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Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular
signaling cascades into a cohesive gene expression profile necessary for long-term behavioral
change. The last decade of neuroepigenetic research has primarily focused on learning-induced
changes in DNA methylation and chromatin modifications. Numerous studies have independently
demonstrated the importance of epigenetic modifications in memory formation and retention as
well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms
of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of
Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic
plasticity and synaptic scaling, may also be involved in producing the cellular adaptations
necessary for learning-related behavioral change. Furthermore, we consider the likely roles for
transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we
aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian
and non-Hebbian forms of plasticity that ultimately drive learning and memory.
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1. Introduction
Long-term changes in neuronal function underlying learning and memory are driven by
changes in gene expression with corresponding modifications in protein synthesis and
neuronal connectivity (Barondes and Jarvik, 1964; Cohen and Barondes, 1966; Kim and
Linden, 2007; Martin et al., 2000). Specifically, changes in the expression of growth factors,
ion channels, ligand-gated receptors, and structural proteins are necessary to support long-
lasting functional and structural changes within a neuronal circuit (Baker-Andresen et al.,
2013a; McClung and Nestler, 2008). Recent evidence suggests epigenetic modifications that
remodel chromatin, including DNA methylation and post-translational modifications
(PTMs) of histones, likely serve as molecular mechanisms for bi-directional regulation of
necessary gene expression (Chen et al., 2003a; 2003b; Levenson and Sweatt, 2005;
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Martinowich et al., 2003; Nelson and Turrigiano, 2008). This is supported by experimental
evidence demonstrating the pathways upstream and downstream of chromatin remodeling
are necessary components in synaptic plasticity and long-term behavioral memory (Day and
Sweatt, 2011; Levenson et al., 2004a; 2006; Lipsky, 2013; Roberson and Sweatt, 1999;
Roberson et al., 1999; Selcher et al., 2002; Sweatt, 2010).

At present, there are several broad questions that remain unanswered. What is the complete
transcriptional profile necessary for acquisition and consolidation of long-term memory?
How is the epigenome dynamically regulated to subserve these changes in gene expression?
More importantly, how do the resulting gene products interact concordantly to produce
neuronal plasticity and long-term behavioral adaptation? Historically, the field has focused
on how epigenetic mechanisms modulate Hebbian plasticity. However, it is becoming
increasingly evident that memory is also reliant on non-Hebbian forms of plasticity, such as
intrinsic plasticity and synaptic scaling (Figure 1) (Baker-Andresen et al., 2013b; Nelson
and Turrigiano, 2008). We propose that a thorough examination of how epigenetic
mechanisms drive Hebbian and non-Hebbian forms of plasticity will allow for a more
comprehensive understanding of the global transcriptional and epigenetic changes necessary
for long-term behavioral memory. This review will examine a role for epigenetic regulation
first in Hebbian plasticity, and later, in two forms of non-Hebbian plasticity – intrinsic
plasticity and synaptic scaling. Additionally, we discuss each form of plasticity in the
process of memory formation and explore how each is driven by transcriptional and
epigenetic mechanisms.

2. Hebbian Plasticity
2.1. Relevance to Learning and Memory

Hebbian plasticity is defined as synapse-specific changes in strength driven by the
coordination of pre-synaptic input and post-synaptic depolarization (see Figure 1A). Long-
term potentiation (LTP) is a form of Hebbian plasticity characterized by long-lasting
enhancement in synapse-specific neurotransmission in response to repetitive, high frequency
stimulation. LTP is a widely accepted cellular mechanism underlying long-term memory
formation (Bauer et al., 2001; Blair et al., 2001; Bliss and Collingridge, 1993; Lynch et al.,
1988; 2008; 2007; 2013; Malenka and Bear, 2004; Maren, 2005). Potentiation of excitatory
synaptic transmission can be induced in various regions of the mammalian brain, including
the hippocampus, amygdala, striatum, and cortex (Fourcaudot et al., 2009; Huang and
Kandel, 1998; Huang et al., 2000; Iriki et al., 1989; Lee and Kirkwood, 2011; Maren, 1999;
Rex et al., 2010; Weisskopf et al., 1999). Enhancements and deficits in memory are often
correlated with increases or decreases in LTP, respectively, across many behavioral tasks
and corresponding brain regions mediating the behaviors (Izquierdo and Medina, 1995;
Lynch, 2002; Martin et al., 2000; Rodrigues et al., 2004; Staubli et al., 1994). In addition,
LTP induction mechanisms are similar to those necessary for long-term memory formation
(Klann et al., 2004; Pittenger and Kandel, 2003). Classical LTP of hippocampal cornu
ammonis (CA)1 excitatory synapses is driven by N-Methyl-D-Aspartate (NMDA)-
dependent Ca2+ influx, which subsequently activates, directly or indirectly, signaling
cascades that modify the strength of targeted synapses (Malenka and Nicoll, 1993). The
blockade of these receptors, or their downstream effectors, inhibits both LTP in vitro and
memory in vivo. Furthermore, pharmacological and genetic manipulations of epigenetic
targets affect the induction of LTP and memory formation (Levenson and Sweatt, 2006).

It should be noted that for subsequent discussions we have chosen to group together the two
topics of transcriptional and epigenetic regulation as we believe that both processes are
required to achieve a coordinated orchestration of gene expression and nuclear output that in
turn effects cellular physiology and animal behavior. However, we readily acknowledge that
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although intimately coupled, each process likey possesses specific functions and limitations.
We define transcriptional regulation as those mechanisms that are directly involved in the
synthesis of RNA (either coding or non-coding) like transcription factor activation/binding
and RNA polymerase association/activity. As such, their functionality is dependent on their
ability to act as singaling relays between cystolic and nuclear mechanisms in order to set in
motion precise gene expression profiles that are specific to a particular transcription factor
and its associated upstream signaling cascades. In contrast, we find epigenetic mechanisms
to act as powerful modulators of the aformentioned transcriptional machinery with their
strength inherent in their capacity to serve as molecular tags of present and past neuronal
activity and behavioral experience. The capability of epigenetic mechanisms to produce
long-lasting cellular change provides a platform with extensive computational power that
integrates stimuli across time to more appropriately fine-tune the transcriptional potential of
the genome.

2.2. Transcriptional and Epigenetic Regulation
Eukaryotic DNA is tightly packaged into a DNA-protein complex known as chromatin.
Positively-charged histones serve as a core around which negatively-charged DNA is tightly
coiled. Conventionally, transcription is repressed by spatial restrictions caused by
interactions of DNA with histones, which occludes RNA polymerase II/DNA interaction.
Initiation of transcription requires the disruption of chromatin’s tightly compacted structure
through the PTMs of histones (Roth and Sweatt, 2009; Varga-Weisz and Becker, 1998). At
present, the most frequently characterized PTMs of histones are acetylation, methylation,
ubiquitination, and phosphorylation; each modification serves as a distinct functional
epigenetic tag (Rea et al., 2000; Strahl and Allis, 2000). The most extensively studied
histone modification in the context of learning and memory is the acetylation of lysine
residues on histone tails through the activity of histone acetyltransferases (HATs)(Lau et al.,
2000; Tanner et al., 2000a; 2000b; 1999), an effect reversed by histone deacetylase (HDAC)
activity (Fischle et al., 2003; Saha and Pahan, 2006; Varga-Weisz et al., 1999).

Recent reports demonstrate that histone-modifying enzymes and histone acetylation are
necessary for mammalian associative learning and Hebbian plasticity (for a review of these
mechanism in invertebrates please see Rahn et al., 2013) (Alarcon et al., 2004; Chen et al.,
2003a; Chwang et al., 2007; Guan et al., 2009; Gupta et al., 2010; Koshibu et al., 2009;
Levenson et al., 2004b; Vecsey et al., 2007). For example, mice with genetic mutations in
the HAT cyclic adenosine monophosphate (cAMP)/Ca2+-response element binding protein
(CREB) binding protein (CBP), have decreased histone acetylation and deficits in
transcription-dependent LTP (Alarcon et al., 2004). Interestingly, those deficits were
ameliorated by administration of the HDAC inhibitor (HDACi) suberoylanilide hydroxamic
acid. In contrast, mice with deletion of HDAC2, displayed enhanced hippocampal LTP,
whereas overexpression in the hippocampus blunted LTP (Guan et al., 2009). Moreover,
LTP induction resulted in increased histone H3 and H4 acetylation and the enhancement of
histone acetylation and LTP induction were both facilitated by HDACi application
(Levenson et al., 2004b; Miller et al., 2008; Sui et al., 2012; Vecsey et al., 2007; Yeh et al.,
2004; Zeng et al., 2011). Furthermore, LTP specifically increased changes in histone
acetylation at the promoter regions of Bdnf and Reln, genes involved in synaptic
transmission (Sui et al., 2012). Collectively, these studies argue for an intimate relationship
between levels of histone acetylation and LTP.

