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INTRODUCTION
Structural and functional changes present in the upper 

airway of infants with cleft lip and/or palate (CL/P) confer 
an increased risk of sleep disordered breathing (SDB).1 The 
changes in facial structures include decreased length and height 
of the maxilla, basal maxillary retrognathia, decreased length 
of the mandible, and mandibular retrognathia, which all result 
in a reduced size of the upper airway.2 Disturbance of the struc-
ture of the palate and altered insertions of the palatal muscles 
leads to dis-coordination of palatal movement with laryngeal 
muscles and also predisposes to airway obstruction.3,4 In both 
animal models and studies of newborn infants, these struc-
tural and functional changes are associated with a spectrum of 
airway compromise from life threatening airway obstruction 
to the intermittent airway obstruction during sleep of obstruc-
tive sleep apnea (OSA).5-8 In a study of 52 infants with CL/P 
who underwent PSG at a mean age of 2.7 ± 2.3 months, we 
demonstrated that 40% of infants had more than 10 obstructive 
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respiratory events/h of sleep, while 14% had more than 20 
central events/h of sleep with a mean apnea-hypopnea index 
(AHI) of 22.8 ± 18.4 events/h.9

SDB in childhood is associated with a range of health 
consequences including poor growth, neurocognitive compro-
mise, and lower quality of life. There is, however, less 
information on the effects of OSA in early infancy. Animal 
models of OSA in early infancy, using exposure to intermit-
tent hypoxia, have demonstrated increased baseline ventila-
tion and decreased response to acute hypoxia—effects which 
persist after return to normoxia and into adulthood—as well 
as cognitive impairment.10,11 These effects are seen even with 
relatively brief exposure to intermittent hypoxia.12 Studies in 
infants with SDB show lower amounts of REM sleep, poor 
growth, delayed development, and a higher risk of sudden 
infant death syndrome (SIDS).13-15 While studies of SDB in 
childhood show reversal of some of the effects of SDB with 
treatment,16,17 there is limited information available on the 
long-term outcomes of SDB in infancy. Treatment studies of 
infants with CL/P demonstrate that a range of modalities can 
relieve airway obstruction,18-24 improve feeding skills,24 and 
improve growth velocity,18,21 but few studies examine treat-
ment outcomes, and none have included long-term follow-up. 
One study of children age 4-11 years demonstrated signifi-
cant differences in cognitive and psychosocial development 
between healthy controls and children with a history of Pierre 
Robin Sequence, a select group of infants with cleft palate at 
high risk of OSA.25
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SDB is recognized as an important comorbidity in infants 
with CL/P; however, the long-term sequelae of SDB in this 
group are currently unknown. The aim of this study was to 
investigate the relationship between SDB during early infancy 
and neurocognitive, quality of life, and growth outcomes at 3 
years of age in a group of infants with CL/P. The results from 
this study will provide clinicians and families with information 
about the consequences of SDB in infants with CL/P.

METHODS
All families of newborn infants referred to the cleft team 

were approached for participation in a longitudinal prospective 
study of sleep and breathing in infants with CL/P. Following 
their first contact with the cleft team, families were consented 
for participation and the infant was scheduled for initial poly-
somnography (PSG). Infants were excluded if a cleft was not 
confirmed, if they were medically unstable, or if they required 
medical interventions that precluded the performance of a 
diagnostic PSG prior to palate surgery. The study protocol was 
approved by the institution’s research ethics committee.

All treatment decisions were the responsibility of the 
multidisciplinary cleft team. Standard protocols for cleft care 
included repair of cleft lips at approximately 3 months and 
primary palate closure between 9 and 12 months. Surgical 
procedures for primary palate closure included Langenbeck’s 
bipedical flaps, Veau-Wardill-Kilner V-Y pushback, Furlow 
double-reversing Z-palatoplasty, and intervelar veloplasty. No 
children underwent procedures intended to leave a residual 
cleft. Decisions with regard to treatment for sleep disordered 
breathing (SDB) were the responsibility of the Sleep Medicine 
physicians.

The study consisted of data collection in infancy and follow-
up at 3 years of age. A total of 52 infants were enrolled in 
infancy with the protocol and results of infant PSG previously 
reported.6 All infants underwent a diagnostic PSG as soon as 
possible after identification of their CL/P. At the time of the 
PSG, demographic information was collected from the medical 
chart, a parent or guardian completed a sleep and breathing 
research questionnaire and facial and growth measurements 
were collected. Families were then invited for follow-up by the 
research team just before their child’s third birthday.

