
Research Article
Towards the Novel Reasoning among Particles in PSO by
the Use of RDF and SPARQL

Iztok Fister Jr.,1 Xin-She Yang,2 Karin LjubiI,3 Dušan Fister,1

Janez Brest,1 and Iztok Fister1

1 University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor, Slovenia
2Middlesex University Hendon Campus, London NW4 4BT, UK
3University of Maribor Faculty of Medicine, Taborska 8, 2000 Maribor, Slovenia

Correspondence should be addressed to Iztok Fister Jr.; iztok.fister2@uni-mb.si

Received 15 January 2014; Accepted 26 February 2014; Published 27 March 2014

Academic Editors: N. Chakraborti, P. Melin, and F. Neri

Copyright © 2014 Iztok Fister Jr. et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The significant development of the Internet has posed some new challenges andmany new programming tools have been developed
to address such challenges. Today, semantic web is a modern paradigm for representing and accessing knowledge data on the
Internet.This paper tries to use the semantic tools such as resource definition framework (RDF) andRDFquery language (SPARQL)
for the optimization purpose. These tools are combined with particle swarm optimization (PSO) and the selection of the best
solutions depends on its fitness. Instead of the local best solution, a neighborhood of solutions for each particle can be defined
and used for the calculation of the new position, based on the key ideas from semantic web domain. The preliminary results by
optimizing ten benchmark functions showed the promising results and thus this method should be investigated further.

1. Introduction

Searching for the optimal solutions of the hardest real-
world problems is an active field especially in computer
science. An eternal desire of computer scientists is to develop
a general problem solver that will be able to cope with
all classes of real-world problems. Unfortunately, the most
of the so-called clever algorithms are subject of the No
Free Lunch Theorem [1]. Regarding this theorem, if one
algorithm is good on one class of problems, it does not mean
that it will also be good on the other classes of problems.
Especially, three domains of algorithms have recently been
appeared in the role of general problem solver, as follows:
Artificial Intelligence (AI) [2], evolutionary algorithms (EA)
[3], and Swarm Intelligence (SI) [4].While the formermimics
operating a human brain, the latter domains are inspired by
nature. Evolutionary algorithms are inspired by Darwinian
principles of natural evolution [5] according to which the
fittest individuals have the greater possibilities for survival
and pass on their characteristics to their offspring during a
process of reproduction.

Nowadays, evolutionary computation (AC) [6] captures
the algorithms involved in evolutionary domain and it con-
siders genetic algorithms (GA) [7], genetic programming [8],
evolution strategies (ES) [9], evolutionary programming [10],
and differential evolution (DE) [11–13]. The mentioned algo-
rithms differ between each other according to representation
of individual. As a result, these kinds of algorithms have been
applied to various optimization, modeling, and simulation
problems.

However, this paper concentrates on the SI domain that
is concerned with the design of multiagent systems with
applications, for example, in optimization and in robotics [4].
Inspiration for the design of these systems is taken from the
collective behavior of social insects, like ants, termites, and
bees, as well as from the behavior of other animal societies,
like flocks of birds or schools of fish. Recently, there exist a
lot of different algorithms from this domain that is still being
developed. Let usmention only themost importantmembers
of the SI algorithms, as follows: the particle swarm optimiza-
tion (PSO) [14], the firefly algorithm (FA) [15, 16], cuckoo
search [17], the bat algorithm (BA) [18, 19], and so forth.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 121782, 10 pages
http://dx.doi.org/10.1155/2014/121782

http://dx.doi.org/10.1155/2014/121782

2 The Scientific World Journal

The PSO is population-based algorithm that mimics
movement of the swarm of particles (e.g., birds) by flying
across a landscape, thus searching for food. Each particle
in PSO represents the candidate solution of the problem to
be solved. Position of the particle consists of the problem
parameters that are modified when the virtual particle is
moved in the search space. The motion depends on the
current particle position and the current position of local best
and global best solutions, respectively.The local best solutions
denote the best solutions that are whenever arisen on the
definite location in the population, while the current best is
the best solution whenever found in the whole population.
This solution has the main impact on the direction of moving
the swarm towards the optimal solution. When this solution
is not improved anymore, the population gets stuck into a
local optimum.

Mainly, we focused on the new definition of the neigh-
borhood within the PSO algorithm. In place of the local
best solutions, the neighborhood is defined using the pre-
defined radius of fitness values around each candidate solu-
tion, thus capturing all candidate solutions with the fitness
value inside the predefined virtual radius. The size of this
neighborhood can be variable. Therefore, at least one but
maximum three candidate solutions can be permitted to
form this neighborhood. Although this is not the first try
how to define the variable neighborhood within the PSO
algorithm [20–22], in this paper, such neighborhood is
defined using the Resource Description Framework (RDF),
SPARQL Protocol, and RDF query language (SPARQL) tools
taken from semantic web domain. As a result, the modified
RDF-PSO algorithm was developed. Both web tools are
appropriate for describing and manipulating decentralized
and distributed data. On the other hand, the original PSO
algorithm maintains a population of particles that are also
decentralized in their nature. An aim of using these web
tools was to simulate a distributed population of particles,
where each particle is placed on the different location in the
Internet.

The remainder of this paper is structured as follows.
In Section 2, we outline a short description of the PSO
algorithm.The section is finished by introducing the semantic
web tools, that is, RDF and SPARQL. Section 3 concen-
trates on development of the modified RDF-PSO algorithm.
Section 4 presents the conducted experiments and results
obtained with the RDF-PSO algorithms. Finally, Section 5
summarizes our work and potential future directions for the
future work are outlined.