In addition to histone modifications, DNA methylation is a canonical regulator of gene
transcription. Methylation is the most common covalent modification occurring in
eukaryotic DNA and has been studied extensively in development as a static process
following cell differentiation (Rakyan et al., 2001). Recent reports have challenged the
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established dogma by demonstrating that DNA methylation is dynamically regulated in the
adult nervous system and that this cellular mechanism is a crucial step in memory formation
(Day et al., 2013; Feng et al., 2010; Lubin et al., 2008; Miller and Sweatt, 2007; Miller et al.,
2010). Importantly, both DNA methylation and DNA methyl-binding proteins have been
implicated in the induction of long-term synaptic plasticity (Cortés-Mendoza et al., 2013).

DNA methylation is a reaction catalyzed by DNA methyltransferase (DNMT) enzymes,
during which a methyl group is added to the carbon at the 5′ position of the pyrimidine ring
(Chen et al., 1991). Methylation was thought to only occur at cytosine bases followed by a
guanine base, however this notion has recently been challenged (Lister et al., 2013; Varley
et al., 2013; Xie et al., 2012). This dinucleotide sequence (designated CpG, with p
corresponding to a phosphate group)is highly underrepresented in the genome and often
found in both high-density clusters called CpG islands and low-density regions near CpG
islands called CpG shores (Bird, 1978; Deaton and Bird, 2011; Guo et al., 2011b). Activity-
induced changes in methylation occur predominantly in low-density regions in both inter-
and intra-genic locations (Guo et al., 2011b). Although much attention has been paid to
changes in promoter methylation, recent findings highlight changes in intragenic
methylation observed with memory formation (Day et al., 2013).

There are two classes of DNMTs: maintenance and de novo DNMTs. The de novo DNMTs
(DNMT3a and DNMT3b) methylate sites lacking methyl-cytosine on either DNA strand,
while the maintenance DNMT isoform, DNMT1, methylates hemi-methylated DNA (Goll
and Bestor, 2005). It should be noted that DNMT1 can also regulate de novo methylation
under certain circumstances (Fatemi et al., 2002; Hsieh, 2005). Maintenance DNMTs
perpetuate methylation after cell division by regenerating the methyl-cytosine marks on the
newly synthesized complementary DNA strand that arises with DNA replication (Feng and
Fan, 2009; Feng et al., 2010; Okano et al., 1999a; 1999b). Although there are examples of
DNA methylation associated with increased gene transcription (Chahrour et al., 2008; Day
et al., 2013; Uchida et al., 2011), it is commonly accepted that methylation of DNA
suppresses gene transcription, and in specific circumstances extensive DNA methylation
triggers complete silencing of the associated gene (Sweatt et al., 2012). Methylation can
repress gene expression by directly interfering with binding of transcription factors to
regulatory elements or by actively recruiting methyl-CpG-binding proteins. These methyl-
CpG binding proteins repress transcription by recruiting other chromatin-remodeling
enzymes such as HDACs, repressor element 1 (RE1) silencing transcription factor/ neuron-
restrictive silencing factor (REST/NRSF), and CoREST (an associated HDAC), among
others (Ballas and Mandel, 2005; Ballas et al., 2005; Klose et al., 2005; Levenson and
Sweatt, 2005).

The link between DNA methylation and Hebbian plasticity represents a molecular
mechanism of memory storage, and investigating this relationship has been approached via
pharmacological and genetic methods. Blocking DNA methylation prior to LTP induction
with the DNMT inhibitors zebularine or 5-aza-2-deoxycytidine disrupted hippocampal LTP
and resulted in significant demethylation of Reln and Bdnf promoters (Levenson et al.,
2006). Both genes are associated with synaptic plasticity and undergo comparable changes
in methylation following fear conditioning (Lubin et al., 2008; Miller and Sweatt, 2007). A
subsequent study demonstrated that the LTP deficit produced by DNMT inhibition could be
reversed by pretreatment with the HDACi trichostatin A (TSA), suggesting cross-talk
between histone acetylation and DNA methylation during plasticity (Miller et al., 2008). In
support of these pharmacological studies, Feng and colleagues (2010) recently reported that
mice with a double knockout of DNMT1 and DNMT3a in forebrain post-mitotic neurons
have impaired hippocampal LTP and enhanced LTD. The effects on synaptic function were
further correlated with a reduction in global DNA methylation and deregulation of specific
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genes. Furthermore, neurons lacking only one DNMT isoform had normal hippocampal
plasticity, indicating that DNMT1 and DNMT3a may have overlapping roles in adult
neurons, and that at least one form is required to maintain normal hippocampal LTP (Feng et
al., 2010).

Though passive DNA demethylation is a largely accepted mechanism in dividing cells, the
presence of active DNA demethylation (i.e., demethylation that occurs in the absence of
DNA replication) in neurons has been controversial (Ooi and Bestor, 2008; Wu and Zhang,
2010). However, mounting evidence suggests that active demethylation does occur in the
adult nervous system and regulates synaptic plasticity (Guo et al., 2011a; 2011b; Li et al.,
2013; Sultan et al., 2012). One recent report provides evidence for activity-dependent DNA
demethylation of Reln and Bdnf genes following induction of LTP in the medial pre-frontal
cortex (Sui et al., 2012). Additionally, a landmark study by Ma and colleagues (2009)
demonstrated that GADD45B (a member of the growth arrest and DNA damage inducible
45 family and an activity-induced immediate early gene) is necessary for the demethylation
and transcriptional activation of both Bdnf promoter IX and Fgf1 promoter B following
electroconvulsive stimulation of the dentate gyrus (Ma et al., 2009). A subsequent study by
Sultan and colleagues (2012) reported that GADD45B regulated hippocampal LTP and
memory formation. Extracellular recordings from hippocampal slices showed genetic
deletion of Gadd45b resulted in a selective enhancement of late-phase LTP despite using a
near-threshold stimulus. Additionally, mutant mice exhibited enhanced memory in tasks
including motor performance, aversive conditioning, and spatial navigation (Sultan et al.,
2012). Further studies are needed to elucidate detailed demethylation mechanisms, but these
data highlight the importance of GADD45B and other modulators of DNA demethylation in
plasticity and memory.

The studies presented here clearly implicate PTMs of histones and DNA methylation as
necessary epigenetic mechanisms subserving Hebbian plasticity and long-term memory.
Owing to space restrictions, we are unable to explore the topic of synaptogenesis in the
context of synaptic plasticity and long-term behavioral memory. However, there is growing
evidence for a role of epigenetic mechanisms in the regulation of spine and synapse
formation both in the context of activity-dependent processes as well as aging and disease
states with deficits in learning and memory (for reviews on the topics please see Kavalali et
al., 2011; McEwen et al., 2012; Na et al., 2013). It should be noted that epigenetic regulation
of structural plasticity at large warrants further consideration and integration with the topics
covered in this review. In the subsequent sections we will examine how transcriptional and
epigenetic mechanisms may subserve modulation of non-Hebbian forms of plasticity. We
will focus our discussion on intrinsic plasticity and a form of homeostatic plasticity known
as synaptic scaling.

