
Semiparametric Inference for Data with a Continuous Outcome
from a Two-Phase Probability Dependent Sampling Scheme

Haibo Zhou1, Wangli Xu1,2, Donglin Zeng1, and Jianwen Cai1
1Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599, U.S.A
2Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872,
China

Abstract
Multi-phased designs and biased sampling designs are two of the well recognized approaches to
enhance study efficiency. In this paper, we propose a new and cost-effective sampling design, the
two-phase probability dependent sampling design (PDS), for studies with a continuous outcome.
This design will enable investigators to make efficient use of resources by targeting more
informative subjects for sampling. We develop a new semiparametric empirical likelihood
inference method to take advantage of data obtained through a PDS design. Simulation study
results indicate that the proposed sampling scheme, coupled with the proposed estimator, is more
efficient and more powerful than the existing outcome dependent sampling design and the simple
random sampling design with the same sample size. We illustrate the proposed method with a real
data set from an environmental epidemiologic study.
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1 Introduction
Observational studies in epidemiology that relate disease outcome to individual exposures
and other characteristics play a key role in understanding the determinants of diseases in
humans. As all studies are conducted with a limited budget, the maximum study sizes are
often restricted by the cost of the exposure assessments. Some large cohort studies, e.g., the
Women's Health Initiative and the National Children's Study, could cost hundreds of
millions of dollars to conduct. Cost-effective study designs for biomedical studies have
always been an important research area. Among them, the biased sampling design,
represented by the case-control design, has played a significant role in the development of
biostatistics methodological research during the last half of the 20th century. It is often the
preferred choice of study design for epidemiologic studies because of its efficiency and cost-
effectiveness feature compared to cohort studies (e.g., Cornfield, 1951; Anderson, 1972;
Prentice and Pyke, 1979).

The fundamental idea of case-control design is to over-sample observations (e.g., cases) that
are believed to be more informative regarding the exposure-response relationship. This basic
idea motivated the development of research in the area of general Outcome Dependent
Sampling (ODS) for a continuous outcome in recent years (e.g., Zhou et al., 2002; Weaver
and Zhou, 2005; Song, Zhou and Kosorok, 2009). The general ODS design allows
investigators to selectively sample observations based on the observed values of a
continuous outcome to achieve improved efficiency for a fixed sample size. The ODS
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design (Zhou et al., 2002) assumes that the values of the response, denoted by Y, are known
for all subjects, but the exposure variable, denoted by X, may be expensive or difficult to
assess. This is reasonable in many studies where responses like Intelligence Quotient (IQ) or
disease status are easily obtainable, but exposure assessment needs expensive assay or
follow up. Assume that the domain of the Y is partitioned into three mutually exclusive
intervals: (−∞, yL]⋃(yL, yU]⋃(yU, ∞). The ODS sample proposed by Zhou et al. (2002) has
X values ascertained on the following three samples: an overall simple random sample, a
supplemental sample conditional on Y < yL, and a supplemental sample conditional on Y >
yU. Other recent progresses in the ODS design includes (e.g., Kang and Cai, 2009; Lu and
Tsiatis, 2006; Zhou et al. 2011; Qin and Zhou, 2011; Chatterjee, Chen and Breslow, 2003;
Manatunga et al, 2008; Schildcrout and Rathouz, 2010; Wang and Zhou, 2006; Zhou, Song,
et al, 2011; Zhou, Wu, et al, 2011). Part of the explanation that the ODS design is more
efficient than the simple random sampling is because through sampling the response Y at its
two distributional tails, the observed exposure values X were also more likely to occur at its

distributional tails. Linear model theory shows that the variance of , the estimate of the
regression coefficient corresponding to X, is inversely proportional to the summed squares
of observed X's values. Hence, when the goal is to evaluate the relationship between an
exposure X and a response Y, having a sample of subjects whose X values are at its two
distributional tails would be more informative than having a sample of subjects whose X
values concentrated around its mean.