2. Background

2.1. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO)was one of the first SI algorithms to be presented at
an International Conference onNeuralNetworks byKennedy
and Eberhart in 1995 [14]. PSO is inspired by the social
foraging behavior of some animals such as flocking behavior
of birds (Figure 1) and schooling behavior of fish [23]. In
nature, there are some individuals with better developed
instinct for finding food. According to these individuals, the

Figure 1: PSO.

whole swarm is directed into more promising regions in the
landscape.

The PSO is a population-based algorithm that consists of
𝑁 particles x(𝑡)

𝑖
= (𝑥𝑖1, . . . , 𝑥𝑖𝐷)

𝑇 representing their position
in a𝐷-dimensional search space.These particles move across
this space with velocity k(𝑡)

𝑖
= (V𝑖1, . . . , V𝑖𝐷)

𝑇 according to the
position of the best particle x(𝑡)best towards the more promising
regions of the search space. However, this movement is also
dependent on the local best position of each particle p(𝑡)

𝑖
and

is mathematically expressed, as follows:

k(𝑡+1)𝑖 = k(𝑡)𝑖 + 𝑐1𝑟
(𝑡)

1 (p
(𝑡)

𝑖 − x(𝑡)𝑖)

+ 𝑐2𝑟
(𝑡)

2 (x
(𝑡)

best − x(𝑡)𝑖) , for 𝑖 = 1, . . . , 𝑁,
(1)

where 𝑟(𝑡)1 , 𝑟
(𝑡)
2 denote the random numbers drawn from the

interval [0, 1], and 𝑐1, 𝑐2 are constriction coefficients that
determine the proportion, with which the local and global
best solutions influence the current solution. Then, the new
particle position is calculated according to the following
expression:

x(𝑡+1)𝑖 = x(𝑡)𝑖 + k(𝑡)𝑖 , for 𝑖 = 1, . . . , 𝑁. (2)

Pseudocode of the PSO algorithm is illustrated in
Algorithm 1.

After finishing the initialization in function
“init particles” (Algorithm 1), the PSO algorithm optimizes
a problem by iteratively improving the candidate solution
[24, 25]. Thus, two functions are applied. The function
“evaluate the new solution” calculates the fitness value of
particles obtained after initialization or movement. The
movement according to (1) and (2) is implemented in the
function “generate new solution.”

2.2. RDF. The RDF is an XML application devoted to
encoding, exchanging, and reusing structural metadata [26].
It enables the knowledge to be represented in symbolical
form. Fortunately, this knowledge is human readable. On
the other hand, it is understandable to machines. The
main characteristic of this framework is that RDF data can
be manipulated on decentralized manner and distributed
among various servers on the Internet. Resources identified
by Uniform Resource Identifier (URI) are described in RDF
graphs, where each resource representing the node has many
properties that are associated with the resource using the

The Scientific World Journal 3

Input: PSO population of particles xi = (𝑥𝑖1, . . . , 𝑥𝑖𝐷)
𝑇 for 𝑖 = 1, . . . , 𝑁.

Output:The best solution xbest and its corresponding value 𝑓min = min(𝑓(x)).
(1) init particles;
(2) eval = 0;
(3) while termination condition not meet do
(4) for 𝑖 = 1 to𝑁 do
(5) 𝑓𝑖 = evaluate the new solution(x𝑖);
(6) eval = eval + 1;
(7) if 𝑓𝑖 ≤ 𝑝Best𝑖 then
(8) p𝑖 = x𝑖; 𝑝Best𝑖 = 𝑓𝑖; // save the local best solution
(9) end if
(10) if 𝑓𝑖 ≤ 𝑓min then
(11) xbest = x𝑖; 𝑓min = 𝑓𝑖; // save the global best solution
(12) end if
(13) x𝑖 = generate new solution(x𝑖);
(14) end for
(15) end while

Algorithm 1: Pseudocode of the classic PSO algorithm.

(1) <rdf :RDF>
(2) <rdf :Description rdf :about=“http://www.example.org/Person”>
(3) <ns1:Name>John</ns1:Name>
(4) <ns1:Surname>Smith</ns1:Surname>
(5) </rdf :Description>
(6) </rdf :RDF>

Algorithm 2: Pseudocode of the Person description in RDF.

property-type relationship. This relationship represents an
edge in RDF graph. Thus, attributes may be atomic in nature
(e.g., numbers, text strings, etc.) or represent other resources
with their own properties [27].

The resource, property-type relation, and attribute
present a triplet suitable for presentation in RDF graph. A
sample of this graph is presented in Figure 2, fromwhich two
triples (also 2-triples) can be translated from the diagram.
These 2-triples are written into a RDF database. In general,
the format of this RDF data is serialization of N-triples
obtained from the RDF graphs. For instance, the description
of RDF database obtained from the RDF graph in Figure 2 is
presented in Algorithm 2.

2.3. SPARQL. RDF enables data to be decentralized and dis-
tributed across the Internet. On the other hand, the SPARQL
Protocol has been developed for accessing and discovering
RDF data. SPARQL is an RDF query language that has
its own syntax very similar to SQL queries. The SPARQL
query consists of two parts [28]. The former SELECT clause
identifies the variables that appear in the query results, while
the latter WHERE clause provides the basic patterns that
match against the RDF graph. Usually, these query patterns
consist of three parts denoting the resource name, property-
type relation, and attribute. As a result, the matched patterns
are returned by the query. A sample of SPARQL query is
illustrated in Algorithm 3.

