions section.

Materials and Methods

Database
Data used in the preparation of this article were obtained from

the Alzheimers Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimers disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California -

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects but ADNI has been followed by ADNI-GO

and ADNI-2. To date these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting

of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each

group is specified in the protocols for ADNI-1, ADNI-2 and

ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2. For up-to-date

information, see www.adni-info.org.

ADNI database [40] was created to study Alzheimer disease’s

progression, collecting a vast amount of MRI and Positron

Emission Tomography (PET) images as well as blood biomarkers

and cerebrospinal fluid analyses. The main goal of this database

was to provide a way to diagnose early AD stages. ADNI database

provides data for three groups of subjects: healthy individuals

(Controls, CN), Alzheimer disease patients (AD) and patients

suffering from mild cognitive impairment symptoms (MCI). The

database that has been used in this work, contains 1075 T1-

weighted MRI images, comprising 229 CN, 401 MCI (312 stable

MCI and 86 progressive MCI) and 188 AD images. Specifically,

we have used the database ADNI1:Screening 1.5T (subjects who have a

screening data). This database contains MRI data from 818 subjects

and repeated scans in some cases. When multiple scans of the

same subject were available, the first one was selected. As a result,

818 images have been used for assessing our approach.

Demographic data of patients in the database is summarized in

Table 1.

Image preprocessing and co-registration
Image data pre-processing, segmentation and co-registration of

T1-weighted MRI images from the ADNI database have been

performed. Initially, images from the ADNI database were nor

skull-stripped neither spatially normalized. Thus, all the images

had to be pre-processed and co-registered before segmentation.

The whole process has been performed using the VBM [41]

toolbox for SPM. Pre-processing, co-registration and segmentation

procedures as well as the parameters used at each stage can be

summarized as follows:

1. Pre-processing and co-registration.

Figure 1. Block diagram of the proposed method for extracting
and selecting ROIs.
doi:10.1371/journal.pone.0093851.g001

Table 1. Demographic data of patients in the database (ADNI 1075-T1).

Diagnosis Number Age Gender (M/F) MMSE

CN 229 75.9765.0 119/110 29.0061.0

MCI 401 74.8567.4 258/143 27.0161.8

AD 188 75.3667.5 99/89 23.2862.0

doi:10.1371/journal.pone.0093851.t001
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N The whole process was guided by means of tissue probability

maps. A nonlinear deformation field that best overlays the

tissue probability maps on the individual sujects’ image is

estimated. The tissue probability maps provided by the

International Consortium for Brain Mapping (ICBM) are

derived from 452 T1-weighted scans, which were aligned

with an atlas space, then corrected for scan inhomogeneities,

and finally classified into grey matter, white matter and

cerebrospinal fluid. The data were affine registered to the

MNI space and down-sampled to 2 mm resolution. More-

over, all images from the database were resized to

12161456121 voxels.

N A mutual information affine registration with the tissue

probability maps was used to achieve approximate align-

ment.

N Spatial normalization was based on a high-dimensional

Dartel normalization and used standard Dartel template

provided by VBM 8.

2. Segmentation.

N The number of Gaussians used to represent the intensity

distribution for each tissue class was set to 2 for all grey

matter, white matter and cerebrospinal fluid. The use of

multiple components per tissue allows to reckon partial

volume effects and deep GM differing from cortical GM.

N A very light bias regularization was performed to correct

smooth, spatially varying artifacts that modulates the

intensity of the images.

N Gaussian bias-smoothing was not used, though, since

according to our experiments, non-smoothed images pro-

vided a better classification results.

N Warping regularization was set to 4 to determine the tradeoff

between the two terms of the objective function for

registering the tissue probability maps to the image to be

processed. One term gives a function of how probable the

data is given the parameters. The other is a function of how

probable the parameters are, and provides a penalty for

unlikely deformations.

N A spatial adaptive non local means denoising filter is applied

to the data in order to remove noise while preserving edges.

The smoothing filter size is automatically estimated based on

the local variance in the image.

N A hidden Markov Random Field (MRF) with a weighting of

0.15 was used to encode spatial constraints of neighboring

voxels. Neighboring voxels were expected to have the same

class labels. The prior probability of the class and the

likelihood probability of the observation were combined to

estimate the Maximum a posteriori (MAP).

N Skull stripping was performed by using SPM-VBM tool and

VBM templates.

As a result, probability maps were obtained for each MRI in the

database, which consisted of values in the range (0,1) for each

voxel and related to its membership probability (WM, GM or CSF

tissues). However, CSF distribution was not used in our

experiments.

