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Fractalkine/CX3CL1, the onlymember of theCX3C chemokine family, exists as amembrane-anchoredmolecule aswell as in soluble
form, each mediating different biological activities. It is constitutively expressed in many hematopoietic and nonhematopoietic
tissues such as endothelial and epithelial cells, lymphocytes, neurons, microglial osteoblasts. The biological activities of CX3CL1
are mediated by CX3CR1, that is expressed on different cell types such as NK cells, CD14+ monocytes, cytotoxic effector T cells,
B cells, neurons, microglia, smooth muscle cells, and tumor cells. The CX3CL1/CX3CR1 axis is involved in the pathogenesis of
several inflammatory cancer including various B cell malignancies. In tumors the interaction between cancer cells and cellular
microenvironment creates a context that may promote tumor growth, increase tumor survival, and facilitate metastasis. Therefore
the role of the CX3CL1/CX3CR1 has attracted interest as to the development of potential therapeutic approaches. Here we review the
different effects of the CX3CL1/CX3CR1 axis in several inflammatory and neurodegenerative diseases and in cancer, with emphasis
on human B cell lymphomas.

1. Introduction

Chemokines are small cytokines known for their ability to
induce migration of cells such as lymphocytes, dendritic cells
(DC), macrophages, and stem cells. Based on the cellular
context and the site of expression, chemokines can be divided
into “inflammatory chemokines,” that are synthesized and
promote recruitment of cells during inflammation and
“homeostatic chemokines,” that are constitutively expressed
in specific tissueswhere they regulate leukocyte homing [1, 2].
Some chemokines participate both in immune defense dur-
ing inflammation and in physiological trafficking of resting
leukocytes [1, 2]. Moreover, some inflammatory chemokines
are crucial components of tumor microenvironment and
have a pivotal role in tumor progression, enhancing cancer
cell migration to distant organs [3].

Chemokines are structurally characterized by a
“chemokine scaffold,” that is, a conserved protein structure,
dependent on two disulfide bonds linking cysteine residues.
Based on the relative position of their cysteine residues

located in the N-terminal region, chemokines can be divided
into four subfamilies, CXC, CC, C, and CX3C [1, 2]. CXC
chemokines can be further subdivided depending on the
presence or absence of an ELR (Glu, Leu, andArg) amino acid
motif. ELR+ CXCchemokines attract neutrophils and possess
angiogenic properties, whereas ELR− CXC chemokines are
angiostatic and attract T and B lymphocytes as well as
natural killer (NK) cells [4]. CC chemokines promote the
migration of monocytes, DC, lymphocytes, eosinophils, and
basophils. Lymphotactin/XCL1 and fractalkine/CX3CL1 are
the only members of the C and CX3C chemokine families,
respectively. Lymphotactin attracts T and B lymphocytes and
NK cells, whereas fractalkine attracts predominantly T and
B lymphocytes, NK cells, and monocytes [1, 2].

Chemokines mediate their functions through binding to
seven transmembrane G-protein-coupled receptors defined
as CXCR, CCR, CR, or CX3CR [1, 2]. Furthermore, some
chemokines bind to multiple receptors and some receptors
recognize more than one chemokine.
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CX3CL1 consists of a chemokine domain linked to a
transmembrane domain via an extended mucin-rich stalk of
an extracellular domain. The chemokine is synthesized as
membrane-anchored form and may be cleaved in the soluble
form by different metalloprotease. [5, 6]. The membrane-
anchored CX3CL1 form functions as an adhesion molecule
promoting retention of leucocytes to endothelial cells under
physiological flow conditions [7]. The soluble CX3CL1 form
is released following constitutive shedding operated by A
Disintegrin And Metalloprotease (ADAM)10, whereas shed-
ding under inflammatory conditions is mediated primarily
by ADAM17 [8, 9]. CX3CL1 cleavage is also mediated by
the lysosomal cysteine protease Cathepsin S [10]. Soluble
CX3CL1 resembles a conventional chemokine exhibiting
efficient chemotactic activity for humanmonocytes, NK cells,
T cells, dendritic cells and, as demonstrated by our group, for
a subset of germinal center B cells [5, 11]. CX3CL1 expression
has been reported in many cell types of hematopoietic or
nonhematopoietic origin, such as endothelial and epithelial
cells, lymphocytes, neurons, microglial cells, and osteoblasts
[12].