Person

Person: name Person: surname

“Smith”“John”

Figure 2: Diagram illustrates a resource Person in RDF graph. The
resource consists of two atomic attributes “John” and “Smith” that
are assigned to it with relations “PERSON: Name” and “PERSON:
Surname”. In other words, the name of the person is “John”
and the surname of the same person is “Smith.” Note that the
word “PERSON:” denotes a location (URI), where a name space
containing the description of semantics for this relation is located.

As a result of query presented in Algorithm 3, the name
“John” and surname “Smith” are returned.

3. The Modified RDF-PSO Algorithm

Themodified RDF-PSO algorithm implements two features:

(i) using the variable neighborhood of candidate solu-
tions in place of the local best solutions,

4 The Scientific World Journal

(1) SELECT ?name ?surname
(2) WHERE {
(3) <http://www.example.org/Person> PERSON:Name ?name.
(4) <http://www.example.org/Person> PERSON:Surname ?surname.
(5) }

Algorithm 3: Example of SPARQL query.

Input: PSO population of particles xi = (𝑥𝑖1, . . . , 𝑥𝑖𝐷)
𝑇 for 𝑖 = 1, . . . , 𝑁.

Output:The best solution xbest and its corresponding value 𝑓min = min(𝑓(x)).
(1) init particles;
(2) eval = 0;
(3) while termination condition not meet do
(4) for 𝑖 = 1 to𝑁 do
(5) 𝑓𝑖 = evaluate the new solution(x𝑖);
(6) eval = eval + 1;
(7) if 𝑓𝑖 ≤ 𝑓min then
(8) xbest = x𝑖; 𝑓min = 𝑓𝑖; // save the global best solution
(9) end if
(10) N(x𝑖) = {p𝑗 | p𝑗 is neighbor of x𝑖};
(11) x𝑖 = generate new solution(x𝑖,N(x𝑖));
(12) end for
(13) end while

Algorithm 4: The proposed RDF-PSO algorithm.

(ii) using the RDF for describing and SPARQL formanip-
ulating this neighborhood.

The main reason for applying these well-known tools
from the semantic web domain was to develop a distributed
population model that could later be used in other SI
algorithms. On the other hand, we try to use the semantic
web tools for optimization purposes as well. Fortunately,
RDF is suitable tool for describing the distributed population
models, in general. In the PSO algorithm, it is applied for
describing the relations between particles in population. For
our purposes, a relation “is neigbour of ” is important that
each particle determines its neighborhood. Furthermore,
SPARQL is used for determining the particles in its neigh-
borhood. As a result, the RDF-PSO algorithm has been
established, whose pseudocode is presented in Algorithm 4.

The three main differences distinguish the proposed
RDF-PSO with the original PSO algorithm, as follows:

(i) no local best solutions that are maintained by the
RDF-PSO (lines 10–12 omitted in the Algorithm 1),

(ii) defining the neighborhood of candidate solution (line
10 in Algorithm 4),

(iii) generating the new solution according to the
defined variable neighborhood relation (line 11 in
Algorithm 4).

The relation N(x𝑖) = {x𝑗 | x𝑗 is neighbor of x𝑗} (line 10
inAlgorithm 4) is defined according to the following relation:

if abs (𝑓 (𝑥𝑗) − 𝑓 (𝑥𝑖)) ≤ 𝑅 then x𝑗 ∈N (x𝑖) , (3)

where radius 𝑅 defines the necessary maximum fitness dis-
tance of two candidate solutions that can be in neighborhood.
In fact, this parameter regulates the number of candidate
solutions in the neighborhood.

Here, the radius is expressed as 𝑅 = ∑
𝑁

𝑖=1 |𝑓(x𝑖)|/√𝑁.
Indeed, the neighborhood captures all solutions with the
fitness differences less than the radius 𝑅. Typically, when the
radius 𝑅 is small, the size of neighborhood can also be small.
However, this assertion holds if the population diversity is
higher enough. When the particles are scattered across the
search space, no particles are located in the vicinity of each
other. Consequently, the size of neighborhood becomes zero.
On the other hand, when the particles are crowded around
some fitter individuals, the number of its neighbors can be
increased enormously. In order to prevent this undersizing
and oversizing, the neighborhood size is defined in such a
manner that it cannot exceed the value of three and cannot
be zero; in other words, |N(x𝑖) ∈ [1, 3]|.

For each observed particle x𝑖, the new solution is gen-
erated according to the number of neighbors |N(x𝑖)| in
“generate new solution” function. The following modified
equation is used in RDF-PSO for calculating the velocity:

k(𝑡+1)𝑖 = 𝑤 ⋅ k(𝑡)𝑖 + 𝑐1𝑟
(𝑡)

1 (x
(𝑡)

best − x(𝑡)𝑖)

+ [

[

∑
|N(x𝑗)|
𝑗=1

𝑐𝑗+1𝑟
(𝑡)

𝑗+1
(p(𝑡)
𝑗
− x(𝑡)
𝑖
)

N (x𝑖)

]

]

,

(4)

where, 𝑟1, and 𝑟2 are the real numbers randomly drawn
from the interval [0, 1], 𝑐1 and 𝑐2 denote the constriction

The Scientific World Journal 5

(1) <rdf :RDF>
(2) <rdf :Description rdf :about=“http://www.example.org/population”>
(3) <ns1:member of rdf :resource=“http://www.example.org/particle1”/>
(4) <ns1:member of rdf :resource=“http://www.example.org/particle2”/>
(5) ⋅ ⋅ ⋅