3. Intrinsic Plasticity
The involvement of enduring, synapse-specific, Hebbian modifications in memory
formation and storage is readily evident and well-documented. However, emerging evidence
suggests that activity-dependent alterations in intrinsic neuronal excitability, termed intrinsic
plasticity, may also be a necessary component of the cellular processes underlying learning
and memory (Daoudal, 2003; Frick and Johnston, 2005; Sehgal et al., 2013; Zhang and
Linden, 2003), in addition to regulating network function and informational processing at
large (Nelson and Turrigiano, 2008; Remme and Wadman, 2012). Intrinsic plasticity
involves the attunement of passive and/or active membrane properties as to modulate the
input/output relationships that govern action potential (AP) firing rates. Modification of a
neuron’s intrinsic properties can be mediated by regulating the expression or the biophysical
properties of voltage- and calcium-gated ion channels (see Figure 2). In addition, the

Guzman-Karlsson et al. Page 5

Neuropharmacology. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



specific location on the neuron where these adaptations take place also determines how
intrinsic plasticity manifests itself (see Figure 1B). For example, alterations in active and
passive membrane properties can occur locally, targeting specific dendrites and influencing
synaptic throughput of a small set of synapses. Some of the relevant currents involved in this
process include the afterhyperpolarization (AHP) current (generated by Ca2+-activated K+

channels) (Storm, 1990), the IA current (subserved by rapidly inactivating A-type K+

channels) (Storm, 1990), and the Ih current (produced by hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels) (Biel et al., 2009); together these currents modify the
degree of summation and propagation of synaptic input to the soma, as well as the amplitude
and duration of back propagating APs. Intrinsic alterations can also occur globally,
impacting the axo-somatic membrane as well as larger portions of proximal dendrites as to
modify throughput for all synapses. Global alterations largely involve modulation of Na+

and K+ currents to regulate AP initiation (which depends on parameters like AP threshold
and resting membrane potential), spike frequency adaptation or accommodation, and AP
properties (e.g., amplitude and duration). Together, these local and global alterations
ultimately dictate how information flows within and between neurons (for a more in depth
examination of these topics see Daoudal, 2003; Frick and Johnston, 2005; Sehgal et al.,
2013; Zhang and Linden, 2003).

3.1. Relevance to Learning and Memory
Experimental evidence for learning-induced changes in intrinsic plasticity stems from a
variety of model systems and behavioral paradigms. We will focus our discussion on studies
performed on mammals (for additional information on invertebrates see Mozzachiodi and
Byrne, 2010). One of the first reported studies examining learning-induced changes in
intrinsic plasticity involved a feline associative conditioning task where a cat associated an
auditory click (conditioned stimulus) with a tap between the eyebrows (unconditioned
stimulus), such that future clicks elicited both an eyeblink and a nose twitch (conditioned
responses) (Brons and Woody, 1980). Intracellular recordings from the pericruciate
sensorimotor cortex of conditioned animals revealed an increase in neuronal excitability
evidenced by a reduction in the threshold current needed for spike initiation. Similarly,
whole-cell electrophysiological recordings from rabbit hippocampal slices following
acquisition of trace eyeblink conditioning (EBC) revealed increased excitability in
approximately 50% of CA1 and CA3 pyramidal neurons (Coulter et al., 1989; Disterhoft et
al., 1986; 1988; Thompson et al., 1996). This hyperexcitability was characterized by an
increased number of spikes elicited by a sustained depolarizing current injection, also
termed reduced spike-frequency adaptation or accommodation, and a marked reduction in
the AHP amplitude evoked by a spike burst.

Learning-related changes in intrinsic plasticity have also been observed in other species and
additional behavioral paradigms such as Morris water maze (MWM) (Oh et al., 2003; Ohno
et al., 2006), odor fear conditioning (Motanis et al., 2012; Rosenkranz and Grace, 2002),
rule learning on odor discrimination tasks (Motanis et al., 2012; Saar et al., 1998; Zelcer et
al., 2006), auditory fear conditioning (both delay and trace versions) (Motanis et al., 2012;
Santini et al., 2008), and contextual fear conditioning (Kaczorowski and Disterhoft, 2009;
McKay et al., 2009). In most cases, learning is associated with increased intrinsic
excitability, although exceptions to this rule have been found in the infralimbic prefrontal
cortex with tone fear conditioning (Santini et al., 2008) and the basolateral amygdala (BLA)
with odor fear conditioning (Motanis et al., 2012). Overall, reductions in spike threshold,
spike accommodation, and amplitude of burst-evoked AHPs are the electrophysiological
changes most often observed following learning.

It is clear from the previously outlined studies that changes in intrinsic excitability appear to
be evolutionarily conserved across species and evidenced in a variety of behavioral tasks.

Guzman-Karlsson et al. Page 6

Neuropharmacology. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, many questions remain regarding the exact mechanisms underlying the induction,
expression, and maintenance of intrinsic plasticity in the context of animal behavior.
Moreover, determining the functional role of intrinsic plasticity is an active area of ongoing
research. As previously suggested (Sehgal et al., 2013; Zhang and Linden, 2003), growing
evidence indicates that intrinsic plasticity may in fact serve three distinct, yet overlapping,
functions: as part of the memory engram itself, as a modulator of behavioral memory and
Hebbian plasticity, and as a component in the overall repertoire of homeostatic adaptations
(for a review on this last topic see Nelson and Turrigiano, 2008).

Although intrinsic plasticity is associated with learning, a mnemonic function for intrinsic
plasticity seems unlikely given that changes in excitability are short-lived in comparison to
memory of the behavioral task (Motanis et al., 2012; Moyer et al., 1996; Saar et al., 1998;
Thompson et al., 1996; Zelcer et al., 2006). For example, changes in intrinsic excitability of
rabbit CA1 and CA3 pyramidal neurons with EBC are present for 1–3 days after training
before returning to baseline values by 5–7 days, even though the behavioral memory is
present for at least 6 months (Moyer et al., 1996; Thompson et al., 1996). Such data suggests
that intrinsic plasticity might not comprise the actual memory engram itself, but may instead
serve an early role during the acquisition and consolidation processes. However, the
transient nature of hippocampal excitability changes may also reflect the time-limited
involvement of the hippocampus in remote memory storage (Frankland and Bontempi,
2005; Kim et al., 1995; Wiltgen et al., 2004). Additionally, there are reports of persistent
changes in intrinsic plasticity with learning that can last as long as one month (Brons and
Woody, 1980; Schreurs et al., 1998) suggesting there may be instances in which intrinsic
plasticity indeed possesses a mnemonic function.

Instead, the majority of existing data make a stronger case for intrinsic plasticity as a
modulator of behavioral memory and Hebbian plasticity (a prime example of metaplasticity,
which will be covered in more depth in section 4). At the behavioral level, learning-induced
increases in excitability are associated with enhanced learning of the same or different
behavioral tasks (Saar et al., 1998; Zelcer et al., 2006). For example, training rats in the
MWM soon after olfactory learning takes place (during the time point where
hyperexcitability is observed in CA1 pyramidal neurons) results in enhanced acquisition of
the spatial task (Zelcer et al., 2006). Furthermore, the enhanced spatial learning capability of
olfactory-trained rats is no longer observed once excitability levels revert to baseline. These
observations suggest that by rendering neurons more excitable, the circuit may be primed to
readily acquire future information. Indeed, this interpretation is supported by
pharmacological and genetic interventions that increase neuronal excitability which in turn
increase learning rate and/or capability (Disterhoft and Oh, 2006; Han et al., 2007; Zhou et
al., 2009). At the electrophysiological level, manipulations of intrinsic excitability can also
influence Hebbian plasticity, often facilitating the induction of LTP (Chen et al., 2006;
Cohen and Abraham, 1996; Cohen et al., 1999; Kramár et al., 2004; Sah and Bekkers,
1996).

3.2. Transcriptional and Epigenetic Regulation
Given the involvement of intrinsic plasticity in learning, memory, and Hebbian plasticity,
investigations have shifted towards understanding the molecular substrates that underlie this
process. Mechanistic investigations have revealed intrinsic plasticity requires many of the
same molecular mechanisms implicated in Hebbian plasticity; roles for Ca2+ signaling and
intracellular signaling cascades like protein kinases C (PKC), cAMP-dependent protein
kinase (PKA), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG),
and Ca2+/calmodulin-dependent protein kinase II (CaMKII) are well documented (Daoudal,
2003; Zhang and Linden, 2003). Similar to Hebbian plasticity, the long-term maintenance of
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intrinsic plasticity is also protein-synthesis dependent (Cohen-Matsliah et al., 2010; Xu et
al., 2005). However, only recently has transcriptional and epigenetic regulation of intrinsic
plasticity begun to be examined in more depth.