CX3CL1-driven chemotaxis and adhesion are mediated
by CX3CR1 that is expressed on different cell types such
as NK cells, CD14+ monocytes, cytotoxic effector T cells, B
cells, neurons, microglia, smooth muscle cells, and tumor
cells [11, 13–15]. CX3CL1 is involved in leukocyte recruitment
associated with numerous inflammatory disorders and in
tumorigenesis process inwhich the chemokine showpro- and
antitumoral properties. The different roles of CX3CL1 make
it an attractive candidate for the development of therapeutic
strategies.

This review will summarize the multiple roles of the
CX3CL1/CX3CR1 axis in the pathogenesis of inflammation
and cancer.

2. CX3CL1 in Inflammation

Chemokines and adhesion molecules provide signals for
trafficking, adhesion, and migration of leukocytes at sites
of injury and inflammation [16]. In this context, CX3CL1
promotes the accumulation of immune cells that express
CX3CR1, generating a vascular gateway for cytotoxic effector
cells and being detrimental in several inflammatory diseases
[6, 17, 18].

Increased levels of soluble CX3CL1 have been detected in
serum, bronchoalveolar lavage fluids, and supernatants from
airway smooth muscle cells, lung endothelium, and airway
epithelium of allergic asthma and rhinitis patients. Both high
secretion of CX3CL1 and upregulation of CX3CR1 function
by naı̈ve and memory CD4+ T cells play a critical role in the
recruitment of inflammatory cells after allergen stimulation
[19, 20]. It has been demonstrated that transfer of CD4+ T
cells fromwild typemice into CX3CR1 deficientmice restores
the clinical features of asthma, highlighting the therapeutic
potential of the CX3CL1/CX3CR1 axis [21].

Rheumatoid arthritis (RA) is a chronic joint disease
characterized by massive infiltration of inflammatory cells
into multiple joints, leading to hyperplasia of synovium and

destruction of cartilage and bone [22]. Previous studies have
defined the role of CX3CL1 in pathogenesis of RA and other
chronic diseases such as polymyositis and dermatomyosi-
tis [23–26]. CX3CL1 has been detected on fibroblast-like
synoviocytes and endothelial cells in RA synovium where
it contributes to the accumulation of CX3CR1+ T cells,
macrophages, and dendritic cells. Following interaction of
CX3CL1 with its receptor, these latter inflammatory cells
adhere to endothelial cells, migrate into the synovium, and
secrete cytokines [23–26]. In a murine model of collagen-
induced arthritis (CIA), inhibition of CX3CL1 attenuated
clinical symptoms, ameliorated histopathological features,
and reduced joint infiltration of inflammatory cells [27].

Similarly to human RA, polymyositis and dermatomyosi-
tis are characterized by chronic muscle inflammation with
infiltration of CX3CR1+ cytotoxic T cells and macrophages,
recruited by CX3CL1 expressing vascular endothelial cells
and other inflammatory cells [28]. In experimental autoim-
mune myositis, the treatment with anti-CX3CL1 antibody
reduced the numbers of muscle infiltrating cells and ame-
liorated histological inflammatory lesions pointing to the
potential therapeutic role of CX3CL1 inhibition and/or
CX3CL1/CX3CR1 block in the treatment of RA and inflam-
matory myopathies [28].

Evidence for a pivotal role of CX3CL1 in cardiovas-
cular disease has been provided. Atherosclerosis is a dis-
ease affecting arterial blood vessels as the result of fatty
materials accumulation such as cholesterol [29]. Monocytes-
derived foam cells are the hallmark in both early and
advanced atherosclerotic lesions and evidence indicates that
chemokines play important roles in directing migration of
these cells from the blood to the vessel wall [29, 30]. In this
respect, high levels of CX3CL1 have been found in vascular
smooth muscle cells (VSMCs) of coronary atherosclerotic
plaques, whereas mononuclear cells and vascular endothe-
lium express CX3CR1 [31, 32]. The CX3CL1 membrane-
bound form promotes cell-cell interactions, whereas the
soluble form, cleaved by the cysteine protease Cathepsin
S and expressed by VSMCs, regulates the adhesion and
capture of circulating monocytes to the sites of atherogenesis
[31]. Genetic deletion of CX3CL1 or its cognate receptor
dramatically reducesmonocyte recruitment in the artery wall
and the subsequent development of lesions inmurinemodels
of atherosclerosis, suggesting that the chemokine/receptor
axis represents an attractive therapeutic target for clinical
trials in cardiovascular disease [33]. Recent studies in mice
show that treatment with a CX3CR1 antagonist induces
potent inhibition of atherosclerotic lesions [34].