(6) <ns1:member of rdf :resource=“http://www.example.org/particle𝑛”/>
(7) </rdf :Description>
(8) <rdf :Description rdf :about=“http://www.example.org/particle1”>
(9) <ns1:is neighbor of rdf :HREF=“http://www.example.org/particle2”/>
(10) <ns1:is neighbor of rdf :HREF=“http://www.example.org/particle5”/>
(11) <ns1:id>1</ns1:id>
(12) </rdf :Description>
(13) ⋅ ⋅ ⋅

(14) </rdf :RDF>

Algorithm 5: Pseudocode of the PSO population in RDF.

coefficients, p(𝑡)
𝑗
= {x𝑘 | x𝑘 is neighbor of x𝑖 ∧ 1 ≤ 𝑘 ≤ 𝑁},

𝑗 ∈ [1, |N(x𝑖)|], and ∑
|N(x𝑖)|
𝑗=1

𝑐𝑗+1 = 1. Thus, it is expected
that the movement of more crowded neighborhood depends
on more neighbors. Furthermore, the term between square
parenthesis ensures that the proportion of each neighbor
as determined by constriction coefficients {𝑐2, 𝑐3, 𝑐4} never
exceeded the value of one.

3.1. Representation of a Distributed Population. The rapid
growth of the Internet means that new kinds of application
architectures have been emerged. The Internet applications
are suitable to exploit enormous power of the computers
connected to this huge network. Typically, these applications
search for data distributed on many servers. These data need
to be accessed easily, securely, and efficiently.

This paper proposes the first steps of developing the
distributed population model within the PSO algorithm. In
line with this, the RDF tool is applied that introduces a
description of relations between particles in the population.
These relations make us possible to manipulate population
members on a higher abstraction level. At the moment, only
the relation “is neighbor of ” is implemented that determines
the neighborhood of a specific particle in the population.

For this purpose, RDF is devoted for defining the var-
ious resources on different Internet servers. In our case,
each particle in the population represents the resource that
is defined with corresponding property-type relation (e.g.,
“is neighbor of ”) and attributes. The RDF graph of the
distributed population is illustrated in Figure 3.

The definition of a distributed population in RDF is
presented in Algorithm 5, from which it can be seen that
two kinds of attributes are encountered in this definition,
that is, the references to neighbors of specific particle and its
sequence number. Some details are omitted in this algorithm
because of the space limitation of this paper. The missing
parts of code are denoted by punctuation marks.

3.2. Accessing the Distributed Population. The distributed
population in RDF can be accessed using the SPARQL query

Population ns1:about

ns1:id ns1:is neighbor of

ns1:is neighbor of

1

Particle 1

Particle 2

Particle 5

Figure 3: This PSO distributed population model contains the
definitions of resources population and particle. Thus, each particle
can relate to one or more neighbors and has an identification
number. The former represents a reference to other particles in a
swarm, while the latter is an atomic value.

(1) SELECT ?particle
(2) WHERE {
(3) <http://www.example.org/particle4>
(4) <http://www.example.org/is neighbor of>
(5) ?particle
(6) }

Algorithm 6: SPAQL query that returns particles in the neighbor-
hood of particle4.

language, whose syntax is similar to the standard SQL syntax.
An example of SPARQL query for returning the neighbor-
hood of fourth particle is represented in Algorithm 6. Note
that the SPARQL query from the mentioned algorithm will
return all attributes that are related to the “resource4” with
the relation “is neighbor of.”

3.3. Implementation Details. The proposed RDF-PSO algo-
rithm was implemented in Python programming language

6 The Scientific World Journal

Table 1: Definitions of benchmark functions.

𝑓 Function name Definition

𝑓1 Griewangk’s function 𝑓1 (x) = −
𝑛

∏

𝑖=1

cos(
𝑥𝑖

√𝑖

) +

𝑛

∑

𝑖=1

𝑥
2
𝑖

4000
+ 1

𝑓2 Rastrigin’s function 𝑓2 (x) = 𝑛 ∗ 10 +
𝑛

∑

𝑖=1

(𝑥
2

𝑖 − 10 cos (2𝜋𝑥𝑖))

𝑓3 Rosenbrock’s function 𝑓3 (x) =
𝑛−1

∑

𝑖=1

100 (𝑥𝑖+1 − 𝑥
2

𝑖)
2
+ (𝑥𝑖 − 1)

2

𝑓4 Ackley’s function 𝑓4 (x) =
𝑛−1

∑

𝑖=1

(20 + 𝑒
−20
𝑒
−0.2√0.5(𝑥2

𝑖+1
+𝑥2
𝑖
)
− 𝑒
0.5(cos(2𝜋𝑥𝑖+1)+cos(2𝜋𝑥𝑖)))

𝑓5 Schwefel’s function 𝑓5 (x) = 418.9829 ∗ 𝐷 −

𝐷

∑

𝑖=1

𝑥𝑖 sin(√
𝑥𝑖
)

𝑓6 De Jong’s sphere function 𝑓6 (x) =
𝐷

∑

𝑖=1

𝑥
2

𝑖

𝑓7 Easom’s function 𝑓7 (x) = −(−1)
𝐷
(

𝐷

∏

𝑖=1

cos2 (𝑥𝑖)) exp[−
𝐷

∑

𝑖=1

(𝑥𝑖 − 𝜋)
2
]

𝑓8 Michalewicz’s function 𝑓8 (x) = −
𝐷

∑

𝑖=1

sin (𝑥𝑖) [sin(
𝑖𝐴 ⋅ 𝑥

2
𝑖

𝜋
)]

2⋅10

𝑓9 Xin-She Yang’s function 𝑓9 (x) = (
𝐷

∑

𝑖=1

𝑥𝑖
) exp[−

𝐷

∑

𝑖=1

sin (𝑥2𝑖)]

𝑓10 Zakharov’s function 𝑓10 (x) =
𝐷

∑

𝑖=1

𝑥
2

𝑖 + (
1

2

𝐷

∑

𝑖=1

𝑖𝑥𝑖)

2

+ (
1

2

𝐷

∑

𝑖=1

𝑖𝑥𝑖)

4

and executed on Linux operating system. Additionally, the
following libraries were used:

(i) rdflibwhich is a python library for working with RDF
[29],

(ii) NumPy that is the fundamental package for scientific
computing with Python [30]

(iii) matplotlib that is a python 2D plotting library [31].

