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Abstract

We describe a method for pooling and sequencing DNA from a large number of individual samples while preserving
information regarding sample identity. DNA from 576 individuals was arranged into four 12 row by 12 column matrices and
then pooled by row and by column resulting in 96 total pools with 12 individuals in each pool. Pooling of DNA was carried
out in a two-dimensional fashion, such that DNA from each individual is present in exactly one row pool and exactly one
column pool. By considering the variants observed in the rows and columns of a matrix we are able to trace rare variants
back to the specific individuals that carry them. The pooled DNA samples were enriched over a 250 kb region previously
identified by GWAS to significantly predispose individuals to lung cancer. All 96 pools (12 row and 12 column pools from 4
matrices) were barcoded and sequenced on an Illumina HiSeq 2000 instrument with an average depth of coverage greater
than 4,0006. Verification based on Ion PGM sequencing confirmed the presence of 91.4% of confidently classified SNVs
assayed. In this way, each individual sample is sequenced in multiple pools providing more accurate variant calling than a
single pool or a multiplexed approach. This provides a powerful method for rare variant detection in regions of interest at a
reduced cost to the researcher.
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Introduction

Genome wide association studies (GWAS) provide a wealth of

information about the genetic basis of disease. As regions of the

genome that are involved in pathogenesis are identified there is a

need for improved fine mapping of genetic variants associated with

disease over a large number of individuals. Re-sequencing of

GWAS peaks offers the potential to identify rare variants within

regions of interest however the complexity and cost of sequencing

large number of samples remains prohibitive.

Sample pooling is a frequently applied method for sequencing a

large number of samples in order to detect variants. Targeted

enrichment of specific regions of interest prior to pooling can

increase the number of samples processed using current sequenc-

ing technologies. Bioinformatics tools such as VarScan and CRISP

exist for single nucleotide variant (SNV) calling from pooled

samples but are not capable of identifying the specific samples in

the pool that contributed the variant [1] [2]. Sample barcoding

may be applied in order to allow sample identification but this

approach forgoes the cost benefit of a pooled library preparation.

Thus, improved methods are required to enable degrees of sample

deconvolution for DNA that is pooled prior to library preparation

for sequencing.

Multi-dimensional pooling of samples offers a powerful solution

to this problem. By pooling samples along different dimensions

and then considering the commonalities between the variants

called in each pool the cost savings benefits of pooled library

preparation are leveraged while the ability to identify the specific

individuals that possess a variant is retained. Multi-dimensional

pooling strategies have previously been used to increase through-

put of large-scale genomics projects while reducing the cost of

handling large amounts of samples. Notable examples of this

strategy include approaches for identifying pooled Bacterial and

Yeast Artificial Chromosomes in cloned arrays by probe

hybridization or PCR [3] [4]. Keypoint technology uses targeted

re-sequencing of PCR products pooled in 2 or more dimensions

and ‘DNA Sudoku’ has been described for sequencing very large

numbers of pooled bacterial clones containing short sequences

encoding shRNA [5] [6]. TILLING (Targeting Induced Local

Lesions IN Genomes) has also been applied in mutagenesis and

reverse genetics studies where the target gene is known [7]. These

methods are effective strategies for sequencing multi-dimensionally

pooled samples, however none describe an application to target-

enriched, next-generation sequencing. Furthermore, these ap-

proaches prioritize preserving the ability to determine the
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contributing source of every observed feature – a requirement

which is more tractable in rare variant detection.

We describe a two-dimensional pooling method which we used

to identify rare variants in 576 individuals over a 250 Kb region

previously identified by several genome wide association studies to

significantly predispose individuals to lung cancer [8–12]. DNA

from the 576 individuals was arranged into 4 matrices, each

containing 12 columns and 12 rows (Figure 1). The pooled

samples were subsequently enriched for DNA from the region of

interest. Pooling of DNA was carried out in two dimensions such

that when a variant is reported in exactly one row pool and one or

more column pools, or exactly one column pool and one or more

row pools, we are able to identify the individual carrying that

variant. Additionally, because each individual sample is sequenced

twice, two independent measurements are made of each variant

which increases the accuracy of variant calling. With this

approach, a large number of samples may be sequenced to great

depth over an enriched target area. This provides a powerful

method for rare variant detection in regions of interest at a

reduced cost to the researcher and with high verification rates.