An important role for the CX3CL1/CX3CR1 axis has
also been demonstrated in renal diseases such as glomeru-
lonephritis, tubulointerstitial nephritis, pyelonephritis, and
renal allograft rejection. Upregulation of CX3CL1, expressed
preferentially on the apicalmembrane of renal tubular epithe-
lial cells, has been reported in glomerulonephritis where
CX3CL1 acts as a chemoattractant and adhesion molecule
[35, 36]. Indeed the apical CX3CL1, firmly anchored to
the membrane, facilitates recruitment and retention of the
majority of CX3CR1+ leukocytes that infiltrate the kidney
during glomerulonephritis or other nephropathies [35, 36].
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Table 1: Role of CX3CL1/CX3CR1 axis in inflammation and neurodegenerative diseases.

Allergic asthma and rhinitis CX3CL1 increases recruitment of CX3CR1+ CD4+ T cells in the airways

Rheumatoid arthritis CX3CL1 contributes to the accumulation in the synovium of T cells, macrophages, and dendritic
cells expressing CX3CR1

Atherosclerotic disease (i) Membrane-bound CX3CL1 promotes cell to cell interactions
(ii) Soluble CX3CL1 directs migration of CX3CR1+ monocytes from the blood to the vessel wall

Renal diseases CX3CL1 supports recruitment and retention of CX3CR1+ leukocytes infiltrating the kidney

Chronic liver disease (i) CX3CL1 facilitates recruitment and adhesion of CX3CR1+ inflammatory cells to the liver
(ii) CX3CL1 supports paracrine stimulation of hepatic stellate cells expressing CX3CR1

Age-related macular degeneration Dysfunction in CX3CL1/CX3CR1 signaling promotes accumulation of inflammatory macrophages
and microglia cells

Crohn’s disease CX3CL1 sustains homeostasis of macrophages of lamina propria expressing CX3CR1

Alzheimer’s disease (i) CX3CR1 deficiency enhances 𝛽-amyloid deposition and microglia activation
(ii) In other models CX3CR1 depletion results in a reduction of A𝛽-deposition

Parkinson’s disease
(i) Soluble CX3CL1 exhibits neuroprotective properties decreasing microglial activation and
proinflammatory cytokine release
(ii) Membrane-bound CX3CL1 is not neuroprotective but mediates proinflammatory functions

HIV infection
(i) Soluble CX3CL1 inhibits apoptosis of hippocampal neurons induced by neurotoxic viral proteins
(ii) CX3CL1 is involved in neuronal damage through its activity on microglia that secrete
proinflammatory cytokines

Both CX3CL1 and CX3CR1 are upregulated in patients
with chronic liver disease and associated with the severity
of liver fibrosis. An increased expression of ADAM10 and
ADAM17 by hepatic stellate cells (HSC) has been demon-
strated in these patients. Shedding of CX3CL1 by the two
metalloproteases facilitates the recruitment and adhesion of
CX3CR1+ inflammatory cells and the paracrine stimulation
of HSC in liver disease [37, 38].

The CX3CL1/CX3CR1 axis plays also important roles in
inflammatory bowel diseases. In patients with Crohn’s dis-
ease, there is a significant increase of CX3CL1 mRNA expres-
sion in inflamed lesions compared to noninflamed colonic
mucosa suggesting a relevant impact of this chemokine in
intestinal inflammation [39]. Experiments in mice demon-
strate that intestinal lamina propria (LP) macrophages
express high levels of CX3CR1 [40].Thus, deletion of CX3CR1
resulted in a significant reduction ofmacrophage recruitment
to LPwith a decreased translocation of bacteria tomesenteric
lymph nodes and their ability to take up pathogens. These
findings point to CX3CR1 as a specific marker for LP
macrophages and a critical component in maintaining LP
macrophage homeostasis [40].