Assume that the domain of the exposure X is partitioned into three mutually exclusive
intervals: (−∞, xL]⋃(xL, xU]⋃(xU, ∞). If an investigator knows which interval each
individual's X value falls into, the investigator can draw a supplemental sample from those
whose X values are in the upper or lower tail intervals, respectively. Such a strategy,
however, is not feasible in practice as investigators do not have knowledge of X in advance.
In this paper, we propose a new two-phase design where we select the second phase
supplemental sample with a probability-dependent-sampling scheme (PDS) that will allow
us to oversample X from its two distributional tails. The proposed two-phase PDS is outlined
as follows. Let Y denote the response variable, X the primary exposure variable, and Z the
collection of all other covariates. In the first phase of the proposed design, a simple random
sample is drawn and the values of (X, Y, Z) are observed. We fit a model for E(X|Y, Z) using
the phase one SRS sample. Based on this model, the chances of a new subject's X,
conditional on Y = y, Z = z, will be in (−∞, XL] and (XU, ∞) are predicted by

 and , respectively. We then draw
the supplemental samples in the second phase by obtaining a simple random sample from
those who are likely to have high or low X values. For example, random samples can be

drawn from those with  and with , respectively. As a result,
the final observed data is over-represented by individuals who are more likely to be on the
distributional tails of X.

The roots of the proposed two-phase PDS design can also be traced back to Neyman (1938),
who introduced the two-phase stratified design to enhance study efficiency. At the first
phase of a typical two-phase design, a relatively large random sample is drawn and only Y
and Z are measured in the first phase cohort. The ascertainment of X is made at the second
phase of the design, where a subsample is drawn randomly, without replacement, from the
first phase cohort. Greater efficiency can be obtained through the two-phase sampling design
(e.g. Breslow and Cain, 1988; Breslow et al., 2003; Song et al, 2009; and Wang and Zhou,
2010).

The key differences among the traditional two-phase design, the recent work on the two-
phase ODS design, and the proposed two-phase PDS design are that: (i) the second phase of
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the traditional two-phase design is either independent of Y and Z or is only dependent on
binary Y, e.g., case-control second phase; (ii) the two-phase ODS allows for continuous Y
but not Z in the 2nd phase drawing; (iii) the two-phase PDS, not only allows for a
continuous Y, but also allows for any dimension of Z in the decision making of 2nd phase
drawing. By estimating the chance of the unknown X's range, this approach avoided the
impracticability of high dimension stratification of vector Z.

For data obtained via complex sampling designs like the PDS designs described above,
estimators ignoring the design will be biased unless they properly account for the biased
sampling scheme. In practice, some ad hoc or simplification of the data is often made prior
to analysis. A commonly used approach in epidemiologic studies is to dichotomize a
continuous outcome Y and then use available methods for binary outcome for inference
(e.g., White, 1982; Amemiya, 1985; Prentice, 1986; Breslow and Cain, 1988; Weinberg and
Wacholder, 1993; Langholz and Borgan, 1995; Breslow and Holubkov, 1997; Schildcrout
and Heagerty, 2008). In this paper, we propose a semiparametric empirical likelihood
method for estimating the regression parameters. The proposed methods are semiparametric
in the sense that the marginal distribution of the exposure variable X is left unspecified.

The remainder of this paper is organized as follows. In Section 2, we introduce the data
structure for the two-phase PDS design. We outline the estimation algorithm for the
proposed semiparametric empirical likelihood estimator and establish its asymptotic
properties. In Section 3, we present simulation study results comparing the proposed method
with some competing designs and estimators. We illustrate the proposed method with a data
set from the Collaborative Perinatal Project (CPP) data. Final remarks are given in Section
4.

2 Design and Inference for a Two-phase PDS Study
2.1 Design and Data Structure

Let Y denote a continuous outcome variable, (X, Z) denote the vector of covariates with X
being the expensive scalar exposure variable and Z being the easily obtainable covariates.
Assume that the regression model of Y given (X, Z) is

where (β0, β1, β2) denote the unknown regression parameters and ε ~ N(0, σ2) is the random
error. Let β = (β0, β1, β2, σ2

1) and xL and xU (xL < xU) be known constants that partition the
domain of X into three mutually exclusive intervals: A1 ⋃ A2 ⋃ A3 = (−∞, xL] ⋃ (xL, xU] ⋃
(xU, ∞).

The proposed two-phase PDS scheme is as follows: in the first phase, we observe (Y, X, Z)
in a simple random sample (SRS) of size n0 from the underlying study population. A model
of E(X|Y, Z) is then fitted based on this SRS sample and ϕ1(Y, Z) = Pr(X ∊ A1|Y, Z) and
ϕ3(Y, Z) = Pr(X ∊ A3|Y, Z) are estimated. In the second phase of the PDS design, we draw a
supplemental random sample from those in the study population whose predicted probability

 satisfies . Likewise, a supplemental sample is drawn from
those whose X values are more likely in the upper tail, i.e, from those with

. Note that the 80% value here is chosen for the simplicity of
illustration. We will use constants c1 and c3, where 0 < c1, c3 < 1, in the formulation of the
likelihood. The data structure for the proposed two-phase PDS is
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(2.1)

.