Transcriptional involvement in intrinsic plasticity is strongly evidenced by a series of studies
in which manipulations of the level or activity of CREB bidirectionally modulated neuronal
intrinsic excitability (for review see Benito and Barco, 2010). Dong and colleagues were the
first to demonstrate a positive correlation between intrinsic excitability and levels of CREB
(Dong et al., 2006). Overexpression of constitutively active CREB increased the firing rate
of medium spiny neurons (MSN) in the nucleus accumbens (NA) as well as decreased the
threshold to elicit an AP and the minimal current needed to fire a spike. In contrast,
overexpression of dominant-negative CREB revealed the opposite effect: decreased firing
rate and increased threshold for eliciting an AP.

Several laboratories have recapitulated similar findings in the locus coeruleus (Han et al.,
2006), CA1 region of the hippocampus (Lopez de Armentia et al., 2007), and the BLA
(Viosca et al., 2009; Zhou et al., 2009) using recombinant neurotropic viral vectors,
transgenic mice, and gene-targeting techniques to manipulate CREB levels and activity (for
a thorough review on these methodologies see Barco and Marie, 2011). Overall, gain-of-
function manipulations of CREB were associated with increased neuronal excitability,
whereas loss-of-function interventions decreased excitability. Electrophysiological
recordings revealed CREB modulated AP threshold, firing rate, AHP amplitude, input
resistance, and resting membrane potential, although differences were observed depending
on cell-type examined and methodology used to manipulate CREB. It is worth mentioning
many of these studies found concurrent changes in Hebbian plasticity, which is not
surprising considering CREB’s well-documented role in regulating long-term memory
processes as well as underlying changes in Hebbian plasticity (Alberini, 2009; Josselyn and
Nguyen, 2005; Sakamoto et al., 2011; Silva et al., 1998). Together these data demonstrate
CREB-mediated gene transcription is capable of modulating intrinsic plasticity in addition to
Hebbian plasticity.

However, the complete transcriptional profile underlying these observed changes in
excitability is only beginning to be characterized. As previously mentioned, modulation of
intrinsic neuronal properties occurs by regulating expression level or biophysical properties
of voltage- and calcium-gated ion channels. As suggested by others (Benito and Barco,
2010; Won and Silva, 2008), CREB-mediated changes in intrinsic excitability likely involve
direct and indirect modulation of positive and negative regulators of intrinsic excitability.
Specifically, modifications of positive regulators could involve direct regulation of ion
channel mRNA levels (including specific splice variants) as well as alteration of secondary
messenger systems (kinases and phosphatases) that modulate ion channel function. Given
that CREB is a transcriptional activator, inhibition of negative regulators would likely
require activation of transcriptional repressors and small non-coding RNAs, like microRNAs
and piwi-interacting RNAs, whose activation would inhibit downstream effectors of intrinsic
plasticity (see Figure 2). CREB-mediated transcription is known to rely on the recruitment
of co-activator complexes, like p300 (another HAT) and CBP, which subsequently
restructure chromatin to influence gene expression (Alarcon et al., 2004; Barrett et al., 2011;
Bourtchouladze et al., 2003; Chen et al., 2010; Korzus et al., 2004; Maurice et al., 2008;
Oike et al., 1999; Oliveira et al., 2011; Valor et al., 2011; Wood et al., 2005). Therefore, one
would expect to detect changes in epigenetic modifications, including histone acetylation, at
CREB target genes that are positive and negative regulators of intrinsic excitability. This is
in fact the case for genes implicated in Hebbian plasticity, like Bdnf, Egr1, and Pp1, which
are not only known CREB targets but also genes that undergo epigenetic regulation during
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the acquisition and consolidation of long-term memories (Day et al., 2013; Lubin et al.,
2008; Miller and Sweatt, 2007).

Efforts to characterize the transcriptional profile underlying changes in excitability have
primarily focused on the level or function of voltage-gated Na+ and K+ channels, as well as
potentiation of the adenylyl cyclase (AC)/cAMP/PKA pathway. Microarray analysis of the
NA from inducible transgenic animals overexpressing CREB revealed upregulation of the
voltage-dependent Na+ channel 1β subunit (Scn1b) and downregulation of the voltage-
dependent K+ channel KV1.4 subunit (Kcna4) (McClung and Nestler, 2003). Likewise,
current-clamp recordings from MSN neurons overexpressing CREB showed a potentiation
of Na+ conductances and an inhibition of K+ conductances, effects reversed by expression of
a dominant-negative CREB (Dong et al., 2006).

Converging evidence suggests CREB may regulate intrinsic plasticity via positive feedback
onto the AC/cAMP/PKA pathway. Interestingly, viral-mediated overexpression of wild-type
CREB in the locus coeruleus enhanced the excitatory effect of forskolin (an activator of AC)
on these neurons (Han et al., 2006). The increased basal firing rate observed with forskolin
could occur via CREB-mediated induction of AC8. Adcy8, which encodes AC8, is a direct
target for CREB (Lane-Ladd et al., 1997), and its expression is regulated by CREB in vitro
and in vivo (Chao et al., 2002). Furthermore, activation of the cAMP pathway has been
shown to increase neuronal excitability in noradrenergic neurons of the locus coeruleus
(Alreja and Aghajanian, 1995; Ivanov and Aston-Jones, 2001; Wang and Aghajanian, 1987).
More specifically, the AC/cAMP/PKA pathway regulates many of the previously mentioned
currents involved in modulating intrinsic plasticity, including the AHP current (Haug and
Storm, 2000; Oh et al., 2009; Pedarzani and Storm, 1995; 1993), the Ia current (Hoffman
and Johnston, 1998), and the Ih current (Pape, 1996). Together these observations support
the hypothesis that CREB-mediated changes in intrinsic plasticity are mediated via
potentiation of the AC/cAMP/PKA pathway. It is evident more research is necessary to
completely understand the transcriptional changes underlying CREB-mediated increases in
excitability; and to differentiate these changes from those underlying Hebbian plasticity.

It is worth noting that although CREB-mediated modulation of intrinsic plasticity is well
supported, there is a shortage of direct evidence confirming epigenetic regulation of intrinsic
plasticity in the context of learning and memory. However, recent evidence from the pain
and epilepsy fields demonstrate epigenetic mechanisms underlie the characteristic neuronal
hyperexcitability in these disease states (Beck and Yaari, 2008). As with long-term memory
formation and synaptic plasticity, there is growing evidence that epigenetic mechanisms also
play an important in role in the development and maintenance of different pain states and
epileptogenesis (for pain-relevant reviews see: Denk and McMahon, 2012; Géranton, 2012;
Rahn et al., 2013; for epileptogenesis-relevant reviews see: Lubin, 2012; Qureshi and
Mehler, 2010; Roopra et al., 2012).

In animal models of neuropathic pain, sustained downregulation of genes encoding for
sodium channel Nav1.8, the μ-opiod receptor, and potassium channel Kv4.3, occurred in the
dorsal root ganglion (DRG) following nerve injury (Uchida et al., 2010a; 2010b). These
decreased transcript levels were associated with enhanced binding of NRSF and
hypoacetylation of histone H3 and H4 at neuron-restrictive silencer elements (NRSEs, also
known as RE1s) in the promoter regions of these genes. NRSF is an activity-regulated
transcription factor that targets genes containing NRSE sites and silences their expression by
actively recruiting chromatin modifying and remodeling complexes that can include proteins
like methyl CpG binding protein 2 (MeCP2), Co-REST, Sin3a, HDACs, histone
methyltransferases, and histone demethylases (Roopra et al., 2001; 2012). Interestingly,
nerve injury resulted in a chronic elevation of NRSF transcript and protein levels that were
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further correlated with increased acetyl H4 enrichment at the NSRF promoter II (Uchida et
al., 2010a; 2010b).