Results

Pooling and sequencing
Pooled DNA was captured using custom probes and Agilent

SureSelect technology [13] targeting a 250 kb region of chromo-

some 5 (5p15.33). Captured DNA was prepared for Illumina

sequencing (as described in the Methods section) such that a pool

of barcoded rows and a pool of barcoded columns was created

from each matrix (12612) over a total of 4 matrices.

The 8 pools were sequenced on a HiSeq Illumina instrument

resulting in very deep coverage of our 250 kb target (Table 1). The

raw sequencing yield for each pool of row and column libraries

exceeded 24 gigabases with an average of 72% of the reads

mapping to the human genome. Among reads mapping to the

human genome, an average of 74% mapped to our targeted region

and each row and column was covered to an average depth

greater than 4,0006 (Table 1). Coverage of sequencing across the

region tended to be evenly distributed; however, a few region-

specific tandem repeats were captured resulting in peaks of

ambiguously mapped sequence (as can be seen in Figure S1 in

Supplemental File S1). Regardless, upwards of 75% of the target

region was covered at a depth of at least 2006 (our minimum

depth threshold for calling variants in these pools) representing at

least 16 reads per individual if we assume even pooling.

Calling and classifying variants
Reads were demultiplexed, aligned, filtered for quality, and

analyzed as detailed in the Methods section. Variant calls were

determined individually in each of the row and column pools using

base counts in samtools pileup files [14]. Then variants were

considered across all pools in order to classify the call based on

whether it could be traced back to the specific individuals who

carried the variant. Calls with sufficient coverage were classified as

one of the following: pinnable, multiple or singleton (Figure 2). Variants

that fell below our cutoff of 2006 coverage in 3 or more pools

were classified as missing coverage variants.

Pinnable variants were those that could be attributed to a specific

individual because the variant was called in only one row and one

or more columns, or only one column and one or more row pools

of a matrix (Figure 2A). We observed between 312 and 425 pinnable

class single nucleotide variants in each matrix resulting in a total of

1260 unique pinnable SNVs across all four matrices (Table 2).

Variants that were called in more than one row and more than

one column pool were classified as multiple (Figure 2B). We

identified an average of approximately 625 multiple class SNVs in

each matrix, of which very few were private to one matrix; in total

over the four matrices we found only 697 unique multiple SNVs. A

third class of variant was termed a singleton. Singletons were observed

in either a row or column pool but not in both (Figure 2C), which

was unexpected given the design of the experiment, and suggest

either a false positive in the observed pool or a false negative in at

least one intersecting pool. Nevertheless, we called between 179

and 341 SNVs of this class per matrix, and found 864 unique

singleton SNVs in total.

DNA was arranged into matrices without prior knowledge of

the specific variants that the individuals possessed, therefore we

expect that rare variants in a matrix (e.g. a pinnable that only occurs

once in a 144 position matrix) should also be rare in the study, and

rare in the population. Likewise, a variant that occurs commonly

in a matrix (e.g. a multiple that is observed in several rows and

columns) should also be common in the study as well as in the

population. Figure 3 shows the number of SNVs that were called

in exactly 1, 2, 3 or 4 matrices broken down by classification. The

pinnable and singleton variants that were rare within one matrix were

also predominantly only called in one matrix - over 90% of the

variants that were unique to one matrix fall into these two classes.

Furthermore, if the presence of a variant in dbSNP 132 is

indicative of how common a variant is in the population, we see

that only 20.87% of the pinnable and 2.89% of the singleton SNVs

were present in dbSNP (Table 2). Thus, variants that appear to be

rare in one matrix were also rare in the study and in the

population. The converse also holds; Figure 3 shows that most

multiple class SNVs were called in all 4 matrices and that over 90%

of SNVs that were seen in every matrix were multiples.