The supplemental samples can be generated with different, perhaps unknown, selection
probabilities, e.g., one can choose to select a fixed proportion of the sets {(Yki, Zki): ϕk(Yki,
Zki) ≥ ck} (k = 1, 3) from a underlying cohort of subjects whose (Y, Z) are known, or, one
can select a predetermined number of subjects from the underlying population, in which
case, the proportion of the selected set relative to the underlying population is unknown. The
total sample size in the two-phase PDS design is n = n0 + n1 + n3.

If X is a continuous variable and can be viewed as normally distributed after proper
transformation, then a linear model can be used for ϕk(Y, Z) = Pr(X ∈ Ak|Y, Z), k = 1, 3.
More specially, we estimate ϕ1(Y, Z) by

 and ϕ3(Y, Z) by

, where Φ(·) is the c.d.f. of the
standard normal distribution and  and  are estimates using the first phase data
based on the following regression model:

(2.2)

Another natural estimator for ϕk results from the use of logistic regression model. Denote δk
= I(X ∈ Ak), k = 1, 3. We estimate ϕ(Y, Z) by

, where ( ) are obtained from
fitting

(2.3)

to the first phase SRS data. Alternatively, one can also derive a nonparametric estimator for
ϕk, k = 1, 3, by using the kernel method. Note that

(2.4)

where G(X|Z) is the conditional c.d.f. for X|Z that can be estimated by

where ϕh(·) = ϕ(·/h) is a kernel function with a bandwidth h. One can then estimate ϕk(Y, Z)
by
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(2.5)

2.2 A Semiparametric Empirical Likelihood Inference
Let G(X, Z) and g(X, Z) denote the joint c.d.f. and p.d.f. of (X, Z), respectively. If ϕk(Y, Z), k
= 1, 3 were known, the likelihood function for the data in (2.1) would be

(2.6)

Due to the biased sampling of the proposed design, maximizing the likelihood function over
β involves addressing G(X, Z). Hence we include G in the above likelihood function. For k =
1, 3, define

Using the Bayes formula, L(β, G) can be expressed as

(2.7)

We propose a semiparametric likelihood method to maximize the likelihood function
without specifying the underlying distribution of G(X, Z). We first profile the likelihood
function L(β, G) by fixing β and obtaining the empirical likelihood function of G(X, Z) over
all distributions whose support contains the observed (X, Z) values. For a fixed β, this is a
biased sampling likelihood (Vardi 1982, 1985; Qin 1993). We then maximize the resulting
profile likelihood function with respect to β. For simplicity of notation, let (X1, …, Xn) =
(X01, …, X0n0, X11, …, X1n1, X31, …, X3n3), (Z1, …, Zn) = (Z01, …, Z0n0, Z11, …, Z1n1, Z31,
…, Z3n3) and (Y1, …, Yn) = (Y01, …, Y0n0, Y11, …, Y1n1, Y31, …, Y3n3). Then the log-
likelihood function can be written as

(2.8)

where  is a function only involving β, and

.

The first step in deriving the proposed estimator for β is to profile (2.8) over {pi}, by fixing
(β, π1, π3), and obtain the empirical likelihood function of {pi} over all distributions whose
support contains the observed values of X and Z. To this end, we need only consider discrete
distributions with jumps at each of the observed points (Owen, 1988, 1990). That is, for
fixed (β, π1, π3), we search for  that mamximize l2({pi}, {πk}) in (2.8) under the
following four constraints:
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(2.9)

These constraints reflect the properties of g(X, Z) being a discrete distribution function with
support points at the observed (X, Z) values, i.e., {pi} are nonnegative probabilities that sum
up to unity.

For a fixed β, using a similar idea to Qin and Lawless (1994), a unique maximum for {pi} in
l2({pi}, {πk}) with constraints (2.9) exists if 0 is inside the convex hull of points

 for i = 1, …, n and k = 1, 3. The Lagrange
multiplier argument can be invoked to derive the maximum over {pi}. Specifically, write

where ρ and λk are Lagrange multipliers. Taking derivatives of H(β, {pi}, {πk}) with respect
to {pi} and solving the score equations together with the constraints in (2.9), we can obtain
that ρ = n and