The decision for using Python has been taken because
there already existed a lot of the PSO implementation.
Furthermore, the RDF and SPARQL semantic tools are also
supported in this language and ultimately, programming in
Python is easy.

4. Experiments and Results

The goal of our experimental work was to show that the
semantic web tools, that is, RDF and SPARQL can be useful
for the optimization purposes as well. Moreover, we want to
show that using the variable neighborhood in RDF-PSO can
also improve the results of the original PSO.

In line with this, the RDF-PSO algorithm was applied
to the optimization of ten benchmark functions taken from
literature. The function optimization belongs to a class
of continuous optimization problems, where the objective
function 𝑓(x) is given and x = {𝑥1, . . . , 𝑥𝐷} is a vector of 𝐷
design variables in a decision space 𝑆. Each design variable
𝑥𝑖 ∈ [𝐿𝑏𝑖, 𝑈𝑏𝑖] is limited by its lower 𝐿𝑏𝑖 ∈ R and upper

𝑈𝑏𝑖 ∈ R bounds. The task of optimization is to find the
minimum of the objective functions.

In the remainder of this section, the benchmark suite
is described; then, the experimental setup is presented and
finally, the results of experiments are illustrated in detail.

4.1. Test Suite. The test suite consisted of ten functions,
whichwere selected from the literature.However, the primary
reference is the paper by Yang [32] that proposed a set of opti-
mization functions suitable for testing the newly developed
algorithms. The definitions of the benchmark functions are
represented in Table 1, while their properties are illustrated
in Table 2.

Table 2 consists of five columns that contain the function
identifications (tag 𝑓), their global optimum (tag 𝑓∗), the
values of optimal design variables (tag 𝑥∗), the lower and
upper bounds of the design variables (tag Bound), and their
characteristics (tag Characteristics). The lower and upper
bounds of the design variables determine intervals that limit
the size of the search space.Thewider is the interval, thewider
is the search space. Note that the intervals were selected, so
that the search space was wider than those proposed in the
standard literature.The functionswithin the benchmark suite
can be divided into unimodal and multimodal. The multi-
modal functions have two or more local optima. Typically,
themultimodal functions aremore difficult to solve.Themost
complex functions are those that have an exponential number
of local optima randomly distributed within the search space.

The Scientific World Journal 7

Table 2: Properties of benchmark functions.

𝑓 𝑓
∗

𝑥
∗ Bounds Characteristics

𝑓1 0.0000 (0, 0, . . . , 0) [−600, 600] Highly multi-modal
𝑓2 0.0000 (0, 0, . . . , 0) [−15, 15] Highly multi-modal
𝑓3 0.0000 (1, 1, . . . , 1) [−15, 15] Multiple local optima
𝑓4 0.0000 (0, 0, . . . , 0) [−32.768, 32.768] Highly multi-modal
𝑓5 0.0000 (0, 0, . . . , 0) [−500, 500] Highly multi-modal
𝑓6 0.0000 (0, 0, . . . , 0) [−600, 600] Uni-modal, convex
𝑓7 −1.0000 (𝜋, 𝜋, . . . , 𝜋) [−2𝜋, 2𝜋] Multiple local optima
𝑓8 −1.80131 (2.20319, 1.57049)

1
[0, 𝜋] Multiple local optima

𝑓9 0.0000 (0, 0, . . . , 0) [−2𝜋, 2𝜋] Multiple local optima
𝑓10 0.0000 (0, 0, . . . , 0) [−5, 10] Uni-modal
1These values are valid for dimensions𝐷 = 2.

4.2. Experimental Setup. This experimental study compares
the results of the RDF-PSO using different kind of dis-
tributed populations within the original PSO algorithm. All
PSO algorithms used the following setup. The parameter
𝑤 was randomly drawn from the interval [0.4, 0.9], while
the constriction coefficients were set as 𝑐1 = 𝑐2 = 1.0.
As a termination condition, the number of fitness function
evaluations was considered. It was set to FEs = 1000 ⋅ 𝐷,
where 𝐷 denotes dimension of the problem. In this study,
three different dimensions of functions were applied; that is,
𝐷 = 10,𝐷 = 30, and𝐷 = 50. However, the population size is
a crucial parameter for all population-based algorithms that
have a great influence on their performance. In line with this,
extensive experiments had been run in order to determine the
most appropriate setting of this parameter by all algorithms
in the test. As a result, the most appropriate setting of this
parameter 𝑁 = 100 was considered for the experiments.
Parameters, like the termination condition, dimensions of the
observed functions, and the population size were also used by
the other algorithms in experiments.

The PSO algorithms are stochastic in nature. Therefore,
statistical measures, like minimum,maximum, average, stan-
dard deviation, and median, were accumulated after 25 runs
of the algorithms in order to fairly estimate the quality of
solutions.

4.3. Results. The comparative study was conducted in which
we would like to show, firstly, that the semantic web tools can
be successfully applied to the optimization purposes as well
and, secondly, that using the distributed population affects
the results of the original PSO algorithm. In the remainder
of this section, a detailed analysis of RDF-PSO algorithms is
presented.