In recent years, increasing evidence for an inflammatory
component in age-related macular degeneration has been
demonstrated. Under physiological conditions, CX3CL1 is
constitutively expressed in retina and retinal pigment epithe-
lium, whereas microglia cells express CX3CR1 [41]. Dysfunc-
tion in CX3CL1/CX3CR1 signaling leads to accumulation in
the subretinal space of both inflammatory macrophages and
microglia cells that participate to the development of retinal
degeneration [42].

Recently, two common single-nucleotide polymorphisms
(SNPs) located in the open reading frame of the human
CX3CR1 gene have been described, namely T280M and

V249I [43]. These two variants are in strong linkage disequi-
librium. In the T280M variant, a methionine replaces a thre-
onine residue whereas a valine is replaced by an isoleucine
in the V249I variant. The frequencies of these two variants
are significantly associated to a lower risk of inflammatory
diseases such as atherosclerosis, coronary artery disease,
susceptibility to human immunodeficiency virus infection,
age-related macular degeneration, and Crohn’s disease [44–
49].

Table 1 summarizes the role of CX3CL1/CX3CR1 axis in
the different inflammatory disorders.

3. Neuroinflammatory versus Neuroprotective
Roles of CX3CL1

CX3CL1 is abundantly expressed by neurons in the central
nervous system (CNS), where it regulates the communication
between neurons, glia, andmicroglia cells, sustaining the nor-
mal microglial activity through interaction with its receptor.
CX3CR1 is also highly expressed bymicroglia, astrocytes, and
hippocampal neurons in the CNS [50, 51]. Thus, CX3CL1
serves as a neuronal regulatory protein controlling microglia
activation under physiological conditions. Depending on
type ofCNS injury, theCX3CL1/CX3CR1 axis plays a different
role in neurodegeneration versus neuroprotection.

Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder characterized by alteration of neurons and
loss ofmemory and cognitive function.The pathological hall-
marks of AD aremassive deposits of amyloid beta (A𝛽) in the
brain leading tomicroglia activation andneuroinflammation.
Proinflammatory chemokines, cytokines, and neurotoxins
contribute to neuronal degeneration observed in AD. Inmice
overexpressing amyloid precursor protein, CX3CR1 depletion
results in a reduction of A𝛽 deposition and amelioration
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of the disease [52, 53]. In contrast, other experimental AD
models show that CX3CR1 deficiency enhances microglia
activation and worsens memory and cognitive functions [54,
55] suggesting that this discrepancy may be related to the
different mouse models used in these studies.

Depletion of dopaminergic neurons in the substantia
nigra characterizes Parkinson’s disease (PD). Recent evidence
suggests that microglia activation is a key component con-
tributing to this dopaminergic degeneration [56, 57]. High
CX3CL1 levels correlate with the progression and severity
of the disease as demonstrated in CX3CL1 or CX3CR1
deficient mice which show an increased brain neurodegen-
eration [58, 59]. In a mouse model of PD, the two forms
of endogenous CX3CL1 have been detected with different
effects on disease progression. The soluble form exhibits
neuroprotective capability since it decreases dopaminergic
neuron loss, reduces impairment of motor coordination,
and ameliorates microglial activation and proinflammatory
cytokine release. In contrast, the membrane-bound form is
not neuroprotective butmediates proinflammatory functions
[58]. Further studies are necessary to expand the knowledge
on the role of both forms in in vivo models of neuroinflam-
mation and neurodegeneration.

Human immunodeficiency type I (HIV) infection causes
HIV-associated neurocognitive disorders (HAND) including
HIV-dementia [60]. The above-discussed balance between
neuroprotective and neurotoxic roles of CX3CL1 is also
observed in HIV dementia. On the one hand, CX3CL1
has a clear protective effect since its upregulation and
secretion inhibit apoptosis of hippocampal neurons induced
by neurotoxic viral proteins [61, 62]. On the other hand,
CX3CL1 is involved in neuronal damage through its activity
on microglia cells that secrete proinflammatory cytokines.
Moreover, microglia and macrophages expressing CX3CR1
are in turn activated and recruited to the neuronal injury sites,
thus amplifying the inflammatory response [51, 63].