Additionally, Table 2 reports that 74.18% of the multiple SNVs

could be found in dbSNP. As expected, the multiple class variants

that were common within a matrix were also common across our

study and in the population.

Figure 1. Row by column arrangement for pooling of DNA
samples. 576 DNA samples (Sn) were arranged in six 96 well plates.
These samples were pooled in 4 matrices of 12 rows by 12 columns as
illustrated. For each pool, 12 DNA samples were either pooled across
the grid (row) or down the grid (column). Each pool of 12 DNA samples
was then target enriched, barcoded and processed for Illumina
sequencing.
doi:10.1371/journal.pone.0093455.g001
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Verification results
An amplicon sequencing approach was taken to verify variants

predicted using our pooling approach. We selected candidate

SNVs to verify using two methods; by random selection from a list

of all variants with a given classification and also based on their

predicted consequences because we were most interested in non-

synonymous changes and SNVs that may affect splice sites.

Consequences were predicted by ANNOVAR [15] (see Table S1

in Supplemental File S1). Primers were designed to amplify short

stretches of DNA containing the selected variants. Amplicons were

indexed, pooled and then sequenced on an Ion Torrent Personal

Genome Machine.

As detailed in Table 3, we assayed 58 pinnable SNVs (18 of

which were selected due to their predicted consequence) and

found that 53 calls were true positives (91.4%) in the specific

individual indicated by the intersection of the row and column

pools where the SNV was observed. SNVs that were observed as

multiple were verified in two different ways; (1) Verification of the

variant within a pool of DNA (an entire row or column) and (2)

Verification of every DNA sample at the intersection of called

pools (individual DNA samples predicted to contain the variant).

Of the 8 SNVs chosen randomly for verification in their DNA

pool, 7 were confirmed. These variants (7/8) were confirmed in

pools of DNA containing all 12 DNA samples from a row or

column where the variant was called. An additional 17 multiple

SNVs (12 selected at random and 5 hand chosen based on

consequence) were tested where each individual DNA sample was

assayed at the intersection of all row and column pools predicted

to contain the variant. Of these 17 SNVs, 13 were confirmed. The

combined verification rate for the two methods of multiple

verification was 80%.

We identified 12 singleton SNV candidates for verification

(including 5 due to their predicted consequence) and performed

PCR on each individual from the row or column where the variant

was detected. Only 1 of the 12 singletons assayed was confirmed to

be a true positive in the row (and thus a false negative in the

column) and the rest were shown to be false positives. The

likelihood that singletons were primarily false positives was

supported by the low number of reported calls that were found

in dbSNP (Table 2) and by the observation that the 1 verified

singleton was the only variant of the 12 tested to be found in that

database.

Detection of indel variants was also possible with the two-

dimensional pooling approach we have described. We identified

70 pinnable, 78 multiple and 150 singleton indel variants in our dataset

(dbSNP rates and consequence calls are available in Tables S2 and

S3 in Supplemental File S1). Initial verification of a small subset of

10 pinnable indels selected at random found that 9 were indeed

true, which suggests a true positive rate similar to what was

observed for pinnable SNVs.

Table 1. Sequencing yield and efficiency of enrichment.

Pool Raw Yield (Gb) % Mapped
% On Target
(of mapped)

Total Coverage
in Region

Average Coverage
per Pool

Average Coverage
per Sample

Matrix 1 Columns 25.41 64.66% 78.98% 51,840 4,320 360

Matrix 1 Rows 26.53 66.29% 75.97% 53,424 4,452 371

Matrix 2 Columns 41.37 75.10% 74.62% 92,736 7,728 644

Matrix 2 Rows 28.74 73.36% 71.17% 60,048 5,004 417

Matrix 3 Columns 70.86 79.64% 72.13% 162,720 13,560 1,130

Matrix 3 Rows 29.87 76.59% 78.81% 72,144 6,012 501

Matrix 4 Columns 25.36 68.12% 68.12% 52,416 4,368 364

Matrix 4 Rows 24.33 73.20% 73.20% 54,144 4,512 376

The raw yield, percentage of reads mapped, percentage of reads on target, the total coverage of the region and the average coverage per pool and per individual is
shown for each 12 row and 12 column pool from each of the four matrices sequenced.
doi:10.1371/journal.pone.0093455.t001