Background in SOM
The Self-Organizing Map (SOM) [38] is a well-known, peculiar

clustering algorithm, inspired in the animal brain which seeks for

the most representative and most economic representation of data

and its corresponding relationships [38,42]. During the training

stage, the prototypes keep the most representative part of the input

data, while the units on the output space (i.e. 2D or 3D lattice)

holding similar prototypes (in terms of Euclidean distance) are

moved closed together into a group. Thus, some important

features of the input space can be inferred from the output space

[42], regarding the input space modelling, density distribution of

the data space and feature selection. SOM training is performed in

a competitive way so that just a single neuron wins (i.e. its

Figure 2. FDR values for some relevant slices on the (a) coronal and (b) axial planes for CN and AD subjects.
doi:10.1371/journal.pone.0093851.g002
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prototype vector is the most similar one to the input data instance).

The most similar prototype to the input data sample is called Best

Matching Unit (BMU) and it is computed as:

Evk{viEƒEvk{vjE Vj [ S ð1Þ

where vk is the k-sample from the input space, vi is the i-

prototype (i.e. the weight associated the the i-unit) and S is the

output SOM space.

Moreover, prototypes of neurons belonging to the neighbour-

hood of the BMU are also updated according to

vj(tz1)~vj(t)za(t)hi,j(t)(vk{vj(t)) ð2Þ

where a(t) is the learning factor and hi,j(t) is the neighbourhood

function defining the unit surrounding the BMU vi.

hij(t) is a Gaussian neighbourhood function hij(t)~e

{d2
ij

2s2
t , that

determines the units to be updated at current iteration, where dij is

the distance between map units i and j and st is the

neighbourhood radius at time t. The learning rate follows the

reciprocally-decreasing function a(t)~
a0

1z100t=T
, where a0 is

the initial learning rate and T is the training length.

SOM training is accomplished in two phases. The first one

provides a rough organization of the map by setting the initial

radius to round(max(1,
ffiffiffiffiffiffi
nd
p

)) (where nd is the number of SOM

units) and the initial learning rate a0 to 0.1. The second phase aims

to fine-tune the map, and uses a smaller initial neighbourhood

radius, specifically round(max(1,
ffiffiffiffiffiffi
nd
p

=2)). Moreover, the learning

rate is also smaller in this phase, specifically a0~0:05.

The training process generates the prototype vectors vi which

quantize the data manifold and represent cluster centres on the

data, mapped to each BMU. As SOM units are located at different

positions in a 3D lattice, the feature space is projected onto a 3D

space.

Statistical significance of voxels
A MRI is composed of a high number of voxels according to a

previously-stated image resolution. Images in the ADNI database

used in this work contain 12161456121 voxels after normaliza-

tion. Since not all the voxels result equally discriminative for

classification [21], they could be ranked according to a specific

discriminative criterion. Thus, the Fisher Discriminant Ratio (FDR)

[43] which is characterized by its separation capability as shown in

[43,44] has been used to compute the discriminative power of each

voxel. In the two-class separation case, FDR is defined as

FDR~
(m1{m2)2

s2
1zs2

2

ð3Þ

where ms and s2
s are the mean and variance values of each input

variable belonging to class s, respectively. In our case, ms

represents the mean image computed by averaging the intensity

of the voxels in each definite position (x1,x2,x3) for all the images

belonging to class s in the training set. Similarly, s2
s represents the

variance image computed by taking into account the intensity of

the voxels in a specific position (x1,x2,x3) for each image

belonging to class s in the training set. Mean and variance images

for class s can be computed as:

ms(x
1,x2,x3)~

1

Nimg

XNimg

k~1

Is
k(x1,x2,x3) ð4Þ

where Nimg is the number of images in the training subset and

Is
k(x1,x2,x3) is the intensity at position (x1,x2,x3) for the image k.

Similarly, the variance image is defined as

s2
s (x1,x2,x3)~

1

Nimg

XNimg

k~1

(Is
k(x1,x2,x3){ms(x

1,x2,x3))2 ð5Þ

From equations 4 and 5, a FDR image which contains the

corresponding FDR value at each precise voxel position can be

defined.

FDR value increases as the variable results in more discrimi-

native values between the two classes. FDR values are further

incorporated to the ROI computation stage to calculate the

relative importance of each ROI. At this point, it is important to

highlight that FDR is considered a part of the training stage. Thus,

it is computed by using only images from the training subsets

during cross-validation, ensuring that test data is never used for

training.