The main outcome measure collected at 3 years of age was 
a neurocognitive assessment using the Bayley Scales of Infant 
and Toddler Development, Third Edition (BSID-III). Testing 
was completed predominantly by 2 nurses, with occupational 
therapists completing testing when needed. All assessors had 
completed the Bayley course and were experienced in admin-
istering the assessment. The BSID-III consists of 5 subscales 
including cognitive, receptive language, expressive language, 
fine motor, and gross motor. Scores which fall outside ± 1 stan-
dard deviation (SD) are considered abnormal. BSID-III scores 
were compared to locally collected data from term born 
healthy control children participating in a follow-up study of 
infants who underwent general surgery or cardiac surgery in 
infancy.26 Additional outcome measures included the Infant/
Toddler Quality of Life Questionnaire (ITQOL; 97 items) and 
growth parameters. The ITQOL measures quality of life across 
9 multi-item scales for infants and toddlers 2 months to 5 years 
of age (healthactchq.com). ITQOL scores were compared to 

previously published data collected from control samples,27-29 
where possible scores range from 0 to 100 and higher scores 
indicate better quality of life. Z-scores for growth parameters 
were calculated using the CDC 2000 Growth Reference for 
children 2-19 years old (www.cdc.gov/growthcharts).

PSGs in infancy and at 3 years of age were completed using 
standard clinical laboratory procedures. This included deter-
mination of sleep state using an electroencephalography, elec-
trooculogram, and submental electromyogram. Channels to 
evaluate respiratory status included pulse oximetry, nasal/oral 
air flow by thermistor, nasal pressure, chest and abdominal wall 
movement using respiratory inductance plethysmography, and 
diaphragm and abdominal muscle activity by trans-diaphrag-
matic electromyogram. Carbon dioxide (CO2) was monitored 
using transcutaneous CO2 (TcCO2). Cardiac monitoring included 
the pulse signal from the oximeter and electrocardiogram.

Analysis of PSG data was completed by a single experienced 
scorer using the criteria of the American Academy of Sleep 
Medicine (AASM).30 Sleep staging for infants < 6 months of 
age was completed using the criteria outline by Anders,31 with 
AASM criteria applied for those ≥ 6 months. Obstructive apnea 
was defined as the cessation of airflow (< 10% of baseline level) 
for a minimum duration of 2 missed breaths with evidence of 
ongoing respiratory efforts. Central apnea was defined as the 
cessation of airflow (< 10% of baseline level) for a minimum of 
2 missed breaths if followed by an arousal, awakening, or ≥ 3% 
oxygen desaturation, or for ≥ 20 sec in the absence of any 
associated events. Mixed apneas included central and obstruc-
tive components in the same event. Hypopneas were defined 
based on a decrease in airflow of 10% to 50% of baseline asso-
ciated with an arousal, awakening, or ≥ 3% oxygen desatura-
tion. Apnea-hypopnoea index (AHI) was calculated based on 
the number of apneas and hypopneas during sleep divided by 
the total sleep time. The obstructive-mixed AHI (OMAHI) 
excluded central respiratory events. Oxygen desaturation index 
(ODI) was calculated based on the number of oxygen desatura-
tion events ≥ 3% during sleep divided by the total sleep time. 
Oxygen saturation nadir represents the lowest oxygen satura-
tion recorded during sleep. There is no accepted AHI cut-point 
to define an abnormal or pathological AHI in infancy; therefore, 
the median AHI of 15 events/h from the original study group 
(i.e., data from 50 infants previously reported)6 was used to 
define low (AHI < 15) and high (AHI ≥ 15) within this group.

Data were entered in a database (Microsoft Office Access 
2003, Microsoft Corporation). Statistical analysis was 
performed using IBM SPSS 21.0.0.0 (IBM Corp, 1989, 2012). 
A p-value ≤ 0.05 was considered to indicate statistical signifi-
cance. Descriptive analyses were used to examine demographic 
information, PSG parameters, and neurocognitive results. 
Logarithmic transformation to normalize distributions was 
applied to PSG variables including AHI, OMAHI, and ODI. 
Comparisons for continuous variables between groups were 
made with Student t-test, paired t-test, and ANOVA. A modi-
fied Bonferroni correction was made for multiple comparisons.