Replacing pi with  in (2.8), we have a profile log-likelihood function  that
is a function of (β, π1, π3, λ1, λ3) only. Typically, the true value of the Lagrange multipliers
are zero in unbiased sampling problem. However, due to the biased nature of the PDS
sampling design, λ1 and λ3 are not centered around zero. To unify the notation, we center
them by reparameterizing vk = λk − nk/(nπk), k = 1, 3. We define ξ = (β, π1, π3, v1, v3). The
resulting profile log-likelihood function l(ξ) can be expressed as

where h(Xi, Zi) = (h1(Xi, Zi), h3(Xi, Zi))τ with hk(Xi, Zi) = Fk(Xi, Zi)−πk /Δ(Xi, Zi), Fk(Xi, Zi) =
∫ fβ(Y|Xi, Zi)I{(Y,Zi):ϕk(Y,Zi)≥ck}dY, and Δ(Xi, Zi) = q0+Σk=1,3 qkπk

-1Fk(Xi, Zi) with qk = nk/n for
k = 0, 1, 3, respectively.

Finally, replacing ϕk(Y, Z) by  in l(ξ), we have the following estimated profile log-
likelihood function:

(2.10)
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where  and  are obtained by replacing ϕk(Y, Z) by  in h(X, Z) and

Δ(X, Z), respectively. We call  the maximum semiparametric empirical likelihood estimator

(MSELE) where  is the maximizer for . The MSELE for β is  is the corresponding

portion of . The Newton-Raphson iterative procedure can be used to obtain . The
following theorem summarizes the asymptotic properties for the proposed estimators.

THEOREM 1 (asymptotic properties): Under the regularity conditions outlined in the

Appendix,  converges in probability to the true value ξ = (β, π1, π3, 0, 0), and 
converges in distribution to N(0, Σ), where Σ = V−1(ξ)U(ξ){V−1(ξ)}T is given in the
Appendix.

Details of the proof are given in the Appendix. It will be shown that the asymptotic

variance-covariance of  takes a sandwich form V−1(ξ)U(ξ){V−1(ξ)}T. In addition,
a consistent estimator of the variance-covariance matrix is given by

, where  and  are obtained by replacing the large-sample
quantities in U and V with their corresponding small-sample quantities.

Remark 1 The proposed estimation algorithm enables us to change an infinite dimension
problem, with regard to nonparametric G, into a finite dimension problem at the expense of
introducing 4 parameters π1, π3, λ1, λ3.

Remark 2 When  is from the logistic regression model,  is equal to

and Fk(Xi, Zi) can be simply expressed as

where F (u|Xi, Zi) = Pr(Y ≤ u|Xi, Zi) and .

3 Numerical Analysis
3.1 Simulation Studies

We evaluate the small sample behavior of the proposed estimator using Monte Carlo studies.
We assume that the domains of both Y and X are partitioned into three mutually exclusive
intervals: γ = B1 ⋃ B2 ⋃ B3 and χ = A1 ⋃ A2 ⋃ A3, where B1 = (−∞, μY − a * σY], B2 = (μY
−a * σY, μY +a * σY], B3 = (μY +a * σY,∞), A1 = (−∞, μX − a * σX], A2 = (μX−a*σX,
μX+a*σX] and A3 = (μX+a*σX,∞). We assume n1 = n3, a = 1, 1.5, and c1 = c3 = 85%, 95%.

The proposed estimator, denoted by  for c=95% and  for c=85%, is compared with

five other estimators: (i) The first estimator, denoted by , is an estimator based on a
hypothetical situation where one assumes all X values are available in the study. The
supplemental samples are drawn from individuals whose X values are in the two tails of X,
defined by μX ± a * σX. We emphasize that this estimator is not available in practice since X
is unknown, we include it for comparison purpose only. We use the least square method for
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estimation in this case. (ii) The second estimator, denoted by , is the ODS estimator
(Zhou et al, 2002). The supplemental samples are drawn from individuals whose Y values
are in the two tails of the distribution of Y, defined by μY ± a * σY ; (iii) The third method,

denoted by , is the inverse probability weighted (IPW) method (Horvitz and Thompson,

1952). The data structure for this estimator is the same as that for estimator  and we use
the weights given by Weaver and Zhou (2005); (iv) The fourth case is the ordinary linear

regression estimator, denoted by , from a simple random sample with the same sample

size as the total sample size in the PDS design. (V)  is the estimator ignoring the sampling
structure and treats the data as if an independent sample. All methods compared are under
the same sample size scenarios. The IPW also assumes a known sampling fraction. We first
generate a large underlying study cohort (4000) and then subsample from it to compare
different designs and methods.

We generate data from the following regression model:

(3.1)

where Z = I(log(|X|)+e)>1 describes a dependent but weak relationship between X and Z with ∊,
e and X generated independently from N(0, 1). Tables 1 and 2 summarize the simulation
results. Results are based on 1000 independent simulation runs.