Figure 2 shows the FDR values computed for some relevant

slices on the coronal and axial planes, according to the scale shown

in the colorbar. In these figures relevant areas related to the

Alzheimer’s disease such as the hippocampus appear with a high

FDR value, indicating a higher discriminative power over other

areas.

Feature generation and ROI modelling
Due to the high number of voxels present in a MR image,

methods that aim to compress or synthesise the information

contained in these voxels in a reduced number of features allow

the diminishing of the classification task’s computational cost.

Regardless of this process, non-relevant features can be taken out.

One of the classical tools for dimensionality reduction is the well-

known Principal Component Analysis (PCA) [43]. PCA can be

used to generate a reduced number of features from the MRI

voxels in order to improve both, classification accuracy and

computational effectiveness. In this paper we present a new

approach that generates ROIs by quantizing the MRI space by

using a SOM, and results using PCA and Voxel as Features (VAF)

methods are provided as baselines for comparison.

Principal Component Analysis. PCA generates an ortho-

normal basis vector indicating the maximum variance directions.

Thus, the projection onto this basis maximizes the scatter of all the

projected samples. The PCA method can be briefly described as

follows. Let X~½x1,x2,:::,xN � be the sample set of training vectors,

where N is the number of patients in the MRI database. Thus,

each image is converted into a column vector that comprises the

intensities of each voxel. After normalizing X to zero mean and

unity variance, we obtain a new whithened dataset Y [43] and its

covariance matrix can be computed as ~ 1
N

YY T . The

eigenvectors W and eigenvalues l of S can be computed by

solving SW~Wl. Thus, the eigenvectors or principal components

(PCs) of the covariance matrix, define the directions of maximum

variance of the data manifold. Usually, the eigenvectors are chosen

in increasing-variance order, in such a way that the first

eigenvectors compress the most part of the variance explained

[43]. Subsequently, the projections of the data samples onto the

Automatic ROI Selection in Structural Brain MRI
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low dimensional space spanned by the principal components are

used in the classification task.

ROI modelling using SOM. The method presented in this

paper aims not only to reduce the dimensionality of the input

space but also to compute ROIs and then weight them according

to their relative importance. The core idea of the method consists

on quantize the MRI space by a number of prototypes which

model the intensity distribution in different brain areas. Thus,

information about intensity is incorporated to the quantization

process in order to group the voxels according to their intensity

level and being later capable to model the MRI intensity

distribution in the SOM space. Therefore, the feature space is

composed by vectors which contain the voxel’s three-coordinates

location in the three first coordinates and the intensity difference

between CN and AD images. Such a difference image is computed

as

ID~I
m
CN{I

m
AD ð6Þ

where I
m
CN and I

m
AD are the mean image of normal and AD images,

respectively.

The feature space to be quantized is then formed by vectors

xi~(x1
i ,x2

i ,x3
i ,Idi

), where (x1
i ,x2

i ,x3
i ) are the coordinates of the

voxel i (i.e. x1,x2,x3,Idi
are components of xi) and Idi

is the

intensity of voxel i in the difference image. Prototypes computed

by means of vector quantization are cluster centres and represent

groups of similar instances according to the Euclidean distance in

the feature space (voxels), namely Receptive Field (RF). From the

BMU concept described in section, the RF of a unit i (RFi) can be

defined as

RFi~fvk [ M : Evk{vjEƒEvk{viEVj [ G, i=jg ð7Þ

denoting the set of input data vectors for which vi is the BMU.

Subsequently, the relative importance of each ROI is computed

according to the following equation

RRFn~
X

xi [ RFn

I(xi) � FDRi ð8Þ

where I(xi) and FDRi denote the intensity and the FDR value

respectively, of the voxel at coordinates (x1
i ,x2

i ,x3
i ). Figure 3 shows

the SOM units after training when using a 3D cylindrical (infinite

plane) lattice [38]. The first three coordinates of the SOM

prototypes determine the position of each unit which represents a

cluster centre. The fourth coordinate is depicted using different

colours indicating the importance of the ROI according to the

colorbar.

The core idea behind the presented method consists on

quantizing the space to a number of model vectors, and to

categorize them according to their relative importance and the

level of intensity in the difference image. Consequently, the

number of extracted ROIs corresponds to the number of units in

Figure 3. SOM units after training. The position of each unit represent the cluster centre in the brain, indicating areas with similar intensities.
Intensity difference associated to each cluster is indicated using colours according to the colorbar. (a) and (b) show the model for GM and WM
respectively.
doi:10.1371/journal.pone.0093851.g003

Figure 4. 3D reconstruction from ROIs computed using the SOM model for (a) GM and (b) WM tissues.
doi:10.1371/journal.pone.0093851.g004
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the SOM, and the size of each ROI depends on the size of the

receptive field of the corresponding SOM unit.