The role of CX3CL1/CX3CR1 axis in the different neuro-
logical disease is summarized in Table 1.

4. CX3CL1/CX3CR1 in Cancer

The role of the CX3CL1/CX3CR1 axis in cancer pathogenesis
has long been discussed. The expression of CX3CR1 in NK
cells and some T cells subsets has provided the rationale
to exploit the role of the chemokine/receptor in cancer
immunotherapy setting the stage for potential therapeutic
approaches.The dual function of CX3CL1 as chemoattractant
for leukocytes and adhesion molecule for tumor cells that
express the receptor may explain the discrepancies reported
in the literature regarding the tumorigenesis process [17].

Recently, expression and function of CX3CL1 and
CX3CR1 have been demonstrated in glioma tumors irrespec-
tively of their histotype and clinical severity. Gliomas are
the most common brain tumor in humans, characterized
by high invasion rate and diffuse infiltration of the CNS.
Gliomas include heterogeneous tumors classified according
to the pathological characteristics as astrocytomas, oligoden-
drogliomas, and glioblastoma [64, 65]. CX3CL1 negatively

regulates glioma cell invasiveness by promoting tumor cell
aggregation when expressed as transmembrane protein. The
induction of cell to cell contact by CX3CL1 prevented detach-
ment of tumor cells from the tumor aggregate that is required
for the invasion process [64, 65]. Treatment of glioma cells
with recombinant transforming growth factor (TGF)-beta
1 reduced CX3CL1 expression at mRNA level, facilitating
glioma cell detachment anddispersion [66].Moreover, Erreni
and colleagues demonstrated that glioblastoma cancer stem
cells and progenitor cells express both CX3CL1 and CX3CR1,
indicating that this axis operates early in tumorigenesis
process [65].

Neuroblastoma (NB) is the most common extracranial
tumor of childhood that originates from the neural crest
and presents with metastases at diagnosis in about half
of patients. This tumor regresses spontaneously in infant,
whereas children older than one year have poor prognosis.
The bone marrow is the preferred site of NB metastases,
but also bone, liver, and skin are frequently involved [67,
68]. Previous studies have demonstrated that several human
NB cell lines express functional CX3CR1 and CX3CL1.
Soluble CX3CL1 stimulates NB cells that express CX3CR1
to transmigrate through CX3CR1+/CX3CL1+ human bone-
marrow endothelium, suggesting a prometastatic effect of
the chemokine/receptor axis [69]. In other studies, delivery
of the CX3CL1 gene into NB cell lines induces an effective
antineuroblastoma immune response mediated by NK cells
andT lymphocytes.This chemokine gene therapy is amplified
by anti-GD2 antibody/IL-2 fusion protein and may provide a
promising approach for neuroblastoma [70].

Tumors of nonneuronal origin, for example, prostate,
pancreas, and breast cancer, show overexpression of CX3CR1
that regulates adhesion and migration of tumor cells to
metastatic sites [15]. In prostate cancer, Shulby and colleagues
demonstrated in vitro that CX3CL1 and its receptor direct
prostate cancer cells to the bonemarrow and guide their pref-
erential migration towards human osteoblasts. Bone marrow
endothelial cells express the membrane form of CX3CL1, that
is cleaved by osteoblasts and released as solublemolecule able
to attract prostate cancer cells [71]. Not only osteoblasts but
alsomesenchymal stromal cells secrete soluble CX3CL1 in the
acellular fraction of bone marrow. This generates a gradient
that attracts CX3CR1-bearing cells from the blood to the bone
marrow [72]. These findings support the rationale for the use
of CX3CR1, CX3CL1, andmetalloproteases responsible for its
cleavage as potential therapeutic targets for prostate cancer.