4.3.1. Analysis of the RDF-PSO Algorithms. In this experi-
ment, the characteristics of the RDF-PSO algorithm were
analyzed. In line with this, the RDF-PSO with neighborhood
size of one (RDF1), the RDF-PSO with neighborhood size of
two (RDF2), and the RDF-PSO with neighborhood size of
tree (RDF3) were compared with the original PSO algorithm

(PSO) by optimizing ten benchmark functions with dimen-
sions 𝐷 = 10, 𝐷 = 30, and 𝐷 = 50. The obtained results
by the optimization of functions with dimension 𝐷 = 30 are
aggregated in Table 3. Note that the best average values are for
each function presented bold in the table.

From Table 3, it can be seen that the best average values
were obtained by the RDF-1 algorithm eight times, that is,
by 𝑓1 − 𝑓4, 𝑓6, 𝑓8, and 𝑓10. The best results were two times
observed also by the original PSO algorithm, that is, 𝑓5
and 𝑓9. On average, the results of the other two RDF-PSO
algorithms, that are, RDF-2 and RDF-3, were better than the
results of the original PSO algorithm.

In order to statistically estimate the quality of solution, the
Friedman nonparametric test was conducted. Each algorithm
enters this test with five statistical measures for each of
observed functions. As a result, each statistical classifier (i.e.,
various algorithms) consists of 5 ⋅ 10 = 50 different variables.
The Friedman test [33, 34] compares the average ranks of
the algorithms. The closer the rank to one, the better is the
algorithm in this application. A null hypothesis states that
two algorithms are equivalent and, therefore, their ranks
should be equal. If the null hypothesis is rejected, that is,
the performance of the algorithms is statistically different,
the Bonferroni-Dunn test [35] is performed that calculates
the critical difference between the average ranks of those two
algorithms. When the statistical difference is higher than the
critical difference, the algorithms are significantly different.
The equation for the calculation of critical difference can be
found in [35].

Friedman tests were performed using the significance
level 0.05. The results of the Friedman nonparametric test
are presented in Figure 4 where the three diagrams show the
ranks and confidence intervals (critical differences) for the
algorithms under consideration. The diagrams are organized
according to the dimensions of functions. Two algorithms are
significantly different if their intervals do not overlap.

The first diagram in Figure 4 shows that the RDF-1
algorithm significantly outperforms the RDF-3 algorithm.
Interestingly, the results of the original PSO are also better
than the results of the RDF-2 and RDF-3 algorithm. The
situation is changed in the second (by 𝐷 = 30) and third
diagram (by 𝐷 = 50), where RDF-3 improves the results

8 The Scientific World Journal

Table 3: Comparing the results of different PSO algorithms (𝐷 = 30).

Alg. Meas. 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

PSO

Best 7.40𝐸 − 001 5.83𝐸 + 002 7.08𝐸 + 004 2.00𝐸 + 001 1.55𝐸 + 003

Worst 1.41𝐸 + 000 5.65𝐸 + 003 1.10𝐸 + 007 2.06𝐸 + 001 9.77𝐸 + 003

Mean 1.06𝐸 + 000 1.44𝐸 + 003 3.22𝐸 + 006 2.03𝐸 + 001 5.16E + 003
StDev 1.06𝐸 + 000 1.13𝐸 + 003 2.04𝐸 + 006 2.04𝐸 + 001 7.44𝐸 + 003