RESULTS
A full description of the infant characteristics of the original 

cohort is available elsewhere.6 Thirty-four children returned for 
follow-up at 3 years of age (68% response rate). Neurocognitive 
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testing was unsuccessful for one child who was not willing to 
complete any of the tasks for the assessors. Therefore, results 
for 33 children are available for analysis across the spectrum 
of CL/P (Table 1). Compared to the original cohort, males 
were overrepresented in the follow-up cohort (45% vs 57%, 
P < 0.05), as were infants who were referred for clinical sleep 
medicine consultation prior to PSG (41% vs 51%, P < 0.05). 
There were no differences between the original and follow-up 
cohorts with respect to cleft classification, syndrome status, or 
infant PSG variables (data not shown).

PSG in infancy was completed at 2.7 ± 2.1 months with 
an AHI of 24.3 ± 18.0 events/h (Table 2). All infants had an 
AHI > 1 event/h; all but 1 had an OMAHI > 1 event/h; and 75% 
had an OMAHI > 3 events/h. Infants with PRS had more severe 
SDB than infants with isolated cleft, but similar SDB severity 
compared to infants with syndromes (data not shown). Sleep 
medicine physicians determined that 30% of infants had normal 
PSG results. For the remaining infants, 33% were recom-
mended for clinical follow-up without intervention, 6% side 
lying or prone positioning for sleep, 3% oxygen during sleep, 
and 27% non-invasive ventilation (NIV) therapy. For 3 infants 
recommended NIV, families declined starting the therapy.

Among 19 children (57%) who completed PSG at follow-
up, PSG parameters in infancy were not different from those 
children who declined follow-up PSG (data not shown). 
Comparison of paired infant and follow-up PSG results showed 
expected changes in sleep architecture, sleep efficiency, and 
arousal index between infancy and follow-up (Table 2). There 
was a significant decrease in all respiratory events but no change 
in minimum oxygen saturation. AHI decreased from infancy to 
follow-up for all children; however, 72% had AHI > 2 event/h 
at follow-up. Both OMAHI and central index was < 5 events/h 
for all children, consistent with mild SDB, at most, in those 

with residual respiratory events. Between the infant and follow-
up assessments, 2 children were diagnosed with epilepsy (6%), 
and seizures were controlled with anti-epileptic medication. 
One child was diagnosed with global developmental delay. 
Four children (12%) were identified as having hearing deficits.

A summary of the outcome measures at 3 years of age is 
presented in Table 3. Mean BSID-III scaled scores at follow-up 

Table 1—Demographic characteristics of the 33 children with a history of 
CL/P included in the analysis. 

Demographic parameter Frequency (%)
Age at Follow-up 37.7 ± 1.5 months
Male/Female 15/18 (45/54)
Infant characteristics

Gestational age (weeks)
Birth weight (g)
Weight z-score at infant PSG
Height z-score at infant PSG

38.7 ± 1.9
3365 ± 606
-0.55 ± 1.40
-0.47 ± 1.54

Cleft palate classification
Cleft lip/alveolus
Cleft soft palate
Cleft soft & hard palate
Complete cleft lip & palate 

2 (6)
5 (15)

15 (45)
11 (33)

Syndrome status
Isolated cleft
Pierre-Robin Sequence
Syndrome †

23 (70)
7 (21)
3 (9)

Treatment for SDB in infancy 8 (24%)

† Syndromes included Apert syndrome, Treacher Collins syndrome, and 
unconfirmed Kabuki syndrome. Results are expressed as mean ± stan-
dard deviation or number of subjects with percentage in parentheses.

Table 2—Polysomnography (PSG) results from infancy and at follow-up. 
Results are expressed as mean ± standard deviation (SD). 