Pancreatic ductal adenocarcinoma (PDAC) represents a
highly aggressive tumor characterized by rapid progression
and chemoresistance.The peculiarity of this tumor is tropism
for local peripheral nerves that is amajor cause of local tumor
recurrence [73]. Tumor cells from PDAC patients strongly
expressed CX3CR1 that mediates migration to CX3CL1 con-
stitutively expressed by neural cells [74]. The high frequency
of CX3CR1 and the marked perineural invasion in PADC
patients supported the concept that CX3CR1 may have
an important role in the spreading of pancreatic cancer
cells along peripheral nerves and in predicting early tumor
relapse after surgery. To confirm this hypothesis, Marchesi
and colleagues demonstrated that a tumor infiltrated in
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peripheral nerves was present only in mice injected with
CX3CR1-transfected PADC cells [74]. In conclusion, the
CX3CR1/CX3CL1 axis could represent a potential therapeutic
approach using antagonists to CX3CR1 capable to inhibit
tumor neurotropism in PADC.

In epithelial ovarian carcinoma (EOC) CX3CL1 is pro-
duced by epithelial cells and promotes malignant cell prolif-
eration [75]. CX3CR1 is virtually absent in normal ovarian
surface epithelium and accumulates during the course of
tumorigenesis process [76, 77]. The interaction between
CX3CL1 and CX3CR1 facilitates cell migration and cell
adhesion between EOC cells and peritoneal mesothelial cells,
contributing to EOC cell proliferation [77].

Breast cancer is the most common malignancy among
women. Metastasis is the main cause of morbidity and
mortality associated with this tumor [78, 79]. Several
experimental models have analyzed the influence of the
CX3CR1/CX3CL1 axis in the biology of breast cancer and
the possible therapeutic targeting of CX3CL1. Normal and
malignant breast tissues express CX3CR1 but its overex-
pression increases the ability of tumor cells to migrate to
skeleton and brain where bone stromal cells and neurons
release soluble CX3CL1 [79, 80]. These findings support the
protumoral role of CX3CR1 in breast cancer dissemination.
In this view, CX3CL1−/− transgenic mice inoculated with
cancer cells show a strong reduction of skeletal dissemination
compared to wild-type animals [79]. In addition, relation-
ships between CX3CL1 expression and patient prognosis
are demonstrated in breast cancer. High levels of CX3CL1
correlate with good prognosis and are identified as prognostic
factors for disease survival [81]. These antitumoral effects
are due to immunological mechanisms since the chemokine
enhances the recruitment of CD8+ T cells, CD1a+, DCs,
and NK cells, inducing both innate and adaptive immunity
[81]. Therefore, CX3CL1 expression could be considered an
essential biomarker for predicting prognosis and identify
patients eligible for immunomodulating therapy in breast
cancer.

CX3CL1 is considered a prognostic biomarker also for
patients with colorectal cancer and hepatocellular carcinoma.
Colorectal cancer (CRC) is the second cause of cancer death
since one half of all patients develop metastasis especially
in the liver and lung [82]. High CX3CL1 expression has
been found to be a marker of better prognosis in CRC
[83]. In murine models soluble CX3CL1, produced by colon
cancer cells, drastically reduced their metastatic potential
and growth in the target organs through immune mech-
anisms [84]. The antitumor effects of CX3CL1 are mostly
related to attraction of cytotoxic effector T lymphocytes and
NK cells.

Hepatocellular carcinoma (HCC) usually follows chronic
infectious hepatitis resulting in liver fibrosis [85]. Expression
of both CX3CL1 and CX3CR1 influences the clinical features
and prognosis in patients with HCC since high expression of
the chemokine/receptor axis correlates with better prognosis
and tumor differentiation [86]. In a murine model, Tang
and colleagues showed that transfer of the CX3CL1 gene
into tumor cells elicited tumor-specific cytotoxic T cells and

increased production of IL-2 and IFN-𝛾 in tumor tissue
leading to inhibition of HCC growth [87].

In this respect, CX3CL1 may be considered a chemokine
suitable for immunoprevention or gene therapy in colorectal
cancer, hepatocellular carcinoma, and, more recently, in
gastric adenocarcinoma where its expression correlates with
induction of both innate and adaptive immunity [88].

In conclusion, two different mechanisms operate in can-
cer, leading to protumoral or antitumoral effects of CX3CL1.
On the one hand, CX3CL1 stimulates a strong immune
response with the recruitment of NK cells and tumor-specific
T cells. On the other hand, CX3CL1 plays a pivotal role in
tumor angiogenesis, as well as in adhesion and migration of
cancer cells, reinforcing their ability to spread and metasta-
size. Table 3 summarizes the role of CX3CL1/CX3CR1 axis in
cancer.