Figure 2. Definition of variant classes. Variant calls are classified based on their relationship to the pooled individuals. The three possible classes
are Pinnable, Multiple and Singleton. (A) Pinnable variants were those where the carrying individuals may be identified because there is exactly one
row or exactly one column containing a variant and at least one intersecting row or column pool. (B) Multiple variants were those where the variant is
observed in more than one row and more than one column and it is not possible to determine precisely which individuals possess the variant. (C)
Singletons were calls that are only observed in either a row or a column but not both.
doi:10.1371/journal.pone.0093455.g002
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Discussion

Two-dimensional pooling has proven to be an effective strategy

for the detection of rare variants in targeted next generation

sequencing. Pooling strategies have a clear cost benefit over

preparing each sample individually. However, with a typical one-

dimensional pooling it is impossible to determine which sample

contributes to each variant without extensive barcoding of samples

requiring individual sequencing library preparation. Pooling

samples in two dimensions enables the rare variants in a matrix

to be traced back to specific individuals pooled in a matrix.

We identified a number of SNV candidates in our experiment,

including 1,260 pinnable classed variants that could be assigned to

an individual DNA sample in the 576 analyzed. An additional 697

multiple classed variants were observed in multiple rows and

columns. Verification results have shown that a very high number

of the pinnables were truly present in the individual specified by the

call. When verifying singleton variant candidates, we found that in a

majority of the cases the initial singleton call was a false positive, and

conclude that calls from this class can be filtered from the results.

The high number of singleton calls that were verified to be false is

indicative of an important benefit two-dimensional pooling has

over one-dimensional approaches; DNA from each sample is

sequenced twice in two different libraries and variants must be

detected in both to make a positive call. In one-dimensional

approaches, singleton calls would appear identical to other positive

calls. In two-dimensional pooling, however, these calls were clearly

singletons and can be filtered accordingly, improving the true

positive variant detection rate of the experiment.

One drawback of the two-dimensional approach is that once a

variant is detected in more than one row and more than one

column it becomes impossible to determine precisely which

individuals possess the variant. However, it is possible to narrow

down the list of individuals; at least one individual from each

observed row or column, and at most every individual at the

intersections of the observed rows and columns may carry the

Table 2. Summary of SNV class by matrix.

Matrix Pinnable Variants (% dbSNP) Multiple Variants (% dbSNP) Singleton Variants (% dbSNP)

1 371 (22.64%) 591 (82.40%) 341 (5.28%)

2 425 (28.53%) 613 (81.24%) 179 (11.17%)

3 408 (23.04%) 680 (78.97%) 245 (6.94%)

4 312 (17.95%) 621 (81.80%) 231 (3.46%)

Total unique 1260 (20.87%) 697 (74.18%) 864 (2.89%)

For each 12 row by 12 column matrix of libraries sequenced, the number of Pinnable, Multiple and Singleton single nucleotide variants is given. Also indicated is the
percentage of each variant class that is catalogued in dbSNP. The number of total variants for each of the classes represents the total unique number of variants from all
four matrices.
doi:10.1371/journal.pone.0093455.t002

Figure 3. Bar graph of variant classes by frequency of observation. A breakdown of the classifications of variants that were observed in
exactly 1, 2, 3 or 4 of the 4 matrices. Variants that were rare within a matrix (and thus labeled Pinnable or Singleton) were predominantly seen in only 1
of the 4 matrices. Similarly, variants that were common within a matrix (Multiples) were also common between the 4 matrices.
doi:10.1371/journal.pone.0093455.g003
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variants. By increasing the number of pooling dimensions,

approaches such as DNA Sudoku can allow common variants to

be traced back to the contributing individuals at the cost of

additional library preparation and sequencing.