Variable Infancy Follow-up
N 33 19
Age (months) * 2.7 ± 2.1 34.0 ± 5.8
Total sleep time (min) * 318 ± 123 487 ± 60
Sleep efficiency (%) ** 71 ± 14 89 ± 8.3
%Active/REM * 39 ± 11 24 ± 4
%Quiet/Stage 3 ** 41 ± 9 26 ± 5
Arousal index (events/h) * 17.2 ± 6.2 9.4 ± 3.3
AHI (events/h) * 24.3 ± 18.0 3.5 ± 2.1
OMAHI (events/h) ** 13.5 ± 14.3 1.7 ± 1.5
Central index (events/h) ** 10.8 ± 11.2 1.8 ± 1.1
Desaturation index (events/h) † 25.5 ± 18.2 5.3 ± 3.1
O2 saturation nadir (%) 80 ± 16 78 ± 24

* P < 0.001; ** P < 0.01, † P < 0.05. Statistics are for paired infancy and 
follow-up parameters only.

Table 3—Summary of group outcome measures including neurocognition 
as measured by the Bayley Scale of Infant and Toddler Development III 
(BSID III), quality of life as measured by the Infant/Toddler Quality of Life 
Questionnaire (ITQOL), and growth parameters.

BSID-III (scaled scores)
Cognitive 9.5 ± 2.5
Receptive Language 10.0 ± 2.5
Expressive Language 8.6 ± 3.1
Fine Motor 10.7 ± 2.8
Gross Motor 8.77 ± 2.5

ITQOL
Physical Ability 87.0 ± 25.0
Growth & Development 82.1 ± 18.6
Bodily Pain/Discomfort 89.1 ± 21.1
Temperament & Moods 81.5 ± 9.5
General Behavior 76.9 ± 14.6
Getting Along 75.9 ± 8.1
General Health Perceptions 71.2 ± 18.1
Parental Impact-Emotional 85.5 ± 14.9
Parental Impact-Time 71.4 ± 21.5
Family Cohesion 79.8 ± 22.4

Growth Parameters
Height z-score -0.36 ± 1.8
Weight z-score -0.17 ± 1.1
BMI z-score -0.14 ± 2.3

Results are expressed as mean ± standard deviation.
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were within the normal range for all domains (Figure 1). Children 
with a history of CL/P had lower scores than control children 
on the receptive and expressive language domains (Table 4). 
BSID-III scaled scores also differed by syndrome status; chil-
dren with isolated cleft and PRS had higher scores than children 
with syndromes (Table 5). ITQOL scores were within the range 
reported in previously published control samples,27-29 with 
means for physical ability, growth and development, general 
health perceptions, and parent impact-time below control mean 
scores. Weight z-scores were significantly higher at 3 years 
of age than in infancy (-0.17 vs -0.78, P < 0.001) with similar 
height z-scores at the 2 time points. At 3 years of age, 2 children 
had weight z-scores < 2; 3 children had height z-scores < 2; 2 
had height z-scores > 2; and one child had a BMI z-score > 2. 
Quality of life scores and growth parameters did not differ by 
syndrome status.

The percentage for AS/REM sleep in infancy showed a posi-
tive correlation with the cognitive domain on the BSID-III 
(Pearson 0.35, P < 0.05). No other PSG variables in infancy—
including sleep efficiency, arousal index, AHI, and ODI—
showed relationships with neurocognition at 3 years of age. 
The 3 children who were recommended treatment for SDB 
but whose families declined treatment had lower scores on the 
cognitive domain than the rest of the group (6.33 ± 3.06 vs 
9.87 ± 2.2, P < 0.05); one of these children had PRS and one 
had a syndrome. OMAHI in infancy showed a negative rela-
tionship with ITQOL Global Behaviour domain (Pearson -0.43, 
P < 0.05). There were no significant correlations between PSG 

variables and growth parameters at 3 years of age. Children 
with low AHI (< 15) in infancy did not differ from those with 
high AHI on any outcome variable except for weight, where 
children with high AHI in infancy had a lower weight z-score at 
3 years than children with a low AHI in infancy (-0.54 vs 0.40, 
P < 0.05).

DISCUSSION
This is the first study to report on long-term outcomes of SDB 

in infants with CL/P. The results demonstrate that, as a group, 
children with a history of CL/P are doing well at 3 years of 
age with respect to neurocognition, quality of life, and growth, 
despite high AHI in infancy. Sleep and breathing differences 
in infancy, as measured by PSG prior to intervention, demon-
strate significant relationships with outcomes at 3 years of age 
including; (1) higher percentage of AS/REM sleep in infancy 
correlating with higher cognitive score on the BSID-III; (2) 
higher OMAHI correlating with lower global behaviour score 
on the ITQOL; and (3) high AHI in infancy associated with 
lower weight z-scores at 3 years of age. Children with CL/P do 
show important deficits in receptive and expressive language 
compared to control children. Syndrome status influences 
neurocognitive but not quality of life and growth outcomes.