We note the following observations from Table 1: (i) except , all estimators for (β1, β2)

are unbiased. Clearly,  shows that ignoring the sampling scheme will lead to biased
estimate for β1 ≠ 0; (ii) The average of the proposed variance estimator is very close to the
empirical variance based on the 1000 simulations; (iii) The nominal 95% confidence interval
coverage rates are close to 95%, indicating that the large sample normal approximation
works well in these situations. As β1 is of primary interest, we will concentrate on the
efficiency comparison of various estimators for β1 and note the following observations: (iv)

When β1 ≠ 0, the proposed estimator  is the most efficient among all practically
available estimators; (v) When β1 ≠ 0, as a changes from 1 to 1.5, i.e., when we move the

partition of X further towards the tails, , ,  and  all become more efficient,

while  becomes less efficient but  is not affected; (vi) For a fixed overall sample
size n = n0 + n1 + n3, as we allocate more samples to the tails, e.g., when (n0, n1, n3) changes

from (300, 50, 50) to (200, 100, 100), the efficiency of , ,  improves while the

efficiency of  decreases; (vii) As overall sample sizes increase from 200 to 400, all

estimators' efficiency improved. (viii) in general, , which corresponds to c = 0.95, is

more efficient than , which corresponds to c = 0.85.

Table 2 lists the power for testing β1 = 0, and relative efficiency (RE) for a = 1.0, σ2 = 4, and
(n0, n1, n3) = (100, 50, 50) and (150, 25, 25). RE is defined as the ratio of the standard error

for the estimator of interest to that of . At β1 = 0, we see that all estimators, except ,

have type I error rates close to the nominal level.  has slightly inflated type I error rate

(0.07). As β1 increases, the proposed estimator  has almost the same power as  and is

more powerful than the other competing estimators. , the estimator from a simple
random sampling, has the least power among all. The observation regarding the relative
efficiency is similar to that from the power.
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We further conducted additional simulation studies to check on the robustness of the
estimation. We considered four different combinations for the covariates X and Z in model
(3.1): (i) X is a standard normal distribution, while Z is a binary variable with parameter p =
0.45; (ii) both X and Z are standard normal distributions; (iii) X is a exponential distribution
with parameter being 1, while Z is a binary variable with parameter p = 0.45; (iv) X is a log
normal distribution with parameters (μ, σ) = (0.0, 0.6), while Z is from standard normal
distribution. Denote the estimators from the true model For β0 = 1.0, β1 = 0.5 and β2 = −0.5,
the simulation results are summarized in Table 3 (Part A). The results show that the
proposed methods are consistent under the above mentioned scenarios.

Part B of Table 3 illustrated a situation where overwhelming number of sample are allocated
to the tails, in this case, (n0, n1, n3) = (100, 150, 150). Results show that the unbiasedness

property of  still hold, with the efficiency further improved as more sample are allocated

in the tails. However, at some point, the loss of precision in  as SRS sample getting
smaller will impact the efficiency.

3.2 Analysis of the Collaborative Perinatal Project Data
We illustrate our method using data from the Collaborative Perinatal Project (CPP)
(Niswander and Gordon, 1972). This study evaluates the effect of mother's maternal
pregnancy serum level of polychlorinated biphenyls (PCB) on her child's IQ test
performance at age 7. Pregnant mothers were enrolled through university-affiliated medical
clinics, and data were collected from mother at each prenatal visit. The study children were
also followed for various neurodevelopmental outcomes for up to 8 years. One of the
hypotheses is that the PCB levels are related to the performance on the Weschler
Intelligence Scale for children at 7 years of age (Longnecker et al., 1997). To investigate the
in utero exposure of PCB in relation to neurodevelopmental abnormality, the PCB levels
were measured by analyzing the third trimester blood serum specimens that had been
preserved from mothers in the CPP study. PCB levels are available for a simple random
sample of 849 subjects from the underlying population. In addition to the PCB level as the
exposure variable of interest, other variables available for all subjects under study include
socioeconomic status of the child's family (SES), the gender (SEX, 1=female) and race
(RACE, 1=black) of the child, and the mother's education (EDU) and age (AGE).