NRSF-mediated repression of ion channels is also implicated in epileptogenesis. Seizure
activity resulted in NRSF binding to the Hcn1 promoter in the hippocampus of kainite-
treated animals (McClelland et al., 2011); decreased Hcn1 transcript levels as well as
attenuation of Ih were observed. As mentioned previously, HCN channels dampen dendritic
excitability in hippocampal cortical neurons and modify overall synaptic integration and
somatic-dendritic coupling (Magee, 1999; Poolos et al., 2002; Santoro et al., 2000).
Pharmacological blockade of HCN channels causes neuronal and network hyperexcitability
(Albertson et al., 2013; 2011). Furthermore, animals lacking Hcn1 have more excitable
neurons, are more prone to seizures, and have higher seizure-induced mortality (Huang et
al., 2009; Santoro et al., 2010). Administration of oligonucleotides targeting the Hcn1-
NRSE blocked REST binding of Hcn1, thereby restoring HCN1 protein levels and Ih current
amplitudes as well as producing fewer spontaneous seizures (McClelland et al., 2011).

In addition to ion channels, there is evidence of epigenetic regulation of secondary
messenger systems that modulate ion channel function. Following neuronal injury, p300 and
cyclooxygenase 2 (COX-2) were upregulated in the lumbar spinal cord of rats (Zhu et al.,
2012). More importantly, the degree of p300 binding to the COX-2 promoter dictated
subsequent COX-2 transcript and protein level. COX-2 regulates the production of several
prostaglandins that contribute to the development and maintenance of spinal cord
hyperexcitability (Latremoliere and Woolf, 2009; Willingale et al., 1997). Similar gene-
specific regulation was also observed in a model of inflammatory pain where peripheral
infusion of an inflammatory agent resulted in demethylation of the cystathionine-β-synthase
(Cbs) gene promoter with subsequent upregulation of Cbs mRNA and protein in the DRG
(Qi et al., 2013). Like COX-2, CBS synthesizes an endogenous molecule, in this case
hydrogen sulfide (H2S), whose activity was necessary and sufficient to elicit enhanced
excitability of DRG neurons (Qi et al., 2013; Xu et al., 2009). More specifically, in vitro
addition of NaHS (an H2S donor) significantly depolarized the resting membrane of DRG
neurons, reduced rheobase and AP threshold, and increased firing frequency. This effect was
mediated, in part, via potentiation of tetrodotoxin-resistant sodium channel currents, an
effect dependent on the PKA pathway. These data are consistent with previous in vitro
studies showing H2S modulates the AC/cAMP/PKA pathway (Muzaffar et al., 2009; Shao et
al., 2011; Smith, 2009). That the AC/cAMP/PKA pathway mediates changes in excitability
in both pain and memory circuits suggests shared homologous cellular and molecular
mechanisms and underscores the fundamental importance of this pathway in regulating
intrinsic neuronal properties (Rahn et al., 2013). Hence, it is conceivable that, in learning
and memory, epigenetic mechanisms may impinge on intrinsic excitability directly via
modulation of signaling proteins in the AC/cAMP/PKA pathway or indirectly via
intermediary effectors as is seen in the pain system.

These studies collectively demonstrate the existence of epigenetic regulation of ion channels
and associated signaling pathways involved in intrinsic plasticity. More specifically, REST
appears to play an essential function in this regulation, which is not surprising given that
many genes involved in neuronal excitability contain NRSE consensus sequences (Roopra et
al., 2001). These and other mechanisms should be examined more closely in the context of
learning and memory.

Are there learning-associated changes in epigenetic regulators or modifications at genes
implicated in intrinsic plasticity? Besides CREB, are there additional transcription factors
that may also mediate the necessary changes in gene expression contributing to intrinsic
plasticity? Based on the pain and epilepsy literature, both of these scenarios seem likely.
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REST appears to be an excellent candidate transcription factor that may orchestrate
specialized epigenetic machinery to relevant genes of interest. Other potential candidates
include nuclear factor-κB (NF-κB) as it too is known to associate with epigenome-
modifying complexes (Chen et al., 2011; Lanzillotta et al., 2010). In fact, hippocampal
neurons from mice with mutations in the IκBα promoter, the primary inhibitor of NF-κB,
exhibit spontaneous burst firing and hyperexcitability (Shim et al., 2011) that could be
explained via modulation of voltage-dependent calcium channels and ionotropic glutamate
receptor channels (Furukawa and Mattson, 2002). Finally, do genetic or pharmacological
manipulations of epigenetic enzymes modulate neuronal intrinsic excitability? To our
knowledge this last question remains completely unanswered, as it has not been directly
investigated in the learning and memory, pain, or epilepsy fields.

3. Synaptic Scaling
Homeostatic plasticity refers to the cellular changes, both synaptic (Turrigiano and Nelson,
2004) and intrinsic (Zhang and Linden, 2003), that allow neurons to maintain relatively
stable firing rates; thus mediating one of the most salient and paradoxical characteristics of
neuronal networks: robust stability in the face of remarkable plasticity (Nelson and
Turrigiano, 2008). While functionally distinct, synaptic and intrinsic homeostatic
mechanisms are not completely independent and can influence one another in a manner
directed from membrane-to-synapse (Ibata et al., 2008) or synapse-to-membrane (Ishikawa
et al., 2009). A well-characterized form of homeostatic synaptic plasticity, synaptic scaling,
involves bidirectional compensatory changes in post-synaptic receptor density in response to
chronically elevated or depressed activity levels (Kilman et al., 2002; Rannals and Kapur,
2011; Shin et al., 2012; Turrigiano et al., 1998; Wierenga et al., 2005). Importantly,
although homeostatic synaptic plasticity has been shown to operate at local synaptic inputs
(Hou et al., 2011; Lee et al., 2013; 2010; Pozo and Goda, 2010) and even at the individual
synapse level (Hou et al., 2011; Lee et al., 2010), synaptic scaling occurs via a highly
coordinated, cell-wide program that multiplicatively adjusts post-synaptic weights across all
synapses (see Figure 1C) (Turrigiano et al., 1998; Turrigiano, 2008). This program is
initiated in a cell-autonomous manner, as neurons respond robustly to fluctuations in their
own spiking rates by sensing concomitant changes in intracellular Ca2+ (Blackman et al.,
2012; Goold and Nicoll, 2010; Ibata et al., 2008; Peng et al., 2013). Additionally, soluble
factors such as brain-derived neurotrophic factor (BDNF) provide higher order control to
scaling processes, through the coordination of transcription-dependent and independent
processes (see section 3.2).

3.1 Relevance to Learning and Memory
Theoretical arguments detailing the role of synaptic scaling in learning and memory have
been discussed extensively (Nelson and Turrigiano, 2008; Pozo and Goda, 2010; Queenan et
al., 2012). The significance of global, multiplicative adjustments in post-synaptic strength
lies in the fact that this mechanism has been posited to maintain relative synaptic weights in
the context of a highly active and plastic neural network. It is hypothesized that scaling
allows for preservation of information acquired through experience-dependent, Hebbian
plasticity. As synapse-specific changes are thought to underlie memory storage, synaptic
scaling allows for relative preservation of these changes and thus preservation of the
memory trace itself. Furthermore, feedforward processes such as LTP and LTD have the
potential to create positive feedback loops, driving gain to infinity or zero, respectively.
Synaptic scaling is thought to act as negative feedback to these processes, therefore
providing a cohesive solution to this theoretical problem. Supporting evidence comes from
computational models that suggest within networks utilizing Hebbian plasticity, synaptic
scaling, in cooperation with other homeostatic mechanisms such as the dynamic regulation
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of intrinsic excitability (Remme and Wadman, 2012), robustly increases network stability
and information storage capacity (Tetzlaff et al., 2011; 2012).

While theoretical and computational models aid our understanding of how synaptic scaling
may operate within in vivo circuitry, there is currently a need for evidence demonstrating a
direct biological role for synaptic scaling in learning and memory. However, indirect
evidence comes from studies in hippocampal slice cultures. These studies demonstrate that
scaling, alongside other homeostatic adaptations, occurs within the intact hippocampal
circuitry, setting it within proper anatomical context to participate in memory formation,
consolidation, and storage. For example, in response to chronic inactivity, throughput
circuits such as dentate gyrus (DG)-CA3 and CA3-CA1 scale up post-synaptic excitatory
strength, while in the recurrent CA3-CA3 circuit, excitatory strength scales down (Kim and
Tsien, 2008). Even within the CA3 region itself, homeostatic adaptions to inactivity
modulate connectivity and synaptic strength in a complex manner, whereby certain contacts
between pairs of pyramidal neurons are strengthened while others are silenced (Mitra et al.,
2012). An interesting hypothesis put forward by Kim and Tsien (2008) is that homeostatic
adaptions within the hippocampal circuit, including synaptic scaling, are necessary for
maintaining proper directionality of information flow while concomitantly keeping
potentially destabilizing reverberations in check.