Limitations of the study must be acknowledged. Follow-up 
was completed for 66% of the original cohort raising the possi-
bility of selection bias. Males and children referred for sleep 
medicine consultation prior to initial PSG were overrepresented 
in the follow-up cohort. The potential effect of more males on 
outcomes is difficult to anticipate. The higher rate of children 
referred in the follow-up cohort could bias towards worse 
outcomes, as these infants may have been identified as at risk 
for reason other than sleep related symptoms. The original and 
follow-up cohorts did not differ, however, by syndrome status 
or infant PSG variables. Families who had concerns about how 
their children were doing may have been motivated to partici-
pate in follow-up.	

Common comorbidities associated with CL/P, in addition 
to airway obstruction, include feeding difficulties, growth 
failure, speech abnormalities, and developmental delay. 
Feeding difficulties and failure to thrive are more common in 
newborns with palatal clefts and those with CL/P in the context 
of syndromes.24,32 Both feeding and growth concerns may 

Table 4—Comparison of neurocognitive outcomes between children with 
a history of CL/P and control children.

Control (n = 156) Cleft (n = 33)
Gestational age (weeks) * 39.5 ± 1.1 38.6 ± 1.9
Birth weight (g) 3553 ± 500 3365 ± 606
Age at assessment (months) 37.2 ± 1.0 37.7 ± 1.5
Cognitive 10.3 ± 1.9 9.5 ± 2.5
Receptive Language ** 11.4 ± 2.1 10.0 ± 2.5
Expressive Language † 11.0 ± 2.6 8.6 ± 3.0
Fine Motor 11.4 ± 2.1 10.7 ± 2.8
Gross Motor 9.9 ± 1.8 8.8 ± 2.5

* Post hoc: control vs cleft, P < 0.05. ** Post hoc: control vs cleft, P < 0.01. 
† Post hoc: control vs cleft, P < 0.001.

Table 5—Neurocognition as measured by Bayley Scales of Infant and 
Toddler Development III (BSID-III; scaled scores) by syndrome status

BSID-III (scaled scores)
Isolated 
(n = 23)

PRS
(n = 7)

Syndrome 
(n = 3)

Cognitive 9.7 ± 2.2 10.3 ± 2.4 6.7 ± 3.2
Receptive Language 9.9 ± 2.5 10.7 ± 2.1 9.0 ± 3.5
Expressive Language * 8.2 ± 3.0 10.9 ± 1.6 6.3 ± 3.8
Fine Motor ** 11.0 ± 2.7 11.6 ± 1.4 6.7 ± 3.2
Gross Motor 8.7 ± 2.7 9.7 ± 1.1 6.0 ± 2.8

* P = 0.05; post hoc: PRS vs Syndrome, P = 0.087. ** P < 0.05; post hoc: 
Isolated vs Syndrome and PRS vs Syndrome, P < 0.05.

Figure 1—Bayley scaled scores distribution by Domain. Bayley scaled 
scores have a range of 1-19, with a mean of 10 (SD 3). Error bars 
represent the 95% confidence interval around the mean group score.

14

12

10

8

6

Cognitive Receptive
Language

Expressive
Language

Fine
Motor

Gross
Motor

Ba
yle

y S
ca

led
 S

co
re

s



SLEEP, Vol. 37, No. 5, 2014 923 Outcomes of SDB in High Risk Infants at Three Years—Smith et al.

persist into childhood with catch-up growth often seen after 
surgical repair of the cleft.33-35 Pre-speech and speech difficul-
ties are also common and can continue beyond palate repair 
into adolescence.36-40 Children with cleft palate are at increased 
risk of delayed development with a decline in mental develop-
ment noted over the first two years of life.41,42 Previous studies 
using the BSID have documented lower cognitive performance 
in infants with cleft compared to control infants.43,44 A recent 
meta-analysis and review article both demonstrate that while 
infants, children, and adults with cleft have cognitive function 
within a normal range, cognitive performance is lower than 
controls, with more significant deficits in the language domains, 
including reading skills.45,46 The results from the current study 
add to this literature by demonstrating an association between 
SDB in infancy and long-term neurocognitive, growth, and 
quality of life outcomes.

