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Abstract
DNA variants in the tumor necrosis factor-α (TNF) and linked lymphotoxin-α genes, and specific
alleles of the highly polymorphic human leukocyte antigen B (HLA-B) gene have been implicated
in a plethora of immune and infectious diseases. However, the tight linkage disequilibrium
characterizing the central region of the human major histocompatibility complex (MHC)
containing these gene loci has made difficult the unequivocal interpretation of genetic association
data.

To alleviate these difficulties and facilitate the design of more focused follow-up studies, we
investigated the structure and distribution of HLA-B-specific MHC haplotypes reconstructed in a
European population from unphased genotypes at a set of 25 single nucleotide polymorphism sites
spanning a 66 kilobase-long region across TNF.

Consistent with the published data, we found limited genetic diversity across the so-called TNF
block, with the emergence of seven common MHC haplotypes, termed TNF block super-
haplotypes. We also found that the ancestral haplotype 8.1 shares a TNF block haplotype with
HLA-B*4402. HLA-B*5701, a known protective allele in HIV-1 pathogenesis, occurred in a
unique TNF block haplotype.
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Allelic diversity at the HLA genes on chromosome 6p21.3 has been associated with a
myriad of disease mechanisms underlying autoimmunity, infection and malignancy. Current
data indicate that single nucleotide polymorphisms (SNPs) in immunoregulatory genes such
as TNF and lymphotoxin A (LTA) are associated with the development of chronic diseases,
cancer, and autoimmune conditions (Allcock et al. 1999; Cheong et al. 2001). For example,
the ‘G’ allele at nucleotide position +252 (rs909253 A>G) of LTA alone or in combination
with the ‘A’ allele at position −308 (rs1800629 G>A) of TNF have been repeatedly
associated with increased risk for both classical and HIV-related non-Hodgkin’s lymphoma
(NHL) (Juszczynski et al. 2002; Nowak et al. 2007; Nowak et al. 2008; Aissani et al. 2009)
however, it remains uncertain whether variants in LTA and TNF or markers in adjacent loci
represent true causal variants.
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While the −308A variant has been associated with high levels of TNF production, attempts
to relate sequence variation in this gene to functional variation as measured by biologic
activity of the molecules have been controversial (Bouma et al. 1996; He et al. 1995;
Huizinga et al. 1997; Louis et al. 1998; Turner et al. 1995; Wilson et al. 1997). Finally, the
SNPs in the two genes repeatedly associated with NHL most often occur on one of the most
conserved extended haplotypes found in the human genome—the Caucasian HLA-B*0801-
containing ancestral haplotype (8.1AH) (Degli-Esposti et al. 1992; Price et al. 1999) that
spans more than 2 Mb across MHC. Understanding the structure of the joint HLA and MHC
SNP haplotypes across the TNF locus is important for the correct interpretation of
association data because the pattern of linkage disequilibrium (LD) across the MHC is HLA-
specific (de Bakker et al. 2006).

In the present study, we have analyzed the genetic diversity across the TNF block in a
collection of 660 participants enrolled in the Multicenter AIDS Cohort Study (MACS), a
prospective study of HIV infection and AIDS (Kaslow et al. 1987). To validate our
observations, two study groups from published studies of MHC haplotypes served as
reference healthy populations. These were the CEU population (n=92) from the International
HapMap project (de Bakker et al., 2006) and a study group (n=398) from the populations of
Busselton and Perth, Australia (Valente et al. 2009).

Informed consent was obtained and the Institutional Review Board at each center approved
the MACS study. We restricted the analysis to subjects of non-Hispanic European ancestry
because of insufficient numbers of subjects from other ethnic groups. All of the 660 sampled
individuals were HIV seropositive and half of them (n=330) had Kaposi’s sarcoma; these
two groups were cases (henceforth group #1) and matched controls (group # 2) selected
from ongoing studies of HIV-related Kaposi’s sarcoma. To prevent possible distortions of
our estimate of population distribution of MHC haplotypes, we conducted separate analyses
of these two study groups.