Mean 1.37𝐸 − 001 1.02𝐸 + 003 3.14𝐸 + 006 1.90𝐸 − 001 5.97𝐸 + 003

RDF-1

Best 8.87𝐸 − 014 4.55𝐸 − 010 2.85𝐸 + 001 5.31𝐸 − 005 8.77𝐸 + 003

Worst 3.33𝐸 − 010 1.95𝐸 − 006 2.88𝐸 + 001 9.64𝐸 − 003 1.05𝐸 + 004

Mean 3.40E − 011 2.18E − 007 2.87E + 001 2.61E − 003 9.88𝐸 + 003

StDev 1.27𝐸 − 011 4.81𝐸 − 008 2.87𝐸 + 001 1.53𝐸 − 003 9.95𝐸 + 003

Median 6.91𝐸 − 011 4.90𝐸 − 007 5.85𝐸 − 002 2.68𝐸 − 003 3.99𝐸 + 002

RDF-2

Best 1.10𝐸 − 005 3.37𝐸 + 000 3.95𝐸 + 001 2.78𝐸 − 001 8.77𝐸 + 003

Worst 2.42𝐸 − 001 7.03𝐸 + 001 3.42𝐸 + 002 3.64𝐸 + 000 1.04𝐸 + 004

Mean 6.03𝐸 − 002 3.08𝐸 + 001 1.64𝐸 + 002 1.95𝐸 + 000 9.73𝐸 + 003

StDev 4.12𝐸 − 002 2.52𝐸 + 001 1.36𝐸 + 002 1.72𝐸 + 000 9.65𝐸 + 003

Mean 5.80𝐸 − 002 2.12𝐸 + 001 9.62𝐸 + 001 1.04𝐸 + 000 4.43𝐸 + 002

RDF-3

Best 3.07𝐸 − 005 1.85𝐸 + 001 5.49𝐸 + 001 9.11𝐸 − 001 8.81𝐸 + 003

Worst 2.52𝐸 − 001 1.56𝐸 + 002 4.03𝐸 + 002 4.56𝐸 + 000 1.03𝐸 + 004

Mean 8.94𝐸 − 002 7.75𝐸 + 001 1.77𝐸 + 002 2.63𝐸 + 000 9.70𝐸 + 003

StDev 7.62𝐸 − 002 7.60𝐸 + 001 1.64𝐸 + 002 2.66𝐸 + 000 9.78𝐸 + 003

Mean 5.51𝐸 − 002 3.46𝐸 + 001 8.38𝐸 + 001 1.11𝐸 + 000 4.19𝐸 + 002

Evals Meas. 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10

PSO

Best 1.10𝐸 − 003 0.00𝐸 + 000 −1.77𝐸 + 001 6.94𝐸 − 012 5.39𝐸 − 001

Worst 3.75𝐸 − 001 0.00𝐸 + 000 −8.45𝐸 + 000 5.38𝐸 − 011 2.42𝐸 + 001

Mean 1.13𝐸 − 001 0.00𝐸 + 000 −1.42𝐸 + 001 1.30E − 011 5.26𝐸 + 000

StDev 6.89𝐸 − 002 0.00𝐸 + 000 −1.41𝐸 + 001 8.60𝐸 − 012 3.36𝐸 + 000

Mean 1.24𝐸 − 001 0.00𝐸 + 000 1.87𝐸 + 000 1.05𝐸 − 011 5.35𝐸 + 000

RDF-1

Best 7.80𝐸 − 014 0.00𝐸 + 000 −6.45𝐸 + 000 1.83𝐸 − 007 2.47𝐸 − 012

Worst 3.55𝐸 − 009 0.00𝐸 + 000 −3.85𝐸 + 000 1.39𝐸 − 005 5.70𝐸 − 007

Mean 3.83E − 010 0.00𝐸 + 000 −4.81E + 000 3.68𝐸 − 006 2.59E − 008
StDev 2.97𝐸 − 011 0.00𝐸 + 000 −4.74𝐸 + 000 3.35𝐸 − 006 1.34𝐸 − 009

Mean 8.15𝐸 − 010 0.00𝐸 + 000 6.12𝐸 − 001 3.29𝐸 − 006 1.13𝐸 − 007

RDF-2

Best 6.63𝐸 − 004 0.00𝐸 + 000 −6.47𝐸 + 000 3.57𝐸 − 009 2.55𝐸 − 001

Worst 2.03𝐸 + 000 0.00𝐸 + 000 −4.06𝐸 + 000 1.73𝐸 − 007 1.99𝐸 + 002

Mean 4.36𝐸 − 001 0.00𝐸 + 000 −4.93𝐸 + 000 6.03𝐸 − 008 2.54𝐸 + 001

StDev 1.48𝐸 − 001 0.00𝐸 + 000 −4.81𝐸 + 000 3.83𝐸 − 008 5.92𝐸 + 000

Mean 5.58𝐸 − 001 0.00𝐸 + 000 5.92𝐸 − 001 4.64𝐸 − 008 4.90𝐸 + 001

RDF-3

Best 5.21𝐸 − 003 0.00𝐸 + 000 −6.27𝐸 + 000 2.42𝐸 − 009 5.94𝐸 + 000

Worst 2.09𝐸 + 000 0.00𝐸 + 000 −4.09𝐸 + 000 1.31𝐸 − 007 4.53𝐸 + 002

Mean 8.47𝐸 − 001 0.00𝐸 + 000 −5.03𝐸 + 000 3.82𝐸 − 008 1.09𝐸 + 002

StDev 8.14𝐸 − 001 0.00𝐸 + 000 −5.05𝐸 + 000 3.35𝐸 − 008 6.65𝐸 + 001

Mean 5.73𝐸 − 001 0.00𝐸 + 000 5.92𝐸 − 001 3.08𝐸 − 008 1.15𝐸 + 002

of the RDF-3 and the original PSO, but not the RDF-2
algorithm.Additionally, the RDF-2 is significantly better than
the original PSO also by𝐷 = 50.

In summary, the RDF-1 exposes the best results between
all the other algorithms in tests by all observed dimensions
of functions. On the other hand, the original PSO algorithm
is only comparable with the modified PSO algorithms by
optimizing the low dimensional functions (𝐷 = 10). The
question why the RDF-PSO with neighborhood size of one

outperformed the other RDF-PSO algorithms remains open
for the future work. At this moment, it seems that here
the primary role plays the constriction coefficients that
determine an influence of specific neighbors.

5. Conclusion

The aim of this paper was twofold. First is to prove that
the semantic web tools, like RDF and SPARQL, can also

The Scientific World Journal 9

PSO

RDF-1

RDF-2

RDF-3

Average rank (D = 10)

1 2 3 4

(a)

1 2 3 4

Average rank (D = 30)

(b)

1 2 3 4

Average rank (D = 50)

(c)

Figure 4: Results of the Friedman nonparametric test.

be used for the optimization purposes. Second is to show
that the results of the modified RDF-PSO using the variable
neighborhood are comparable with the results of the original
PSO algorithm.

In line with the first hypothesis, a distributed population
model was developed within the PSO algorithm that is
suitable for describing the variable neighborhood of particles
in the population. Furthermore, moving particles across the
search space depends on all the particles in the neighborhood
in place of the local best solutions as proposed in the original
PSO algorithm.

In order to confirm the second hypothesis, the bench-
mark suite of ten well-known functions from the literature
was defined. The results of extensive experiments by opti-
mization of benchmark functions showed that the optimal
neighborhood size within the RDF-PSO algorithm is one
(RDF1). This variant of the RDF-PSO also outperformed the
original PSO algorithm.