To illustrate our methods, we select a simple random sample with size n0 = 100 from the
cohort of 849 subjects. We then select two supplemental samples with size n1 = 50 and n3 =

50 randomly from the set  and

, respectively. Note that the estimator 

and  are estimated from the logistics model, and the domain of PCB is
partitioned into 3 intervals with a = 1 as the cutpoint, i.e., A1 = (−∞, μPCB − σPCB] = (−∞,
1.210] and A3 = (μPCB +σPCB, ∞) = (5.037, +∞). The ODS design also partitions the
domain of Y into three intervals. The supplemental sample with size n1 = 50 and n3 = 50 are
from the strata B1 = (−∞, μIQ − σIQ] = (−∞, 81.441] and B3 = (μIQ + σIQ, ∞) = (109.469,
+∞), respectively. The variables EDU and AGE are standardized, and we denote them as
EDU and AGE without loss of generality. We tested the proper fitting of the covariates in
the SRS sample and found that the p-values from partial F-test for testing a cubic model for
AGE and EDU versus a quadratic model was 0.7, and a quadratic model versus a linear
model is 0.008. Hence, we used the following quadratic model for all estimators compared.

(3.2)
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The results for the CPP data analysis are summarized in Table 4.  denotes the full data
analysis, which is included for the purpose of comparison.

Results in Table 4 reveal that none of the estimators demonstrated a significant PCB effect
on the IQ scores for children at 7 years of age. Nevertheless, the effect of two-phase PDS

design can be seen from the fact that the estimator  for PCB under the two-phase PDS

design has smaller standard error than the estimators ,  and . As the result, the

95% confidence interval for  is narrower than those from , ,  and . It is not

surprising that the standard error estimator  based on all data with a size of 849 for the
PCB is the smallest, and consequently, has the narrowest confidence interval (−0.225, 0.665)
for the effect of PCB.

4 Concluding Remarks
We proposed an innovative and cost-effective sampling design, the two-phase PDS design,
that will enable the investigators to collect more informative samples at a fixed budget. The
proposed design is multi-phase based and uses a biased sampling scheme where one
observes the main exposure variable with a probability that depends on the outcome variable
and other covariates. This research is developed in response to the need for designing more
powerful study to effectively utilize the available financial resources in the current ongoing
study, the Gulf Long-term Follow-up Study conducted at US National Institute of
Environmental Health Sciences (NIEHS) (Sandler et al. 2011). The GuLF Study is a health
study specifically for workers and volunteers who helped clean up the 2010 Deep water
Horizon oil spill. About 56,000 subjects will be recruited. It is the largest study ever
conducted on possible short-term and long-term health effects of oil spills. The budget for
assessing benzene level in individuals will only be about 900 individuals. Collaborating with
NIEHS scientists, we are in the process of designing a sampling strategy using the proposed
two-phase PDS scheme to target for sampling more informative subjects.

The main advantages of the proposed design is that it allows for a continuous Y and a vector
of available covariate Z to be used in selecting a more informative second phase data set.
The proposed design avoids the impractical high dimension stratification issue when
multiple covariate are included in Z. The proposed semiparametric empirical likelihood
method is an efficient and robust way to analyze data from the proposed design. The
primary competitors of the PDS design in practice are the ODS design with continuous
response variable, the simple random sampling design and the inverse probability weighted
method for two phase design, though the IPW method will also require the sample
probability to be known. Our simulation results suggest that for the same sample size, the
proposed PDS design, coupled with the proposed estimator, is more efficient and more
powerful than these competing estimators. Our robustness simulation results also suggest
that even though the logistic model estimates of Pr(X ∈ Ak|Y, Z) is quite robust with respect
to misspecification of the true underlying models.

There are a few recommendations for using the two-phase PDS design in practice. One
needs to consider how to choose a, c, and how to distribute the supplemental samples. We
suggest that a three-category design, (−∞, μX − a * σX], A2 = (μX − a * σX, μX + a * σX]
and (μX + a * σX, ∞), with a cut point reasonably away from the mean of the exposure be
sufficient. The simulation results and subject matter considerations might support large
values of a, e.g., greater than 1, so that it corresponds to a clinically abnormal value.
However one has to be cautious selecting observations too far out in the distribution as the
reward from choosing a relatively large value of a depends on assumption that fβ (Y|X) is
true across the entire range. This assumption may be violated if a is too large and stability
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could be an issue if observations are sampled from the very extreme tails. We recommend a
to be between 1 and 1.5. We also recommend the value of c to be between 75% and 95%
and with an even split for the supplement samples in the two outside tails (i.e, n1 = n3).