Two-dimensional pooling and sequencing allows the identifica-

tion of rare variants in a targeted region with more accuracy than

traditional one-dimensional sequencing (because each variant in

each individual is sequenced twice). Pooled sequencing in more

than one dimension can be carried out at a fraction of the cost of

capturing, indexing and sequencing each individual separately,

while retaining the ability to identify individuals possessing rare

variants. For applications where the number of samples are high

and the variants of interest are likely to be rare we have shown

two-dimensional pooling to be an effective approach.

Materials and Methods

This research was performed with the approval of the Mount

Sinai Hospital (Toronto, Canada) Research Ethics Board (#07-

0167-E). Signed consent was obtained from adult participants. No

children were included in this study.

DNA Pooling, Capture and Sequencing
DNA aliquots from 576 individuals were arranged into 4

different 12612 matrices and then pooled by row and by column

as shown in Figure 1. Each pooled row and column contained

DNA from 12 different individuals. Each of these pools were

processed using a custom Agilent SureSelect Indexing kit designed

to capture and generate indexed Illumina-compatible libraries

enriched for a 250 kb region of 5p15.33. Genomic capture and

library construction using the Agilent SureSelect system was

performed as recommended by the manufacturer with a hybrid-

ization capture time of 72 hours.

Captured and indexed libraries were multiplexed into 8 pools

and sequenced on 8 lanes of an Illumina HiSeq instrument. Due to

variations in pooling, under-performing libraries were re-se-

quenced on an additional lane. Sequencing was carried out as

described by the manufacturer (Illumina) generating 26101 bp

indexed pair-end reads.

Initial data processing
We called bases and generated demultiplexed fastq files using

Illumina’s CASAVA pipeline. Reads were aligned using Novoa-

lign V2.07.06 (www.novocraft.com) and any reads with a mapping

quality less than 30 were deemed to be not uniquely aligned and

were discarded. Next, we locally realigned reads using version

1.0.5083 of the Genome Analysis Tool Kit [16]. Any read with

more than 2 mismatches was discarded. We did not remove

potential PCR duplicates because each pool contained reads from

multiple individuals and it was important to maintain the relative

allele frequencies present in the data. Detection of PCR bias was

handled later by a metric built into the variant calling step.

Variant calling
Samtools and downstream filtering were used to call single

nucleotide variants (SNVs) in each individual pool based only on

high quality (q. = 30) bases at positions that did not fall into

UCSC’s repeat mask or self chaining tracks. Any position where

there were fewer than 200 reads available or when there was

potentially a start point bias (a score of less than 1.25 using our

metric, which is described next) was marked as having insufficient

coverage and was excluded in the calls for the pool. The depth and

start point bias cutoffs were selected by using the percentage of

variants called that were reported in dbSNP as an indication of our

true positive rate.

Our start point bias metric was based on the number of unique

start points contributing to a call, as well as the distribution of the

coverage granted by each start point. If the majority of the reads

originate from one start point, the position would receive a low

score on the metric. If di is the number of reads that start at the i-th

start point and n is the total number of start points, then the metric

is calculated as follows:

Pn

i~1

di

max di . . . dnf g

We consider the percentage of reads that support a non-

reference base and we applied the following criteria in order to

make one of 4 possible calls at every position with sufficient

coverage. It is important for our method to call both the presence

and absence of variants because knowing that a variant is not in a

pool is crucial for determining if the variant can be traced back to

the individual that carried it. First, a confident variant is called at

positions where greater than 1% of the reads support the variant

and we have sufficient coverage. A potential variant was called when

more than 0.5% of reads supported the variant. We make a

potential call for the absence of the variant if fewer than 0.5% of

reads support the variant. Finally, we consider a position a confident

no-variant call when fewer than 0.1% of reads support the variant.

Variant classification
Once variants have been called in the rows and columns of a

matrix, only variants that had at least one confident call (as defined

above) were included; if a variant only had potential calls supporting

it then it was discarded at this stage. By considering the number of

row or column pools where a variant was called (whether confidently

or potential) as well as the number of pools the reference was called

in, each variant could be classified as follows:

Table 3. SNV verification rates by class.