Extended MHC haplotypes were reconstructed for a set of 25 SNPs spanning a 66 Kb
interval across the TNF locus and including 12 SNPs shared with the CEU and Australian
population studies. This genomic interval is flanked by telomeric HLA-B and encompasses
seven other genes in the following telomere-to-centromere order; mitochondrial coiled coil
domain 1 (MCCD1), HLA-B associated transcript 1 (BAT1), ATPase G2 isoform
(ATP6V1G2), nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor-
like 1 (NFKBIL1), LTA, TNF, and leukocyte specific transcript 1 (LST1). We reconstructed
haplotypes formed by these 25 tagging SNPs alone and jointly with HLA-B. With the joint
haplotypes of HLA-B and MHC SNP being available only from the study of the HapMap
sample, we compared our estimates of the joint HLA-B and SNP haplotype (henceforth joint
MHC haplotypes) frequencies to those of the HapMap sample and of the SNP only
haplotypes to both reference samples (Table 1).

SNPs were chosen by a systematic search of populations of Western European ancestry in
public databases (HapMap I and SNP500 cancer database) and private databases (Illumina
Technologies, San Diego, CA and Applied Biosystems Inc., Foster City, CA). The primary
criteria for SNP selection included an aggressive (r2 > 0.80) haplotype tagging potential
(htSNP) across gene loci, minor allele frequency (MAF) > 5%, and predicted functionality
(identified in PupaSuite (Conde et al. 2006)) Additionally we selected two-hit SNPs (or
Illumina-validated) with a “designability” score of 1 (anticipated success rate > 80%).

HLA-B typing was performed to four-digit resolution by reference-strand conformation
polymorphism and DNA sequencing-based typing methods. SNP typing was performed on a
commercially available genotyping platform (BeadArray®, Illumina Inc., San Diego, CA).
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Reliability in SNP typing was assessed by duplicate typing of a random set of 44 samples.
SNP markers were examined separately in the two study groups for adherence to HWE
using Pearson’s chi-squared test

The expectation-maximization based haplotype inference program HAPLORE (Zhang et al.
2005) was used to estimate haplotype frequencies separately in the two study groups. All of
the typed SNPs were in HWE (p>0.05) and were included in the reconstruction of
haplotypes from the unphased genotype data. Comparison of genotype frequencies showed
no significant difference (p>0.05) between the two study groups, indicating that disease
status introduced no significant bias in our estimate of haplotype frequencies (data not
shown).

We identified a total of 38 joint haplotypes, with 24 of them present in group 1 and 22
present in group 2 at a frequency ≥1% (Table 1). The cumulative frequencies of the joint
haplotypes present at a frequency greater than 0.5% were 69.0% and 69.8% in study groups
1 and 2, respectively. The frequency of joint haplotypes did not differ significantly (α=5%)
between group 1, group 2, and the CEU population of HapMap. Of the haplotypes found at
≥0.5% in group 1 or group 2, 18 of them were not found in the HapMap sample likely due to
the smaller number of subjects.

Approximately 30% of the joint haplotypes in the study population were rare (<0.5%), with
several private haplotypes (not shown). A higher number of rare haplotypes (approximately
40%) were seen in the HapMap sample because of the small size of this sample. Another
non-exclusive explanation is a lower genetic diversity in the CEU population compared to
that in the multicenter MACS population, The large proportion of rare and private
haplotypes is undoubtedly due to the high heterozygosity at HLA-B; indeed, compared to
the joint haplotypes, only 14–18% of the SNP-only haplotypes (henceforth SNP haplotypes)
were rare or private.

The overall distributions of SNP haplotypes in the two study groups were not statistically
different from one another, and are comparable to those obtained in the HapMap and
Australian general populations. Haplotype 148 was seen in our samples and the Australians
but not in the HapMap sample, probably due to the small number of subjects in that group.
The remarkable similarity of the distributions between these three groups indicates that our
results are generalizable to healthy populations of European descent. Reconstruction of SNP
haplotypes identified 15 haplotypes in group 1 and 13 in group 2, present at frequencies
greater than ≥0.5%. The number of reconstructed haplotypes was similar in groups 1 and 2
(11 and 14 haplotypes respectively) as well as to the smaller population from the HapMap
project (12 haplotypes) (de Bakker et al.). In the Australian subjects from Busselton and
Perth, there were 18 and 15 haplotypes respectively, possibly due to the inclusion of a larger
number of test SNPs (n=38) in that study (Valente et al. 2009).