3.2. Transcriptional and Epigenetic Regulation
Even as the studies discussed in the previous section move us closer to understanding the
biological roles synaptic scaling may play within the context of learning and memory, the
precise molecular mechanisms underlying its induction, maintenance, and expression are
only beginning to be understood. For example, scaling up and down are not simply regulated
in an inverse manner, but are mediated by non-overlapping molecular pathways (Pozo and
Goda, 2010; Seeburg et al., 2008; Siddoway et al., 2013; Sun and Turrigiano, 2011).
However, with rare exceptions (Aoto et al., 2008; Soden and Chen, 2010; Wang et al.,
2011), the coordinated, cell-wide expression of synaptic scaling suggests an equally
coordinated and integral role for transcriptional regulation. Indeed, the induction of
bidirectional scaling across a range of modalities employed to manipulate activity can be
inhibited by the transcription inhibitor, actinomycin-D (Goold and Nicoll, 2010; Han and
Stevens, 2009; Ibata et al., 2008; Seeburg et al., 2008). In this section, we will examine
salient studies that are beginning to dissect the transcriptional mechanisms at play, with a
focused discussion of their place within the context of transcriptional regulation of synaptic
plasticity in general. Furthermore, as epigenetic mechanisms are now being recognized as
key regulators of gene expression and neuronal function in general, we will discuss how
synaptic scaling may be driven through epigenetic modifications and suggest areas for
further investigation.

As opposed to Hebbian plasticity, where coordinating pre-synaptic input with post-synaptic
depolarization drives changes in synaptic strength, synaptic scaling occurs in a cell-
autonomous manner. This is important as it suggests the initial wave of transcriptional
changes are mediated not via cell-to-cell signaling, but that a given neuron adjusts its own
synaptic weights by responding to fluctuations in Ca2+ entry through voltage-gated
channels. Of particular interest here are those studies demonstrating a role for CaMKIV in
regulating synaptic scaling in response to both increased (Goold and Nicoll, 2010) and
decreased (Ibata et al., 2008) activity. CaMKIV activity itself is regulated via changes in
Ca2+ flux through L-type voltage-gated Ca2+ channels (LTCCs) (see Figure 2) (Deisseroth
et al., 1998); increased Ca2+ entry activated CaMKIV and led to downscaling, whereas
decreased Ca2+ entry decreased CaMKIV activity and caused upscaling (Goold and Nicoll,
2010; Ibata et al., 2008). CaMKIV-regulated gene expression has been well-described in the
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context of Hebbian plasticity (Kang et al., 2001); however, besides a requirement for its
activity, very little else is known about its role in synaptic scaling or how it interacts with
other signaling events to regulate transcription.

How do prolonged changes in CaMKIV activity lead to scaling of excitatory synaptic
weights? When activity is increased acutely, a rise in intracellular Ca2+ through LTCCs
leads to nuclear translocation of Ca2+/calmodulin and increased CaMKIV acitivity
(Deisseroth et al., 1998). Active CaMKIV may phosphorylate CREB and CBP, increasing
CREB/CBP-dependent gene transcription and leading to histone acetylation via CBP’s HAT
activity (Deisseroth et al., 1998; Vo and Goodman, 2001). There is a clear role for CREB/
CBP-dependent transcription in promoting memory (Korzus et al., 2004; Silva et al., 1998;
Tully et al., 2003). CBP+/- mice exhibit disrupted chromatin acetylation, impaired memory,
and decreased Hebbian plasticity (Alarcon et al., 2004). The memory promoting effects of
the broad-spectrum HDACi, TSA, have been attributed to specifically promoting CREB/
CBP-dependent transcription (Levenson et al., 2004b; Vecsey et al., 2007). However, there
is no established role for these players in synaptic scaling. Experiments to determine if
neuronal cultures from CBP+/- mice have deficits in synaptic scaling and if these deficits
may be rescued with HDAC inhibitors may provide an interesting initial approach.
Furthermore, in light of the memory- and LTP-promoting effects of activated CaMKIV, it is
interesting to note that the scaling down of excitatory synaptic weights is driven by a chronic
increase in CaMKIV activity (Goold and Nicoll, 2010). Clearly, time course effects are
playing an important role and need to be worked out in future experiments. The findings
suggest CaMKIV signaling within an initial time window promotes the potentiation of
synaptic strength, as in LTP, but if activity remains continually elevated, CaMKIV signaling
promotes scaling down. As synaptic scaling is proposed to provide negative feedback to
positive feedback processes such as LTP, this order of events fits the role of scaling
processes within the current learning and memory model.

In addition to elucidating the mechanisms downstream of CaMKIV activity, investigations
into the effect of mitogen-activated protein kinase/extracellular signal-regulated kinase
(MAPK/ERK)-mediated signaling and its interactions with CaMKIV will likely provide
further insight into the transcriptional and epigenetic regulation of synaptic scaling. The
prolonged time course to induce scaling fits with a time frame involving an influential role
for MAPK/ERK (Wu et al., 2001). Although there is overwhelming evidence demonstrating
a clear role for MAPK/ERK-signaling in mediating the long-term changes in gene
expression and epigenetic modifications necessary for Hebbian plasticity and learning and
memory (Chwang et al., 2006; Impey et al., 1998; Levenson et al., 2004b; Roberson et al.,
1999), evidence for this pathway in synaptic scaling is scant. Ca2+/calmodulin-stimulated
AC activity and the subsequent activation of PKA may provide an exciting focal point for
initial studies, especially as this pathway has been shown to be critical for the nuclear
translocation of ERK, the induction of CREB-dependent transcription, and the induction of
histone PTMs (Chwang et al., 2006; Ferguson and Storm, 2004; Impey et al., 1998;
Levenson et al., 2004b; Wang and Zhang, 2012). Indeed, the activation of AC1 via Ca2+

entry through LTCCs has been implicated in synaptic scaling (Gong et al., 2007).
Furthermore, a recent study using a kinase-dead knock-in mutation of mitogen- and stress-
activated protein kinase-1 (MSK1), a component of the MAPK/ERK pathway critical for
mediating histone H3 and CREB Ser133 phosphorylation (Arthur et al., 2004; Soloaga et al.,
2003), showed its kinase activity to be necessary for the scaling up of excitatory strength in
response to activity deprivation (Corrêa et al., 2012). However, one caveat is that although
MSK1 can be activated through the activity of Ca2+ -stimulated ACs (Sindreu et al., 2007),
the authors of this study focused on its activation via BDNF signaling (see below for further
discussion).
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Although somatic Ca2+ fluctuations are currently thought to serve as the initial induction
locus, leading to the first wave of signaling pathways impinging on the nucleus to regulate
the transcriptional and epigenetic programs necessary for the expression of synaptic scaling,
the release of the neurotrophin BDNF has been implicated as well (see Figure 2). As one of
the most widely studied and influential regulators of synaptic transmission (Elmariah et al.,
2004; Marty et al., 2000; Nelson et al., 2008), plasticity (Bramham and Messaoudi, 2005;
Figurov et al., 1996), and behavior (Lubin et al., 2008; Mizuno et al., 2012; Rattiner et al.,
2005), it is no surprise that BDNF regulates synaptic scaling. However, BDNF operates in
an incredibly complex manner, and its precise role in the context of synaptic scaling is
unclear. In networks homeostatically adapting to inactivity, BDNF signaling can produce
state-dependent, pre-synaptic effects (Jakawich et al., 2010; Lindskog et al., 2010), and its
effects on synaptic scaling are cell-type specific (pyramidal vs. interneuron; (Rutherford et
al., 1998; Wenner, 2011)) and receptor-specific (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPA) vs. γ-Aminobutyric acid ligand gated receptors
(GABAA)); (Bolton et al., 2000; Peng et al., 2010; Swanwick et al., 2006)). Further
complicating the story, BDNF may act through transcriptionally-dependent (Calfa et al.,
2012; Corrêa et al., 2012) or independent (Fortin et al., 2012; Jakawich et al., 2010)
mechanisms.