Some interesting future works remain. As we pointed out in earlier, implementing the
proposal design can be done in two ways: (i) with underly cohort population and sampling
proportion unknown, and stopping recruitment after the pre-specified number of subjects in
the tail supplement samples are reached; or, (ii) with all (Y, Z) in the underlying cohort
known. In the latter case, the augmented IPW estimator can be explored to get more efficient
than the IPW estimator. It would be interesting to explore if the combination of the PDS
design with ODS design would results in more efficient designs. Such combination could
decompose efficiency gains into those gained with increase variation in Y (from ODS) and
those gained with increased variation in X beyond the increased variation in Y. On the theory
front, it would be interesting to explore the existence of a semiparametric efficient estimator
for the proposed PDS designs. Finally, it would be interesting to explore the possible bias-
variance tradeoff with different approaches for estimating ϕ1 and ϕ3.
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Appendix: proof of Theorem 1
Recall that the approximated profile log-likelihood function is

where  and  We define l*(β,

π, ν) the same as  except that  is replaced by ϕk. Let ξ = (β, π, ν), then we can

abbreviate  and l*(β, π, ν) as  and l*(ξ), respectively.

We impose the following assumptions.

(C.1) The log-density log fβ (Y |X, Z) is twice-continuously differentiable with respect β.

(C.2) The proportion nj/n is a fixed constant qj ∈ (0, 1).

(C.3) The class of functions

is P-Donsker and have an envelope function with finite second moment.
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(C.4) The hessian matrix of E[n−1l* (ξ)] is continuous in a neighborhood of the true ξ (β, π,
0, 0) and is non-singular at ξ.

(C.5) The estimator , s = 0, 1, 2, belongs to 

and .

(C.6) It holds

and

for k = 1, 3, where Q1k(Y, X, Z) and Q2k(Y, X, Z) are mean 0 random vectors with finite
second moments.

Conditions (C.1)–(C.4) are all regular conditions for fβ (Y |X, Z) and ϕk(Y, Z), which hold for
usual regression models and the choices of ϕk. Conditions (C.5) and (C.6) regard the

properties of the estimator . These conditions can be easily verified if  takes parametric
structure such as (2.2) or (2.3). For the kernel estimator (2.4), verifying these two conditions
needs some additional work but can be shown to hold if the bandwidth is chosen small
enough.

(i) Proof of Consistency At the true value for ξ = (β, π, 0, 0), we calculate the first derivative

of  so obtain

(A.1)

and for k = 1, 3,

(A.2)

and
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(A.3)

By the Donsker property in (C.3) and (C.5), we apply the Glivenko-Cantelli theorem and
obtain

Since , we have

Here n−1l*(ξ) takes the same expression as (A.1)–(A.3) except that  is replaced by ϕk. On
the other hand, using the ODS design fact that

and the fact that πk = E[I(ϕk(Y, Z) ck)], we can easily calculate E[n−1l* (ξ)] = 0. Thus,

; that is, 0 belongs to the image of  in any given neighborhood
of the true ξ when n is large enough. Similarly, we can show

 for ξ in a neighborhood of the true value. Thus,

from condition (C.4),  is invertible in this neighborhood when n is large

enough. From the inverse mapping theorem,  is invertible in any small

neighborhood of the true ξ. Consequently, we conclude that there exists a solution  to

 and  converges almost surely to the true ξ.

(ii) Proof of Asymptotic Normality From equation

we obtain
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We apply the Taylor expansion to the first term on the right-hand side and obtain

(A.

4)

where  is between  and ξ.

In equation (A.4), the left-hand side can be expressed as an empirical process indexed by
functions

By conditions (C.3) and (C.5), it is asymptotically equivalent to ,
where

According to (C.5), the matrix in the first term of the right-hand side of (A.4) satisfies

For the second term on the right-hand side of (A.4), we note

which is further simplified as

Combining all these results and using condition (C.6), we obtain

(A.

5)
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The asymptotic normality of  thus follows.

(iii) Consistent estimator of variance From the above derivation, the asymptotic covariance

of  takes form V (ξ)−1U(ξ){V (ξ)−1}T, where U(ξ) is the variance of each summand on the
right-hand side of (A.5). Thus, a consistent estimator of the asymptotic variance for