The distributed population model extends the concept
of population in SI. This means that the population is no
longer a passive data structure for storing particles. Not
only can the particles now be distributed, but also some
relations can be placed between the population members. In
this proof of concept, only one relation was defined, that is,
“is neighbor of.” Additionally, not the whole definition of the
distributed population was put onto Internet at this moment.
Although we are at the beginning of the path of how to make
an intelligent particle in swarm intelligence algorithms, the
preliminary results are encouraging and future researches
would investigate this idea of distributed population models
in greater detail.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. H.Wolpert andW.G.Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67–82, 1997.

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, New York, NY, USA, 2009.

[3] A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing, Springer, Berlin, Germany, 2003.

[4] C. Blum and D. Merkle, Swarm Intelligence: Introduction and
Applications, Springer, Berlin, Germany, 2008.

[5] C. Darwin, The Origin of Species, John Murray, London, UK,
1859.

[6] W. Paszkowicz, “Genetic algorithms, a nature-inspired tool:
survey of applications in materials science and related fields,”
Materials and Manufacturing Processes, vol. 24, no. 2, pp. 174–
197, 2009.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Massachusetts, Mass, USA,
1996.

[8] J. Koza, Genetic Programming 2—Automatic Discovery of
Reusable Programs, The MIT Press, Cambridge, Mass, USA,
1994.

[9] T. Bck, Evolutionary Algorithms in Theory and Practice—
Evolution Strategies, Evolutionary Programming, Genetic Algo-
rithms, University Press, Oxford, UK, 1996.

[10] L. Fogel, A. Owens, andM.Walsh,Artificial Intelligence through
Simulated Evolution, John Wiley & Sons, New York, NY, USA,
1996.

[11] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[12] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[13] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Net-
works, vol. 4, pp. 1942–1948, IEEE, Perth, Australia, December
1995.

[15] I. Fister, I. Fister Jr., X. -S. Yang, and J. Brest, “A comprehensive
review of firefly algorithms,” Swarm and Evolutionary Compu-
tation, vol. 13, pp. 34–46, 2013.

10 The Scientific World Journal

[16] I. Fister, X. -S. Yang, J. Brest, and I. Fister Jr., “Modified firefly
algorithm using quaternion representation,” Expert Systems
with Applications, vol. 40, no. 18, pp. 7220–7230, 2013.

[17] I. Fister Jr., D. Fister, and I. Fister, “A comprehensive review of
cuckoo search: variants and hybrids,” International Journal of
MathematicalModelling and Numerical Optimisation, vol. 4, no.
4, pp. 387–409, 2013.

[18] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), pp. 65–74, Springer, New York, NY, USA, 2010.

[19] I. Fister Jr., D. Fister, and I. Fister, “Differential evolution
strategieswith random forest regression in the bat algorithm,” in
Proceeding of the 15th Annual Conference Companion on Genetic
and Evolutionary Computation, pp. 1703–1706, ACM, 2013.

[20] P. N. Suganthan, “Particle swarm optimiser with neighbour-
hood operator,” in Proceedings of the Congress on Evolutionary
Computation (CEC ’99), vol. 3, IEEE, Washington, Wash, USA,
July 1999.

[21] H. Liu, A. Abraham, O. Choi, and S. H. Moon, “Variable
neighborhood particle swarm optimization for multi-objective
flexible job-shop scheduling problems,” in Simulated Evolution
and Learning, vol. 4247 of Lecture Notes in Computer Science,
pp. 197–204, Springer, New York, NY, USA, 2006.

[22] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, pp. 760–766, Springer, New York, NY, USA,
2010.

[23] N. Chakraborti, R. Jayakanth, S. Das, E. D. Çalişir, and Ş. Erkoç,
“Evolutionary and genetic algorithms applied to Li+-C system:
calculations using differential evolution and particle swarm
algorithm,” Journal of Phase Equilibria andDiffusion, vol. 28, no.
2, pp. 140–149, 2007.

[24] R. C. Eberhart and Y. Shi, “Particle swarm optimization:
developments, applications and resources,” in Proceedings of the
Congress on Evolutionary Computation, vol. 1, pp. 81–86, IEEE,
May 2001.

[25] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in
Proceedings of the IEEE International Conference on Evolution-
ary Computation (ICEC ’98), pp. 69–73, IEEE, May 1998.

[26] E. Miller, “An introduction to the resource description frame-
work,” D-Lib Magazine, vol. 4, no. 5, pp. 14–25, 1998.

[27] D. Allemang and J. Hendler, Semantic Web for the Working
Ontologist: Effective Modeling in RDFS and OWL, Morgan
Kaufmann, Amsterdam, The Netherlands, 2nd edition, 2011.

[28] S. Harris and A. Seaborne, Sparql 1.1 Query Language, 2013.
[29] rdflib: A python library for working with RDF, 2013, http://

code.google.com/p/rdflib/.
[30] Numpy, 2013, http://www.numpy.org/.
[31] Matplotlib, 2013, http://matplotlib.org/.
[32] X.-S. Yang, “Appendix A: test problems in optimization,” in

Engineering Optimization, X.-S. Yang, Ed., pp. 261–266, John
Wiley & Sons, Hoboken, NJ, USA, 2010.

[33] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, no. 200, pp. 675–701,
1937.

[34] M. Friedman, “A comparison of alternative tests of significance
for the problem of m rankings,” The Annals of Mathematical
Statistics, vol. 11, no. 1, pp. 86–92, 1940.

[35] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

http://code.google.com/p/rdflib/
http://code.google.com/p/rdflib/
http://www.numpy.org/
http://matplotlib.org/