The present study identified several HLA-specific patterns of haplotype sequences across
the TNF block in the European populations. First, consistent with the published data [(Belfer
et al. 2004; Valente et al. 2009), we show that genetic diversity across TNF is very limited
across the TNF block, which appears to span at least a 66 Kb-long region flanked by
MMCD1 and LST1, the telomeric and centromeric gene loci, respectively. Second and for
the first time, we show that haplotype sequence diversity across the TNF block differentiates
in seven common haplotypes (frequency greater than 2%) defined by a small number of
SNP sites. We propose to name these common joint haplotypes “TNF block super-
haplotype” (highlighted as alternate gray and white bands in column 1 of Table 1). Third,
about one third of the joint haplotypes occurs at a frequency of less than 0.5%, reflecting the
remarkable genetic diversity at the HLA-B locus.
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The first TNF block super-haplotype accounts for 12.4–14.8% of the total haplotypes and is
essentially made up of two HLA-B*0702-containing haplotypes differing by a unique
tagging SNP (rs3130062) A>G in NFKBIL1, and a single haplotype carrying HLA-B*4001.

The second TNF block super-haplotype, is defined by 4 SNP sites; rs2071594 (ATP6V1G2),
rs2071592 (NFKBIL1), rs1800683 (LTA) and TNF −308 SNP rs1800629. Super-haplotype
II, accounts for 12.3–12.5% and comprises the known 8.1AH, which invariably carries the A
allele at TNF −308 (G>A) (Aissani et al. 2009). The other member of super-haplotype II
carries HLA-B*4402, accounting for about 2% and carrying also TNF −308A; this study is
the first to show that this allele also occurs on a HLA background other than 8.1AH. The
implication of this finding for association studies of 8.1AH- and TNF −308A-associated
diseases is important. In effect, when both B*4402 and B*0801 alleles are associated with
the outcome under study; this would exclude HLA-B and provide a means to focus the
follow-up study on the carriers of B*4402 because the extent of the B*4402 haplotype is
much limited compared to 8.1AH. Inversely, if B*4402 is not associated in the presence of
an association with B*0801, then HLA-B or a gene outside the TNF block carried on 8.1AH
is the most likely causal gene. Accounting for this observation in planning follow-up
association studies of 8.1AH-associated diseases such as type 1 diabetes (T1D) may speed
and lower the cost of follow-up studies.

The third TNF block super-haplotype occurs at a frequency of 8.7–11.8% and is defined by
3 SNP sites; rs2071594 (ATP6V1G2), rs2071592 (NFKBIL1), and rs1800683 (LTA). SNP
haplotype 31 containing B*4001, does not carry the minor allele at rs2071592, but is more
closely related to super-haplotype III than any of the other super-haplotypes.

The fourth super-haplotype is the least common (2.0–3.9%) and comprises one HLA-
B*5701, and another putative B*5701 haplotype (highlighted by a question mark) that has
emerged in the reconstruction of SNP haplotypes and not in that of the joint haplotypes at
our cut-off frequency of 0.5%. It appears to be most closely related to the B*5701-bearing
haplotype, differing only in a C>G transversion in TNF (rs3093668) and an A>C in the
intergenic region between MICB and MCCD1. Although rare, if confirmed, the second
putative B*5701 haplotype is of great interest in HIV association studies as it may help
clarify the causal relationship of this allele to HIV infection and progression as discussed
above for B*4402 and B*0801 alleles. An observation that deserves a comment is the lower
estimates of the joint B*5701 haplotype frequency in our HIV study population compared to
that of the general European population, which is about 5%. This clear difference is
expected because B*5701 has consistently been shown to be protective for HIV infection
and progression (Fellay et al. 2009; Fellay et al. 2007; Goulder et al. 1996; Liu et al. 2003).

Super-haplotype V is defined by variant A at SNP rs2256965 (LST1). B*3501, an allele
consistently associated with a rapid progression of HIV infection, occurs on 4 MHC
haplotypes, three of which are members of super-haplotype V and one of super-haplotype
VI.

Super-haplotype VI is defined by 2 SNPs; one in LTA (rs2009658) and the other in
NFKBIL1 (rs2255798). It occurs at a frequency of 11.2–12.8%. One of the B*3501 carrying
haplotypes occurs in this group. Two of the haplotypes in this group contain B*1501 but
differ in two SNPs in NFKBIL1 (rs2239707 and rs2230365).