The self-organizing process carried out by SOM provides the

models shown in Figure 3, where each unit represents a cluster

centre in the brain, indicating areas with similar intensities in the

difference image. Thus, models for GM and WM are built as

shown in Figures 3(a) and 3(b) respectively. As previously

indicated, feature vectors used as inputs for the SOM are 4-

dimensional. The fourth dimension in the feature space is the

intensity difference for each voxel, indicated using a colour code in

the prototypes according to the colour bar at the right side in the

figures. Images from CN or AD patients can be projected onto the

SOM space showing the relative importance of each unit (that

indicates ROI centre) by means of R value computed according to

equation 8.

A 3D volume can be reconstructed from the SOM model by

means of the vector quantization process as depicted in Figure 4,

where the RFs of SOM units define the size of each ROI. In this

figure, 3D models for GM (a) and WM (b) are shown.

Figures 5(a) and 5(b) show the position of the ROI centres for

CN and AD patients respectively and units are coloured according

Figure 5. Projection of images in the SOM GM model for (a) CN and (b) AD example patients from the database. Units indicate the
position of ROI centres and R value is encoded according to the corresponding colour bar.
doi:10.1371/journal.pone.0093851.g005

Figure 6. Difference image (right column) and ROIs computed by the proposed method (left) for (a) GM and (b) WM, respectively
for CN/NOR images. Images from a random training subset from the cross-validation folds have been used. ROIs are coloured according to the
colorbar scale due to their relative importance.
doi:10.1371/journal.pone.0093851.g006
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to its R value. In these figures, different patterns associated to CN

and AD are revealed and they are clearly shown.

Figures 6(a) and 6(b) show the difference between CN and AD

images in the left column and the ROIs computed in the right

column. Each ROI is marked with a different colour that indicates

the relevance of that ROI according to its discriminative power.

ROIs depicted in Figure 6 have been computed using FDR values

above 90% of its maximum value.

Similarly, Figures 7(a) and 7(b) show difference images and

ROIs coloured according to its discriminative power for MCI/AD

images. It is worth mentioning that most relevant ROIs computed

by the proposed method, specially in GM, are compatible with

areas that appear in literature as representative regions of AD,

located in the temporal lobe, such as hippocampus and the

superior temporal gyrus which are responsible for the individual’s

memory formation, speech perception, and language skills [45,46].

In the case of MCI patients, the method truly reveals structural

changes mainly focused on the hippocampus area.

Classification using Support Vector Machine (SVM)
Classification of the feature vectors consisting of the relative

importance measure computed as indicated in the ROI modelling

section is accomplished by means of Support Vector Machine

(SVM). SVMs were introduced in 70’s by Vapnik [47] and

consisted of a set of supervised learning methods widely used for

classification and regression [47,48], which were designed to split

off a set of binary-labelled data by means of a hyperplane.

Specifically, they compute the maximal margin hyperplane to

achieve maximum separation between classes. SVMs operate by

building a decision function in the form f : Rn?f+1g using n-

dimensional training vectors xi and class labels li:

(x1,l1),(x2,l2),:::,(xs,ls) [ Rn|f+1g ð9Þ

in such a way that f is able to correctly classify new samples (x,l).
Linear discriminative functions define decision hyperplanes in a

multidimensional feature space:

g(x)~uT xzu0 ð10Þ

where u is the weight vector and u0 is a bias (threshold). This way,

uT xzu0§1 if class yi~z1 and uT xzu0ƒ1 if class yi~{1, and

the weight vector u is orthogonal to the decision hyperplane.

Figure 7. Difference image (right column) and ROIs computed by the proposed method (left) for (a) GM and (b) WM, respectively,
for MCI/AD images. Images from a random training subset from the cross-validation folds have been used. ROIs are coloured according to the
colorbar scale due to its relative importance.
doi:10.1371/journal.pone.0093851.g007

Figure 8. Classification results for CN/AD.
doi:10.1371/journal.pone.0093851.g008
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Finding the optimal separating hyperplane is accomplished by an

optimization task consisting of finding the unknown parameters

ui,i~1,::,n which define the decision hyperplane. Let xi,i~1,:::,s
be the feature vectors of the training set X . These belong to one of

the two classes, either u1 or u2. If the classes are linearly separable,

the objective would be to design a hyperplane that correctly

classified all the training vectors. As a result, that hyperplane is not

unique and the optimization process focuses on maximizing the

generalization performance of the classifier, which can be defined

as the effectiveness of the classifier to operate with new data.