 is given by , where  and 
is the sample variance of the sample version of

.
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Table 2

Simulations results for the power and relative efficiency.
†

β 1 β2 = −0.5 β 1 β2 = −0.5

β 1 Method RE Size/Power RE Power RE Size/Power RE Power

(n0, n1, n3) = (100, 50, 50), σ2 = 4 (n0, n1, n3) = (150, 25, 25), σ2 = 4

0.0 1.000 0.055 1.000 0.284 1.000 0.051 1.000 0.245

0.983 0.056 1.011 0.312 1.001 0.048 1.016 0.296

1.002 0.058 0.780 0.436 1.013 0.044 0.806 0.354

1.011 0.059 0.934 0.331 1.019 0.044 1.036 0.308

1.188 0.071 1.085 0.278 1.106 0.055 1.042 0.267

1.332 0.058 1.227 0.229 1.238 0.058 1.187 0.229

0.1 1.000 0.167 1.000 0.286 1.000 0.134 1.000 0.240

1.005 0.172 0.980 0.322 1.000 0.128 0.981 0.252

1.010 0.176 0.795 0.446 1.005 0.148 0.823 0.380

1.016 0.159 0.940 0.350 1.042 0.131 1.015 0.287

1.189 0.144 1.099 0.264 1.093 0.129 1.053 0.293

1.336 0.110 1.234 0.236 1.225 0.110 1.178 0.236

0.5 1.000 0.997 1.000 0.291 1.000 0.990 1.000 0.259

1.031 0.999 0.942 0.315 1.000 0.976 0.837 0.316

1.042 0.997 0.812 0.443 1.001 0.980 0.829 0.334

1.068 0.996 0.962 0.324 1.027 0.985 0.991 0.282

1.191 0.981 1.117 0.274 1.068 0.978 1.036 0.254

1.338 0.930 1.237 0.207 1.202 0.930 1.114 0.207

†
Results are based on the model Y = β0 + β1X + β2llog(|x|)+e>1 +∊, where e ~ N(0, 1), ∊ ~ N(0, σ2), and X ~ N(0, 1).
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Table 4

Analysis results for the CPP data set.
††

Covariate Int PCB EDU SES AGE RACE SEX EDU2 AGE2

93.160 0.219 3.407 0.998 −0.566 −7.712 −0.768 0.579 0.684

1.688 0.227 0.535 0.269 0.525 0.925 0.839 0.225 0.370

upperC.I. 89.851 −0.225 2.357 0.471 −1.595 −9.526 −2.414 0.136 −0.042

lowerC.I. 96.469 0.665 4.457 1.526 0.462 −5.897 0.877 1.022 1.410

92.818 0.153 3.154 1.072 −0.279 −7.453 −1.053 0.665 0.500

3.588 0.465 1.102 0.554 1.044 1.907 1.770 0.460 0.735

upperC.I. 85.784 −0.758 0.992 −0.015 −2.326 −11.191 −4.523 −0.238 −0.941

lowerC.I. 99.851 1.064 5.315 2.159 1.767 −3.715 2.416 1.568 1.941

92.228 0.641 5.073 1.273 −0.722 −12.394 −0.070 0.457 0.527

4.341 0.516 1.267 0.686 1.330 2.417 2.084 0.459 0.886

upperC.I. 83.718 −0.371 2.588 −0.072 −3.329 −17.132 −4.157 −0.443 −1.210

lowerC.I. 100.738 1.654 7.557 2.619 1.885 −7.656 4.016 1.357 2.265

93.101 0.271 3.589 0.995 −0.602 −7.944 −0.674 0.556 0.678

11.757 1.587 3.867 1.851 3.612 6.309 5.882 1.644 2.493

upperC.I. 70.057 −2.839 −3.991 −2.632 −7.682 −20.309 −12.204 −2.667 −4.208

lowerC.I. 116.146 3.382 11.169 4.623 6.478 4.421 10.856 3.780 5.565

91.296 0.579 3.535 0.906 −0.439 −6.143 0.183 0.981 0.832

3.527 0.554 1.017 0.547 1.158 1.847 1.685 0.467 0.705

upperC.I. 84.383 −0.508 1.542 −0.166 −2.710 −9.765 −3.119 0.066 −0.550

lowerC.I. 98.209 1.666 5.529 1.979 1.831 −2.521 3.486 1.896 2.215

The outcome is the Weschler Intelligence Scale for children at 7 years of age (IQ). PCB is the level measured from the third-trimester blood serum
specimens that have been preserved from mothers in the CPP study; EDU is the standardized mother's education level; SES is the socioeconomic
status of the child's family; AGE is standardized mother's age; RACE and SEX are the race and gender of the child. The fitted model is IQ = β0 +

β1PCB + β2EDU + β3SES + β4AGE + β5RACE + β6SEX + β7EDU2 + β8AGE2 + ε, where ε is zero mean normal variable with unknown variance.

, , ,  and  are defined in 3.2.

††
a = 1 and the allocation pattern is (n0, n1, n3) = (100, 50, 50).
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