The seventh super-haplotype is defined by two SNPs, one occurring in BAT1 (rs2239528)
and the other in LTA (rs928815). Only three haplotypes fall into this group, occurring at 1.8–
2.9%. HLA-B*4901 occurs in both super-haplotype VII and III. Our categorization of TNF
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block haplotypes into super-haplotypes allows convenient grouping of similar haplotypes by
tag SNPs for analysis in association studies.

Several tag SNPs used here to reconstruct haplotypes have been reported in association
studies. For example, the minor allele (C allele) of the intergenic polymorphism rs3093993,
occuring between MICB and MCCD1, was shown to be associated with decreased HIV-1
cellular DNA and viral control in HIV infected individuals through genome wide association
(GWA) studies (Dalmasso et al. 2008). Our data shows that that the minor allele of
rs3093993 occurs on the haplotype carrying the HIV-protective allele B*5701 (SNP
haplotype 79), in addition to haplotypes with B*0702, *4001, *5701, and *4901. HLA-B*57
molecules have been shown in numerous studies to be protective in HIV infection (Fellay et
al. 2009; Fellay et al. 2007; Goulder et al. 1996; Liu et al. 2003) and also to be associated
with lower viral load (Kloverpris et al. 2012). Whether the protection seen in these studies is
due to the sole effect of HLA-B or to its joint effect with the gene tagged by rs3093993 or by
another polymorphism in LD with these polymorphisms is difficult to ascertain. However,
comparisons of haplotype sequence conservation and divergence across super-haplotypes of
interest may be informative for the delineation of the most likely candidate region.

The minor alleles of SNPs rs2857605, rs2239707, and rs2230365; all intronic in NFKBIL1,
comprise a haplotype that has been associated with increased risk of NHL (Wang et al.
2009). SNPs rs2857605 and rs2239707 occurred in super-haplotype I and SNPs rs2239707
and rs2230365 occurred in super-haplotype VI. All three SNPs were found in super-
haplotype VII except with B*4901.

SNPs rs2071592 and rs2071594, located in NFKBIL1 and the 3’ flanking region of
ATP6V1G2 respectively, are associated with an increased incidence of rheumatoid arthritis
(RA) (Okamoto et al. 2003). Most commonly (>50% of haplotypes) the minor alleles of
these two SNPs occurred on HLA-B*0801, *4402, or *2705; all of which have been
associated with adult or juvenile RA in previous studies (Avila-Portillo et al. 1994; Berntson
et al. 2008; Raychaudhuri et al. 2012). These haplotypes are of super-haplotype II and III.
Another NFKBIL1 SNP (rs4947324) associated with RA (Jung et al. 2009) occurs in both
super-haplotype IV and two B*3501-carrying members of super-haplotype V.

The minor allele of rs2009658 has been associated with an increased risk of breast cancer
(Madeleine et al. 2011). This SNP only occurred in super-haplotype VI and frequently
(>30% of the time) was found with either HLA-B* 1501 or *1402, both of which have been
associated with an increased incidence of breast cancer (Biswal et al. 1998; Cantu de Leon
et al. 2009). B*1501 alleles from super-haplotype III lack the C>G transversion, allowing
for discrimination between these polymorphisms in association studies.

The minor allele of rs1800683, found in LTA, has been associated with protection from
myocardial infarction (Koch et al. 2007) and decreased antibody response to measles
(Dhiman et al. 2008) as part of an extended haplotype with other SNPs in TNF and LTA.
Allele A of this SNP occurred in super-haplotype II and III. Another SNP located in LTA,
rs2229094 (previously known as rs2857713) encodes a missense mutation (Cys13Arg) in
the encoded peptide. This polymorphism has been associated with several disparate
conditions including gastric cancer in Japanese men (Takei et al. 2008), preeclampsia in
pregnant women (Parimi et al. 2008), proliferative vitreoretinopathy (Rojas et al. 2010), and
cancer-related mortality (Gallicchio et al. 2008). In a study of an Indian population, the
minor allele of rs2229094 was found to be negatively associated with Type 2 diabetes
mellitus (Mahajan et al. 2010). SNP rs2229094 occurred on super-haplotype IV, the
B*3501-containing super-haplotype V, and super-haplotype VI.