Among some other criteria, the maximal margin hyperplane is

usually selected since it provides the maximum margin of

separation between the two classes. Since the distance from a

point f to the hyperplane is given by z~Dg(x)D=EuE, to scale u and

u0 so that the value of g(x) is z1 for the nearest point in u1 and

{1 for the nearest points in u2, reduces the optimization problem

to maximizing the margin 2=EuE with the constrains:

uT xzu0§1,Vx [ u1 ð11Þ

uT xzu0ƒ1,Vx [ u2 ð12Þ

Thus, designing the classifier leads to a non-linear (quadratic)

optimization task subject to a set of linear inequality constrains.

The solution u is found to be a linear combination of Nsƒs feature

vectors and the optimum hyperplane is called the support vector

machine.

For non-linearly separable data, the optimization process needs

to be modified to work in combination with kernel techniques, so

that the hyperplane that defines the SVM corresponds to a non-

linear decision boundary in the input space. The use of kernels

enables to map the data into some other dot product space F

(namely, feature space) through a non-linear transformation

w : RN?F , and perform the described linear algorithm in F .

Thus, the decision function is nonlinear in the input space and

takes the form

f (x)~sgn
XNs

i~1

ai liK(si, x)zu0

( )
ð13Þ

where parameters ai and si are the solution for the optimization

process, solved by either Quadratic Programming (QP) or the well-

known Sequential Minimal Optimization (SMO) [49] and the

support vectors [47] (i.e. the training vectors that are closest to the

linear classifier since lie on either of the two hyperplanes, i.e.

uT xzu0~+1. In our case, we used a Radial Basis Function

(RBF) K(x, l)~exp({cE(x{lE2) as kernel function. In fact, the

use of radial basis functions as kernels in SVMs have proved to

supply better results than linear kernels for different applications

[11,50].

Results and Discussion

To demonstrate the relevance of the proposed ROI selection

method for diagnosis purposes, we applied the devised ROI

selection algorithm to the overall database described in the

Database subsection, including CN, MCI and AD patients. Such a

procedure aims to objectively evaluate the discriminative power of

the computed ROIs. Thus, classification through SVM supervised

Figure 9. Classification results for MCI/AD.
doi:10.1371/journal.pone.0093851.g009

Table 2. Classification results for different voxel selection methods.

Measure Proposed method PCA-SVM VAF-SVM

CN/AD

Accuracy 0.9060.06 0.8260.04 0.6760.04

Sensitivity 0.8760.07 0.8060.08 0.6560.08

Specificity 0.9260.09 0.8460.06 0.7060.05

MCI/AD

Accuracy 0.8360.06 0.7060.06 0.6160.07

Sensitivity 0.8260.07 0.6160.08 0.6060.08

Specificity 0.8760.09 0.7260.10 0.7560.09

doi:10.1371/journal.pone.0093851.t002
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learning is carried out to group the images according to the value

of R obtained in equation 8 for each ROI. All the classification

experiments were performed considering different subsets for cross

validation. Specifically, sets of CN/AD and MCI/AD patients

were obtained from the data manifold using k-fold, which takes k

images for testing and use the rest for training. As usual, we used

10-fold (k = 10) in our experiments. Results for CN/AD and

MCI/AD classification are shown in Figures 8 and 9, respectively.

These results were compared to the Voxels As Features (VAF)

technique [5,51] which uses all the intensity voxels to feed the

classifier in both, training and testing stages. In other words, VAF

does not concern any feature generation or selection technique.

On the contrary, scaled versions of the probability maps obtained

as indicated in the Image Preprocessing section from segmented

images, were used as features. Since VAF uses all the information

contained in the images without selecting discriminative voxels, it

may decrease the classification performance. Our method, which

uses voxel selection and feature generation associated to ROIs,

outperforms the VAF approach as shown in Figure 8. Addition-

ally, experiments using PCA as described in the Statistical significance

of voxels section, were performed for comparison. Our proposed

method also outperforms the approach which uses PCA for feature

extraction as shown in Table 2 as well. The experiments described

above state that computed ROIs effectively indicate brain areas

concerning AD, as above described. In fact, hippocampus and

primary auditory cortex areas are marked as relevant regions in

the computed ROIs. We also found that ventricles were marked

too, which would correspond to brain areas as indicated in the

literature [45,46,52] affected by atrophy process linked to

neurodegeneration in AD.