While the current observational study cannot argue a caus-
ative relationship between SDB in infancy and outcomes at 3 
years of age, the results are in agreement with experimental 
animal models that demonstrate a positive relationship between 
early exposure to intermittent hypoxia (IH), and later altera-
tions in brain structure, neurocognitive function, and growth. 
For example, mice pups exposed to IH between postnatal days 
2 and 10, equivalent to the perinatal period in human infants, 
show region selective hypomyelination in the corpus callosum, 
striatum, fornix, and cerebellum.47 Myelination is a develop-
mental process that is important for normal cognitive devel-
opment.48 In addition, these findings in infant animals parallel 
changes in susceptible brain regions associated with IH expo-
sure in adult animals including the hippocampus and cortex.49 
Several studies have confirmed that chronic IH impairs memory, 
with a number of proposed mechanisms accounting for this 
effect including alterations in glutamate levels,50 increased 
iNOS (inducible nitric oxide synthase),51 and decreases in 
brain-derived neurotrophic factor (BDNF).52 IH exposure in 
postnatal rats resulted in the same pattern of growth seen in the 
current infant study—growth restriction during IH with subse-
quent recovery when IH is removed.53

Sleep disruption, independent of IH, also plays an impor-
tant role in learning, primarily through its impact on memory. 
Though the exact role of specific sleep states remains controver-
sial, stage 2 sleep, SWS, and REM sleep have been implicated 
in sleep related memory processing54-56; SWS is postulated to 
reactivate circuits activated by learning experiences with REM 
sleep responsible for consolidation of learning into long-term 
memory. Experimental sleep deprivation in animal models 
demonstrates changes in multiple memory systems resulting 
in cognitive deficits. The cellular and molecular mechanisms 
are unclear with several proposed mechanisms under investiga-
tion including the role of extracellular adenosine,57 astrocyte-
derived adenosine,58 and altered NMDA receptor function.59 
REM-specific sleep deprivation alters cytoskeleton reorgani-
zation in the hippocampus.60 While less work has been done 
investigating sleep deprivation in infants, experiments in rats 
at postnatal day 2 and 8 show that sleep disruption results in 
increased sleep pressure (number of times an arousing stimulus 
presented to maintain wakefulness) and sleep rebound (increase 
in sleep duration or intensity following sleep deprivation),61 
showing infants are also vulnerable to sleep deprivation.

The results from this study cannot be used to determine 
which infants with SDB will benefit from treatment and may 
not generalize to infants with CL/P receiving care in a different 
context. There are no accepted criteria for defining SDB in 
infancy. Previous studies in infants have chosen different 
cut-offs for defining abnormality including: a respiratory 
disturbance index (RDI) > 5 events/h of sleep62; mixed plus 
obstructive apnea index > 2 events/h of sleep13; and AHI > 2 
events/h unless > 25% of events were central.63 In the current 
study, SDB was identified by experienced pediatric sleep physi-
cians rather than by defined PSG or clinical criteria. It would be 
unethical to withhold treatment from infants with SDB given 
the data supporting a negative impact of SDB on neurobehav-
ioral function and quality of life in children.17,64-71 In addition, 
several studies have demonstrated important comorbidities in 
infants with SDB, including growth and feeding problems,21,72 
neurological and behavioral abnormalities73-75 and evidence that 
treatment of SDB improves short-term outcomes.21,72 Given this 
context, the current study demonstrates that infants with CL/P 
receiving clinical care for SDB by pediatric sleep physicians 
through a multidisciplinary cleft clinic have overall normal 
neurocognitive function, quality of life, and growth at 3 years 
of age compared to reference standards but with some impair-
ment compared to control children. Further work is needed to 
develop criteria to aid in defining clinically significant abnor-
malities in infants with SDB and determining whether earlier 
intervention can improve long-term outcomes.

In summary, the results from the present study support an 
association between SDB in early infancy and neurocognitive, 
quality of life, and growth outcomes at 3 years of age. This 
information supports the need for greater attention to sleep and 
breathing abnormalities in infants with CL/P. In addition, there 
is a need for further work examining SDB across infancy to 
better understand the implications for treatment choices with 
respect to long-term outcomes.
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