Merino et al. Page 5

Immunogenetics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SNP rs1799964 is located at position T-1031C of TNF. Modeling with MFOLD indicates
that the C allele of this polymorphism prevents the binding of several transcription factors
by altering the accessibility of the DNA (Basu et al. 2012). In studies of malaria, this SNP
has been associated with increased parasitemia, heightened severity of disease, and
incidence of cerebral involvement (Basu et al. 2012; Hananantachai et al. 2007; Sinha et al.
2008). Case studies have found the minor allele G of this SNP to be associated with Crohn’s
disease, asthma, decreased immunity after natural infection or vaccination against measles,
and cancer-associated mortality (Dhiman et al. 2008; Gallicchio et al. 2008; Puthothu et al.
2009; Sanchez et al. 2009). Interestingly, this is the only allele shared by all members of
super-haplotypes IV and VI, suggesting that within the TNF block, TNF is the sole
candidate gene for these diseases.

Experimental evidence suggests that haplotypic differences in the promoter region of TNF
alter the transcription level of this important cytokine (Basu et al. 2012). Occurring with
rs1799964 in this study was rs3093668, a SNP in the 3’ UTR of TNF. A family-based study
identified this SNP with type 1 diabetes mellitus (Boraska et al. 2009). Both of these TNF
SNPs occurred on super-haplotype IV and rs1799964 also occurred on super-haplotype VI.

The most studied TNF promoter −308 (G>A) SNP, rs1800629, has been implicated in the
development of multiple diseases. The minor allele (A) has been associated with cerebral
malaria (McGuire et al. 1994) and susceptibility to septic shock (Mira et al. 1999). Case
studies have found an increased frequency of the A allele in lung (Shih et al. 2006) and
hepatocellular cancers (Akkiz et al. 2009) but the G allele has been found with increased
frequency in basal cell carcinoma (Rizzato et al. 2011) and renal cell cancer (Basturk et al.
2005). The differential findings related to this potent cytokine in malignancy may highlight
the delicate balance between immune surveillance and inflammation in cancer development.
Other diseases that have been associated with the A allele include type 1 diabetes mellitus
(Noble et al. 2006), type 2 diabetes mellitus (Kubaszek et al. 2003), and asthma (Wang et al.
2004; Witte et al. 2002). Amongst healthy volunteers, individuals homozygous for AA at
−308 exhibited decreased gray matter in the hippocampus (Baune et al. 2012), possibly
indicating that this polymorphism plays a role in neurodegenerative disease. This SNP was
only found on super-haplotype II, with the ancestral HLA-B*0801 and also B*4402.
Because the B*0801 haplotype is so common, the minor allele frequency (MAF) of
rs1800629 was 12.3–12.5%.

SNP rs3093662 is located in an intron of TNF. Previously this SNP was shown to be
overrepresented in HIV controllers, individuals with low viral load and no disease symptoms
after ten years of treatment-naïve HIV infection (Dalmasso et al. 2008; Kloverpris et al.
2012). Occurring on super-haplotype IV and one B*3501-containing super-haplotype V,
rs3093662 was most commonly (>70% of extended haplotypes) found in LD with HLA-
B*5701. This particular B allele is strongly protective in HIV infection (Kamya et al. 2011;
Kloverpris et al. 2012; Miura et al. 2009; Nou et al. 2009) whereas B*3501 is rather at risk;
in the light of our data, this observation indicated that HLA-B and not TNF is the most likely
causally-related gene.

The distribution patterns of the TNF block super-haplotypes revealed in the present study
will likely undergo refinements and updates in future studies of larger samples, higher SNP
coverage and diverse European and other Caucasian populations. However, it is quite
possible that the TNF block super-haplotypes are the local structure of much longer MHC
haplotypes, plausibly the conserved extended haplotypes or ancestral haplotypes (Dawkins
et al. 1999).
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Table 1

Distribution of joint HLA-B and MHC SNP Haplotypes in European populations

There were 24 subjects in group 1 and 22 in group 2 that were present in the population at ≥ 1.0 %. Frequencies were defined by the HAPLORE
program (Zhang et al. 2005) using the expectation maximization algorithm. Only the minor allele is listed. NA represents ‘not found’ in the
samples tested. (?) is a potentially distinct HLA-B*5701-containing haplotype. SNPs in bold were typed in all three study populations.
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