Similarly to the experiments described above for CN/AD

patients, experiments that aim to differentiate between MCI and

AD patients were carried out. Thus, MCI/AD classification results

are shown in Figure 9. In this case, as image differences between

MCI and AD are not so evident as in the CN/AD case, specific

feature generation and reduction methods may result especially

relevant to improve classification outcomes. Moreover, brain areas

revealed through differences between MCI and AD patients are

not as clear as in the CN/AD case, and ROI selection helps figure

out patterns relating to MCI. In this way, computed ROIs show

differences mainly focused in the hippocampus area, stating

differences associated to the atrophy in this brain area.

At the same time, ROIs extracted from MCI patients have been

assessed by means of classification experiments. Figures 8 and 9

shows the performance of our method, which clearly outperforms

the VAF approach. Moreover, these results set the stability in

terms of the number of SOM prototypes of the proposed approach

to compute ROIs and their relevance for classification.

Figure 8 also states the effectiveness of the proposed method for

extracting relevant brain areas relating to to AD, and the

assignment of a relative relevance value to each one of these

regions. Thus, accuracy values up to 90% and sensitivity values up

to 87% were obtained, outperforming the classification results

obtained when features are computed by means of classical

techniques such as PCA. On the other hand, classification results

between MCI and AD are shown in Figure 9, providing 83% of

accuracy and 76% of sensitivity levels. Moreover, Figure 10(a)

shows the Receiving Operating Curve (ROC) for MCI/AD

classification, yielding an Area Under ROC curve (AUC) of 0.92.

Similarly, ROC curve for MCI/AD is depicted in Figure 10(b),

where the computed AUC was 0.84, indicating high sensitivity for

AD patients.

It is worth noting that there are several factors that may affect

the classification results. One of them is related to the gold-standard

diagnosis in the ADNI database, as only living subjects were

analysed. This fact is specially relevant due to the difficulty for

diagnosing AD in vivo [8,51]. In fact [51], shows that AD

classification accuracy level diminishes when autopsy data is not

available. In other words, patients whose medical records are

contained in the ADNI database do not usually show severe AD,

but mild AD symptoms [8]. This way, as results provided in this

work are close to the ones obtained in other recent works such as

[13]. Therefore, it can be stated that differences in MCI patients

determine the effectiveness of ROI computation. Consequently,

the experiments brought about within this work show the

importance of the feature selection methods in AD diagnosis

through MRI imaging, which are even more relevant in the case of

MCI classification.

Figure 10. ROC curves for (a) CN/AD and (b) MCI/AD classification, respectively.
doi:10.1371/journal.pone.0093851.g010
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Conclusions

In this work, a method based on unsupervised vector

quantization techniques for automatic ROI calculation is present-

ed. Specifically, a three-dimensional Self-Organizing Map is used

to model MRI images selecting ROIs related to a particular

neurological disorder. Images from controls and AD patients are

used to compute tissue differences by means of voxel contrastation.

Subsequently, the MRI space is quantized, computing a number

of prototype vectors from features extracted taking into account

the spatial relationship among voxels, figuring out similar areas

within the difference image. Additionally, the relative importance

of each cluster is computed by means of the cluster sizes and the

statistical significance of the discriminative power of the voxels that

make up the ROI. The spatial relationship among clusters is also

preserved in the SOM output space due to the SOM’s topology

preserving properties. The method has been assessed by selecting a

set of images from the ADNI [40] database, using the ROIs

automatically computed using the presented approach. Moreover,

most relevant ROIs computed across this method, specially in

GM, are compatible with areas that appear in literature as

representative regions of AD such as hippocampus [45,46,52].

The classification results provide average accuracy, sensitivity and

specificity values of up to 90%, 87% and 92%, respectively, for 10

cross-validation folds, while the AUC is 0.92. On the other hand,

our method is capable to distinguish MCI from AD patients up to

83% of accuracy and AUC of 0.84. Classification experiments

state the effectiveness of the proposed method to select relevant

brain areas that are related to Alzheimer’s disease. Since structural

differences between MCI and AD are not as clear as in the CN/

AD case, results obtained for MCI/AD classification indicate the

applicability of the method for an early diagnosis of AD.

Furthermore, it is also devised to be applicable to uncover some

other hidden neurological disorders, through small structural brain

alterations, as well as be useful to explore adjacent brain areas

related to such disorders.
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