From a transcriptional and epigenetic standpoint, two broad questions remain regarding
BDNF and synaptic scaling. First, how do the chronic, cell-autonomous changes in somatic
Ca2+ entry required to induce synaptic scaling affect the transcription of the Bdnf gene, and
are these changes mediated via epigenetic modifications? Indeed, studies have found that
prolonged elevations in AP firing lead to increased Bdnf expression mediated via decreased
promoter methylation (Nelson et al., 2008). Chronic inhibition of DNMT activity seemed to
mimic this decrease in methylation (Nelson et al., 2008), a finding especially relevant in
light of evidence showing DNMT inhibition in vivo also leads to promoter demethylation
and altered expression of the Bdnf gene (Lubin et al., 2008). In both cases, it was argued
these changes were regulated through NMDA receptor-mediated signaling, leaving the role
of prolonged changes in somatic Ca2+ undefined. Yet, there is likely a capacity for chronic
changes in somatic Ca2+ to mediate epigenetic changes at the Bdnf gene as acute, strongly
depolarizing stimuli can lead to changes in Bdnf promoter methylation, and these changes
are partly mediated through the Ca2+-dependent phosphorylation and unbinding of a
repressive MeCP2 complex (Chen et al., 2003a; Martinowich et al., 2003). Although there is
an abundance of evidence for the transcriptional regulation of Bdnf by MeCP2 (for review
see Li and Pozzo-Miller, 2013), their relationship in the context of synaptic scaling is
unclear. Interestingly, MeCP2 itself has been shown to be necessary to scale up (Blackman
et al., 2012) and scale down (Qiu et al., 2012) post-synaptic strength, and it does so in a cell-
autonomous manner (Blackman et al., 2012). Furthermore, as the Bdnf gene is known to
contain multiple promoter regions (Aid et al., 2007; Liu et al., 2006; Timmusk et al., 1993),
and the methylation status of these regions may be specifically regulated by Hebbian
plasticity (Sui et al., 2012) and learning (Lubin et al., 2008; Mizuno et al., 2012), it may be
helpful to determine the promoter-specific methylation changes induced during synaptic
scaling.

The second broad question: how does BDNF signaling interact with the Ca2+-mediated
pathways discussed above to further modify the epigenetic landscape during synaptic
scaling? Clearly, this is a complex question, especially given the heterogeneous data
regarding BDNF’s effects on scaling processes. However, there are certainly targets to be
investigated. For instance, we should continue to dissect the interaction between BDNF-
mediated ERK signaling and Ca2+/calmodulin-mediated signaling. As both BDNF signaling
and Ca2+/calmodulin-stimulated AC are known to activate MSK1 (Alonso et al., 2004;
Arthur et al., 2004; Corrêa et al., 2012; Sindreu et al., 2007; Soloaga et al., 2003), it is
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particularly interesting to consider how these pathways converge on this kinase and
cooperate with CaMKIV to control CREB/CBP-dependent transcription and PTMs of
histones. Moreover, how might these pathways antagonize each other? For example, how is
synaptic scaling influenced by the competition of HAT/HDAC activity? BDNF has been
shown to affect quantal neurotransmission via the activity of HDACs (Calfa et al., 2012),
and HDACs themselves have been shown to affect neurotransmission in a class specific
manner (Akhtar et al., 2009; Hanson et al., 2013; Kim et al., 2012). As synaptic scaling is a
modulation of baseline neurotransmission in response to chronic changes in activity, there is
likely a role for these mechanisms in its induction, maintenance, or expression. Therefore, it
may be beneficial to determine the time course of global histone modifications during
synaptic scaling and how these changes are influenced via BDNF/TrkB antagonization or
HDAC inhibition.

4. Concluding Remarks
In the last decade, the field of neuroepigenetics has made tremendous progress in
recognizing the importance of epigenetic mechanisms in the memory process. It is now
evident that, in order to generate a lasting effect on behavior, neuronal circuits must modify
their function in a persistent yet flexible manner. Currently the field has focused on
examining how individual genes and epigenetic modifications drive these necessary long-
lasting changes in neuronal function. However, technological advancements offered by the
“-omics” revolution are making it increasingly possible to understand how entire programs
of genes are epigenetically regulated to impact overall neuronal function and behavior.
Advances in next-generation sequencing will allow investigators not only to fully
characterize genome-wide changes in gene expression associated with a particular learning
experience but also to define the accompanying epigenetic modifications regulating these
changes. For example, bisulfite sequencing (BS-seq) in combination with oxidative bisulfite
sequencing (oxBS-seq) or Tet-assisted bisulfite sequencing (TAB-seq) will allow for single-
nucleotide resolution of cytosine methylation and 5-hydroxy-methylation (Booth et al.,
2012; Yu et al., 2012). Similarly, chromatin immunoprecipitation followed by sequencing
(ChIP-Seq) will allow for large-scale mapping of transcription factor binding and histone
PTMs as has recently been done following fear memory acquisition (Park et al., 2013).
Characterizing the memory transcriptome and epigenome will undoubtedly further our
understanding of the molecular underpinnings of long-term memory, identifying new gene
products that can be further targeted and explored.

Additional technological innovations are also making it increasingly possible to determine
the precise functional role of individual DNA or histone modifications. Although genetic
and pharmacological manipulations of epigenetic machinery have revealed the necessity of
epigenetic mechanisms in learning and memory, dissecting the causal role of individual
modifications has been challenging due to the correlative nature of existing chromatin-based
approaches. Utilization of customizable zinc-finger arrays and transcription activator–like
effector (TALE) proteins will allow investigators to activate or repress specific genes (Joung
and Sander, 2013), to catalyze locus-specific DNA demethylation (Maeder et al., 2013) and
to direct the addition or removal of specific histone modifications (Konermann et al., 2013;
Mendenhall et al., 2013). These systems are further amenable to optogenetic modulation
allowing for sophisticated manipulation of the epigenome in an inducible and reversible
manner (Konermann et al., 2013).

However, as with all new technological developments, the newly acquired information will
be hard to make sense of if we are unable to extract functional relevance from the data as it
relates to neuronal function and plasticity. To obtain a better understanding of what these
genome-wide expression and epigenetic changes mean for neuronal plasticity and behavior
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overall, two goals should be undertaken: (1) understanding how different forms of plasticity
(Hebbian vs. non-Hebbian) are epigenetically regulated on an individual level, and (2)
understanding how these forms of plasticity interact and modulate each other at level of the
epigenome.

In this review, we hope to have broadened the functional relevance of epigenetic
mechanisms to include regulation of both Hebbian and non-Hebbian forms of plasticity. In
doing so, we provide a series of experimental starting points that will hopefully spur further
exploration of these topics. Interestingly, our examination revealed these distinct plasticities
rely on overlapping induction mechanisms like intracellular Ca2+ signaling and subsequent
activation of several second-messenger pathways (see Figure 2). It is possible that once the
upstream initiating signal is propagated to the nucleus, the epigenome acts as a point of
convergence and divergence integrating upstream signals into a particular epigenetic and
transcriptional signature that is plasticity-specific (e.g., LTP or synaptic scaling).
Understanding how these different forms of plasticity are epigenetically regulated on an
individual level will help us compartmentalize network topologies when analyzing whole-
genome studies. Therefore, when examining learning-induced genome-wide changes in
expression and epigenetic modifications, there will be a subset of changes that are inherently
mnemonic in function. However, as previously mentioned there will be concurrent changes
underlying other forms of plasticity (e.g., intrinsic plasticity and synaptic scaling) that may
not constitute part of the molecular memory engram but are nonetheless critical to the
overall memory process.