5. CX3CL1/CX3CR1 Axis in
B Cell Malignancies

We have previously demonstrated that CX3CL1 is expressed
on human näıve, germinal center (GC), and memory B cells,
themajor B cell subsets from secondary lymphoid tissues [11].
In these sites, soluble CX3CL1 produced by T follicular helper
and follicular dendritic cells was found to control both the
trafficking of human CX3CR1+ centrocytes present in the GC
light zone and their in vivo survival and differentiation [11].

Recently, a novel role for CX3CR1/CX3CL1 axis has
been also delineated for B cell malignancies. Our group
demonstrated the involvement of CX3CR1 in the crosstalk
between neoplastic B cells and tumor microenvironment of
patients with chronic lymphocytic leukemia (B-CLL) [89]. B-
CLL cells were found to coexpress CX3CR1 and membrane-
anchored CX3CL1 on the cell surface and constitutively
release the soluble form of the chemokine. Only a fraction of
B-CLL samples was found to be attracted in vitro by CX3CL1.
Leukemic B cells upregulated CXCR4 upon incubation with
CX3CL1 and this was paralleled by increased chemotaxis
to CXCL12. Nurse-like cells generated from CLL patient
blood coexpressed CX3CR1 and CX3CL1, but only a small
proportion of them migrated in vitro to CX3CL1 that is
not secreted by nurse-like cells. Based upon these findings,
we have proposed a model whereby the CX3CR1/CX3CL1
axis may contribute to interactions between CLL cells and
tumor microenvironment by increasing CXCL12-mediated
attraction of leukemic cells to NLC and promoting directly
adhesion of CLL cells to NLC [89].

In studies by other groups, CX3CR1 expression was
investigated in different types of B cell lymphomas by
reverse transcriptase-polymerase chain reaction (RT-PCR),
immunohistochemistry, and flow cytometry. B cell lym-
phomas include about 80% of the malignant lymphomas
and comprise different subtypes. In particular, diffuse large
B cell lymphoma (DLBCL) is the most frequent subtype,
representing 30%–35% of all non-Hodgkin lymphomas
(NHL). DLBCL has predominant centroblastic morphology,
is highly proliferating and invades the GC subverting the
physiological microenvironment. Follicular lymphoma (FL)
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Table 2: Expression and function of CX3CL1/CX3CR1 axis in human B cell lymphomas.

CX3CR1 (mean% ± SD) CX3CL1 (mean% ± SD) CHEMOTAXIS assay (n∘ migrated cases/n∘ cases)
FL 47.2 ± 12 48.3 ± 9 0/10
MCL 53.8 ± 10 58.9 ± 11 4/14
MZL 64 ± 8 40.2 ± 10 0/9
Expressions of CX3CR1 and CX3CL1 was analyzed on B cells from FL, MCL, or MZL patients by flow cytometry. The results (columns 2 and 3) are expressed
as mean percentage positive cells ± SD. Chemotaxis of FL, MCL, and MZL cells was investigated in a transwell assay. In the right column the number (n∘) of
migrated cases to 300 ng/mL CX3CL1 is shown, in respect to the total number of cases analyzed.

Table 3: Role of CX3CL1/CX3CR1 axis in cancer.

Gliomas CX3CL1 negatively regulates glioma cell invasiveness by promoting aggregation of CX3CR1+
tumor cells

Neuroblastoma (NB)

(i) Soluble CX3CL1 stimulates CX3CR1+ NB cells to transmigrate through CX3CR1+/CX3CL1+
human bone-marrow endothelium
(ii) Deletion of CX3CL1 gene into NB cell lines induces an antitumor immune response mediated
by NK cells and T lymphocytes

Prostate cancer Soluble CX3CL1 attracts CX3CR1+ prostate cancer cells to the bone marrow and guides their
preferential migration towards human osteoblasts

Pancreatic ductal
adenocarcinoma (PDAC) CX3CR1 mediates migration of PDAC cells to CX3CL1 constitutively expressed by neural cells