Class Variants in Class
Randomly Selected Verification
Rate

Consequence Selected Verification
Rate Total Verification Rate

Pinnable 1,260 36/40 (90.0%) 17/18 (94.4%) 53/58 (91.4%)

Multiple 697 16/20 (80.0%) 4/5 (80.0%) 20/25 (80.0%)

Singelton 864 0/7 (0.0%) 1/5 (20.0%) 1/12 (8.3%)

Candidate variants of each class were selected for verification using an orthogonal sequencing chemistry. DNA samples predicted to carry specific variants were PCR
amplified and sequenced on an Ion Torrent PGM instrument.
doi:10.1371/journal.pone.0093455.t003
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(1) A variant was classified as pinnable when it was observed in

exactly one row and one or more columns, or in exactly one

column and one or more rows. Pinnable calls could be traced

back to the individual in the matrix who carry the variant by

considering the intersection of the row and column where the

variant was observed.

(2) Variants were classified as multiples when they were observed

in more than one row and more than one column. From a

multiple call, we know that at least some of the individuals at

the intersections of the rows and columns carried the observed

variant, but it is impossible to determine exactly which

individuals have contributed the variant to the pools.

(3) If we observed a variant in a row but not in a column, or in a

column but not in a row, then we classified the variant as a

singleton.

(4) In order to differentiate between the above classifications, we

need to know exactly how many row and column pools a

variant has been observed in. If more than 3 pools had

insufficient coverage, we did not have enough evidence to

accurately classify the variant. We report these variants under

the missing coverage class. In Text S1 in Supplemental File S1,

we provide a pseudocode listing of the processing steps and

classification algorithms used in this study. Perl scripts will be

provided upon request, but may require modification to work

in other computing environments and with other datasets.

Variant Verification
SNV candidates were selected for verification in two ways – at

random and by examining consequence calls generated by

ANNOVAR (see Table S1 in Supplemental File S1). Primers

targeting each variant were designed using a Primer3 based script.

The primers were barcoded to allow differentiation between

individual DNA samples where the same variant was predicted.

For pinnable variants, we used DNA that was predicted to contain

the variant as the template. Multiple variants were verified in two

ways; in the pool predicted to contain the variant and in every

individual DNA sample predicted to contain the variant. Singeltons

were verified by assaying every DNA sample in the row or column

pool predicted to contain the variant.

Individually barcoded PCR samples were pooled and prepared

for sequencing using standard Ion Torrent sample library

preparation guidelines. The barcoded and pooled PCR libraries

were run on an Ion Torrent Personal Genome Machine (PGM)

and the resulting reads were evaluated against the reference

genome.

Supporting Information

File S1 Figure S1: Circos plot of filtered tracks, SNV calls and

coverage over the region. The region of interest, a 250 kb region

of chromosome 5 (5p15.33), is shown. Section A shows the genes

TERT, CLPTM1L, BC034612, SLC6A3 and a portion of

LPCAT1 in light green, with exons drawn in black. The grey

and black tracks in section A highlight the repeat masked and self-

chaining regions we excluded from analysis. Section B presents the

positions of pinnable class SNVs in dark green, multiple SNVs in light

green, singletons in grey and positions with some evidence but

insufficient coverage (missing coverage) in black. Section C plots the

depth of coverage over the region in dark green. The range of the

plot is from 06 coverage at the outside of the light green band to

20,0006 at the inside of the light green. Table S1: Predicted

consequences of SNVs. Tables 2A, 2C, 2E and 2G show a

breakdown for matrices 1, 2, 3 and 4 of the predicted

consequences of pinnable, multiple and singleton SNVs. Tables 2B,

2D, 2F and 2H further list the transcription consequences for

exonic variants from matrices 1 to 4 respectively. Table S2:

Summary of indel class by matrix. The number of Pinnable, Multiple

and Singleton indel variants identified is listed for each of the four

12612 matrices. Also indicated is the percentage of each variant

class that is catalogued in dbSNP. The number of total variants for

each of the classes represents the total unique number of variants

from all four matrices. Table S3: Predicted consequences of indels.

The predicted consequences of the pinnable, multiple and singleton

indel variants identified in matrices 1, 2, 3 and 4 are presented in

Tables 3A, 3B, 3C and 3D.

(DOCX)
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