This latter point is becoming increasingly salient considering these different forms of
plasticity are able to interact with one another in a metaplastic manner. Both intrinsic
plasticity and synaptic scaling are able to modulate LTP (Arendt et al., 2013; Chen et al.,
2006; Cohen and Abraham, 1996; Cohen et al., 1999; Kramár et al., 2004; Roth-Alpermann
et al., 2006; Sah and Bekkers, 1996; Thiagarajan et al., 2007). These plasticities also interact
at the level of the behaving animal (Lambo and Turrigiano, 2013; Maffei and Turrigiano,
2008; Nataraj et al., 2010; Saar et al., 1998; Zelcer et al., 2006). These observations are
interesting given that HDAC inhibitors are able to facilitate both LTP induction and learning
(Fass et al., 2013; Levenson et al., 2004b; Miller et al., 2008; Stafford et al., 2012; Sui et al.,
2012; Vecsey et al., 2007; Yeh et al., 2004; Zeng et al., 2011), suggesting the underlying
mechanism of action for these drugs may involve alterations in intrinsic and homeostastic
processes as well as synapse-specific changes. Furthermore, intrinsic plasticity and
homeostatic plasticity are intimately tied as chronic changes in neuronal activity can
dynamically regulate intrinsic excitability thereby modulating the whole neuron’s response
to incoming stimuli (Desai et al., 1999). CREB-mediated changes in intrinsic excitability
have also been shown to influence which neurons get recruited to a given memory trace
(Han et al., 2007; Kim et al., 2013; Zhou et al., 2009), a process termed memory allocation
(Silva et al., 2009; Won and Silva, 2008). Although it is evident these different forms of
plasticity interact at the level of the cell membrane to influence behavior, it is conceivable
they also interact at the level of epigenome where a given neuron’s epigenetic “state” may
ultimately dictate a neuron’s cellular “state” via the simultaneous regulation of Hebbian and
non-Hebbian plasticity. In such a case, the epigenome would be a prime candidate for
metaplasticity at large, which is an idea recently put forth in the literature (Baker-Andresen
et al., 2013b).

As the field of neuroepigenetics expands into exciting and new territories, these topics
amongst others will need to be addressed to obtain a comprehensive understanding of the
global transcriptional and epigenetic changes necessary for long-term behavioral memory.
Using the previously outlined ideas as foundational points, we propose the following
simplified operational model to better understand and integrate such changes. A given
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learning experience drives nuclear change by impinging on a variety of well-conserved
signaling cascades. Once at the nucleus, these signaling cascades engage a parallel set of
chromatin remodeling processes that produce several overlapping, yet independent, gene
expression profiles that ultimately regulate the levels/activity of ion channels, receptors,
trafficking proteins, and signaling molecules. These cell-wide changes in transcriptional
output ultimately modulate long-term behavioral memory by regulating synapse-specific
Hebbian plasticity either directly or indirectly. Direct regulation may be accomplished by
targeted transport of necessary gene products to tagged synapses, whereas indirect
regulation may occur through non-Hebbian cell-wide functional changes. As a result, the
combined output of transcriptional and epigenetic mechanisms may serve multifaceted
functions including encoding of mnemonic information, adaptation to plasticity-inducing
experiences, and subsequent modulation of future plasticity.
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Abbreviations

AC adenylyl cyclase

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AP action potential

BDNF brain-derived neurotrophic factor

BLA basolateral amygdala

CA cornus ammonis

CaMKII/IV Ca2+/calmodulin-dependent protein kinase II/IV

CBP CREB binding protein

CREB cAMP/Ca2+-response element binding protein

CNS central nervous system

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

DG dentate gyrus

ERK extracellular-signal regulated kinase

GABAA γ-Aminobutyric acid ligand gated receptors

H2S hydrogen sulfide

HATs histone acetyltransferases

HCN hyperpolarization-activated cyclic nucleotide-gated

HDAC histone deacetylase

HDACi HDAC inhibitor

DRG dorsal root ganglion
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LA lateral amygdala

LTCCs L-type voltage-gated Ca2+ channels

MAPK mitogen-activated protein kinase

MeCP2 methyl CpG binding protein 2

MSK1 mitogen- and stress-activated protein kinase-1

MSN medium spiny neurons

NMDA N-Methyl-D-Aspartate

NRSE neuron-restrictive silencer elements

NRSF neuron-restrictive silencing factor

NA nucleus accumbens

PKA cAMP-dependent protein kinase

PKC protein kinase C

PKG cGMP-dependent protein kinase

PTMs post-translational modifications

RE1 repressor element 1

REST RE1 silencing transcription factor

TSA trichostatin A
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Research Highlights

• Hebbian and non-Hebbian forms of plasticity are critical to the memory process.

• We review the data supporting epigenetic mechanisms in Hebbian plasticity
(LTP).

• Non-hebbian plasticity includes intrinsic plasticity and synaptic scaling.

• Transcriptional and epigenetic regulation of non-Hebbian plasticity is examined.
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Figure 1. Induction and Expression Sites for Hebbian and non-Hebbian Forms of Plasticity
Hebbian plasticity involves the modulation of synaptic efficacy due to precise coordination
of pre- and post-synaptic activity. In contrast, non-Hebbian forms of plasticity are not
dependent on coincident activity. Hebbian and non-Hebbian plasticities are induced and
expressed differently, suggesting each possesses specific functions in the memory process.
(a) The modulation of synaptic efficacy in Hebbian plasticity is synapse-specific; as a result,
the sites of induction (green) and expression (blue) are co-localized. Classically expression
is thought to occur post-synaptically via trafficking of ligand-gated ionotropic receptors
(e.g., AMPARs), although there is evidence for the involvement of presynaptic
modifications. The throughput (red), or the ability of synaptic activity to elicit an action
potential, is altered only at those synapses expressing changes in synaptic efficacy. (b)
Intrinsic plasticity is a form of non-Hebbian plasticity where modulation of voltage- and
calcium-gated ion channels regulates synaptic integration and action potential generation.
There is evidence that changes in intrinsic plasticity can be induced by local synaptic
activity (as shown) as well as global changes in action potential firing. Similarly, intrinsic
plasticity can be expressed locally (restricted to a subset of distal dendrites) or globally (as
shown; involving broader changes along the dendritic tree and/or the axo-somatic
membrane). In the setting of global changes, there is potential for throughput of all synapses
to be altered. (c) Synaptic scaling is a form of non-Hebbian plasticity involving the
multiplicative modification of postsynaptic ligand-gated ionotropic receptor (e.g., AMPAR)
density across all synapses. Such changes occur in response to a given neuron sensing
chronic alterations in its own firing rate through variations in Ca2+ influx at the soma. Since
modifications occur at all synapses the throughput of all synapses are changed. However,
relative weights of preexisting synaptic changes are maintained since scaling occurs in a
multiplicative fashion. Adapted from Zhang and Linden (2003).
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Figure 2. Potential Shared Molecular Mechanisms of Transcriptional Regulation between
Intrinsic Plasticity and Synaptic Scaling
Although clear distinctions exist in the induction and expression of intrinsic plasticity (IP)
and synaptic scaling (SS), accumulating evidence suggests both plasticities rely on
conserved molecular mechanisms also known to be involved in the long-term changes in
gene expression necessary for Hebbian plasticity. Here we present a simplified model
intended to demonstrate likely points of molecular convergence between IP and SS that
require further experimental confirmation and elucidation. Despite differences in induction
site (synaptic as in IP and somatic as in SS), there is a clear role for transcriptional
regulation via Ca2+-mediated signaling. Ca2+ entry either through synaptic NMDA receptors
or somatic voltage-gated calcium channels (VGGCs) directly and/or indirectly activates
protein kinases like protein kinase C (PKC) and cAMP-dependent protein kinase (PKA)
which converge on extracellular receptor kinase (ERK) and lead to its nuclear translocation.
In SS, brain-derived neurotrophic factor (BDNF) binding of TrkB receptors likely serves as
a level of higher-order control in the regulation of ERK nuclear translocation. Nuclear ERK
may engage cAMP-response element (CREB)-mediated gene transcription through
activation of downstream kinases such as mitogen- and stress-activated protein-kinase 1
(MSK1). Additionally, nuclear translocation of Ca2+/calmodulin (CaM) regulates Ca2+/
calmodulin-dependent kinase IV (CaMKIV) activity, a key mediator of both CREB and
CREB-binding protein (CBP) phosphorylation and activation. Furthermore, it is likely both
IP and SS engage transcriptional repressors and small non-coding RNAs along with
transcriptional activators like CREB. Coordinated expression of specific ion channels/
receptors, associated trafficking proteins, and secondary messenger proteins will dictate how
each form of plasticity manifests at the level of the cell membrane.
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