Epithelial ovarian carcinoma
(EOC)

CX3CL1/CX3CR1 axis facilitates cell migration and cell adhesion between EOC cells and
peritoneal mesothelial cells

Breast cancer
(i) CX3CR1 contributes to tumor metastasis to skeleton and brain where bone stromal cells and
neurons release soluble CX3CL1
(ii) CX3CL1 induces both innate and adaptive immunity and correlates with good prognosis

Colorectal cancer Soluble CX3CL1, produced by colon cancer cells, attracts cytotoxic effector T lymphocytes and
NK cells showing antitumor effects

Hepatocellular carcinoma CX3CL1/CX3CR1 axis elicits tumor-specific cytotoxic T cell response and correlates with good
prognosis

Gastric adenocarcinoma CX3CL1 promotes both innate and adaptive immunities
B-chronic lymphocytic leukemia
(B-CLL)

CX3CL1/CX3CR1 axis, coexpressed on B-CLL cells, is involved in the interaction between
leukemic cells and tumor microenvironment

B cell lymphomas CX3CL1/CX3CR1 axis, coexpressed on lymphoma cells, may be involved in the interaction
between lymphoma cells and tumor microenvironment

has centrocytic and centroblastic components in different
ratios depending on tumor grade and, compared to DLBCL,
shows lower proliferative activity and slower invasion of GC
by tumor cells. Both DLBCL and FL arise commonly in
adults and rarely in children or adolescents [90]. Mantle cell
lymphoma (MCL) is a relatively rare type of NHL that dis-
plays an aggressive course with a continuous relapse pattern
[91]. Marginal zone lymphomas (MZLs) are indolent B cell
lymphomas with variable symptoms related to lymphoma
location [92]. In particular, extranodal MZLs of mucosa-
associated lymphoid tissue (MALT) arise in gastrointesti-
nal tract but may affect every organ in the body. MALT
lymphoma infiltrates B cell follicles in the Peyer’s patch
marginal zone, spreading in the surrounding tissue, and
show the same cytological features and immunophenotype
as MZLs [93]. DLBCL, FL, MCL, and MALT lymphoma
were found to express CX3CR1 at mRNA and protein levels
suggesting a functional role for this receptor in the interaction
between lymphoma cells and tumor microenvironment [94,
95]. CX3CR1 expression in human FL, MCL, and MZL has

been confirmed by our group (Table 2) (unpublished data). In
addition, we have demonstrated for the first time that freshly
isolated malignant B cells express the membrane-bound
form of CX3CL1 (Table 2) (unpublished data). To investigate
the functional activity of CX3CR1, chemotaxis experiments
utilizing a transwell assay were performed in vitro. One-
third of MCL samples analyzed in this study migrated to
soluble CX3CL1. In contrast, the chemokine did not induce
locomotion of FL andMZL cells (Table 2) (unpublished data).

These preliminary results provide evidence that lym-
phoma B cells show a different migratory behavior in
response to CX3CL1 compared to their normal counterparts.
Thus, FL cells, which are of GC origin, did notmigrate in vitro
to soluble CX3CL1 that, in contrast, was found by our group
to be chemotactic for normal GC B cells [11]. In contrast, a
minority of MCL cell fractions migrated to soluble CX3CL1
whereas their normal counterparts, that is, naı̈ve B cells, did
not [11].

The role of CX3CL1/CX3CR1 axis in B cell malignancies
is shown in Table 3.
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6. Translational Perspectives

The CX3CL1/CX3CR1 axis plays an important function in
the pathophysiology of several inflammatory, infectious, and
neurological processes and in various forms of cancers.
As apparent from this review, the CX3CL1/CX3CR1 axis
promotes inflammation and tumor growth in the majority of
disease models discussed. Therefore, therapeutic targeting of
this axis represents a promising translational development. In
principle, this can be achieved using blocking antibodies to
or chemical antagonists of CX3CR1. CX3CL1 shedding may
be blocked using chemical antagonists of ADAM10/ADAM
17 or Cathepsin S, although this approach is far from being
selective.

So far, no clinical grade CX3CR1 antagonists of any kind
have been developed. However, some chemical antagonists
have been synthesized that hold promise for future studies.
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