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We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing
map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space
analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis,
key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of
more than 10'" key space and desirable level of security based on the good statistical results and theoretical arguments.

1. Introduction

In recent years, the dynamical chaotic systems have been
commonly used for the design of cryptographic primitives
featuring chaotic behaviour and random-like properties. In
his seminal work [1], Shannon pointed out the excellent
possibilities of the dynamical chaotic maps in the communi-
cations. He identified two basic properties that the good data
encryption systems should have to prevent (resist) statistical
attacks: diffusion and confusion. Diffusion can propagate
the change over the whole encrypted data, and confusion
can hide the relationship between the original data and
the encrypted data. Permutation, which rearranges objects,
is the simplest method of diffusion, and substitution, that
replaces an object with another one, is the simplest type of
confusion. The consistent use of dynamical chaotic system
based permutation and substitution methods is in the deep
cryptographic fundamental.

The authors of [2] used Chebyshev polynomial to con-
struct secure El Gamal-like and RSA-like algorithms. A new
more practical and secure Diffie-Hellman key agreement
protocol based on Chebyshev polynomial is presented in
[3]. In [4], a stream cipher constructed by Duffing map
based message-embedded scheme is proposed. By mixing the
Lorenz attractor and Dufling map, a new six-dimensional

chaotic cryptographic algorithm with good complex struc-
ture is designed [5]. In [6], an improved stochastic middle
multibits quantification algorithm based on Chebyshev poly-
nomial is proposed. Three-party key agreement protocols
using the enhanced Chebyshev polynomial are proposed in
(7, 8].

Fridrich [9] describes how to adapt Baker map, Cat map,
and Standard map on a torus or on a rectangle for the pur-
pose of substitution-permutation image encryption. In [10],
a new permutation-substitution image encryption scheme
using logistic, tent maps, and Tompkins-Paige algorithm is
proposed. In [11], chaotic cipher is proposed to encrypt color
images through position permutation part and Logistic map
based on substitution. Yau et al. [12] proposed an image
encryption scheme based on Sprott chaotic circuit. In [13], Fu
et al. proposed a digital image encryption method by using
Chirikov standard map based permutation and Chebyshev
polynomial based diftusion operations.

In [14], a bit-level permutation scheme using chaotic
sequence sorting has been proposed for image encryption.
The operations are completed by Chebyshev polynomial
and Arnold Cat map. An image encryption algorithm in
which the key stream is generated by Chebyshev function is
presented in [15]. Simulation results are given to confirm the
necessary level of security. In [16], a new image encryption
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scheme, based on Chebyshev polynomial, Sin map, Cubic
map, and 2D coupled map lattice, is proposed. The experi-
mental results show the security of the algorithm.

In [17], a color image encryption scheme based on skew
tent map and hyper chaotic system of 6th-order CNN is
presented. An image encryption scheme based on rotation
matrix bit-level permutation and block diffusion is proposed
in [18].

A new chaos based image encryption scheme is suggested
in this paper. The algorithm is a simple improvement of
one round substitution-permutation model. The encryption
process is divided in two major parts: Chebyshev polynomial
based on permutation and substitution and Duffing map
based on substitution. In Section 2, we propose two pseu-
dorandom bit generators (PRBGs): one based on Chebyshev
polynomial and the other based on Duffing map. In Section 3,
in order to measure randomness of the bit sequence generated
by the two pseudorandom schemes, we use NIST, DIEHARD,
and ENT statistical packages. Section 4 presents the proposed
image encryption algorithm, and some security cryptanalysis
is given. Finally, the last section concludes the paper.

2. Proposed Pseudorandom Bit Generators

2.1. Pseudorandom Bit Generator Based on the Chebyshev
Polynomial. In this section, the real numbers of two Cheby-
shev polynomials [2, 19] are preprocessed and combined
with a simple threshold function to a binary pseudorandom
sequence.

The proposed pseudorandom bit generator is based on
two Chebyshev polynomials, as described by

x(n+1) =Ty (x,) = cos (k x arc cos(x,)),
@
y(m+1)=T,(y,,) = cos (I xarc cos(y,,)),

where (x,,y,,) € [-1,1] and (k,I) € [2,00) are control
parameters. The initial values x(0) and y(0) and parameters
(k, 1) are used as the key.

Step 1. The initial values x(0), y(0), k, and I of the two
Chebyshev polynomials from (1) are determined.

Step 2. The first and the second Chebyshev polynomials from
(1) areiterated for K, and L, times to avoid the harmful effects
of transitional procedures, respectively, where K, and L, are
different constants.

Step 3. The iteration of (1) continues, and, as a result, two
decimal fractions x(n) and y(m) are generated.

Step 4. These decimal fractions are preprocessed as follows:
x (n) = mod (ﬂoor (abs (x (n) x 1014)) , 2)

(2)
y (m) = mod (ﬂoor (abs (y (m) x 1014)),2),
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where abs(x) returns the absolute value of x, floor(x) returns
the value of x to the nearest integers less than or equal to x,
and mod(x, y) returns the reminder after division.

Step 5. The following threshold function g from (3) is applied:

1, ifx(n)>y(m),

0, ifx(n)<y(@m), 3)

Q(X(n)>y(m))={

and a pseudorandom bit is produced.

Step 6. Return to Step 3 until pseudorandom bit stream limit
is reached.

2.2. Pseudorandom Bit Generator Based on the Duffing Map.
In this section, the real numbers of two Duffing maps are
preprocessed and combined with a simple threshold function
to a binary pseudorandom sequence.

The Duffing map is a 2D discrete dynamical system which
takes a point (u,, v,,) in the plane and maps it to a new point.
The proposed pseudorandom bit generator is based on two
Duffing maps, given by the following equations:

Upnel = Vi

_ 3
Viper = —buy, +avy, —vi,

(4)
Uym+1 = Vomo

_ 3
Vomel = — by +aVvy =y

The maps depend on the two constants a and b. These are
usually set to a = 2.75 and b = 0.2 to produce chaotic nature.
The initial values u, 4, v, o, 14, and v, ; are used as the key.

Step 1. The initial values u, 4, v, 4, 1, and v, of the two
Duffing maps from (4) are determined.

Step 2. The first and the second Duffing maps from (4) are
iterated for M, and N,, times, respectively, to avoid the harm-
ful effects of transitional procedures, where M, and N, are
different constants.

Step 3. The iteration of (4) continues, and, as a result, two real
fractions x(n) and y(m) are generated.

Step 4. The following threshold function / from (5) is applied:

h (Vl,n’ V2,m) = {

and a pseudorandom bit is produced.

L ifv, > vy, 5)

0, ifv,,<v,,,

Step 5. Return to Step 3 until pseudorandom bit stream limit
is reached.

3. Statistical Test Analysis of the Proposed
Pseudorandom Bit Generators

In order to measure randomness of the zero-one sequence
generated by the new pseudorandom generators, we used
NIST, DIEHARD, and ENT statistical packages.
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The Chebyshev polynomial and the Duffing map based
pseudorandom bit schemes are implemented by software
simulation in C++ language, using the following initial seeds:
x(0) = 0.9798292345345, y(0) = -0.4032920230495034,
k =29951=3.07u,=-0.04, v,y =02, u,, = 0.23, and
vy = —0.13, stated as a key KI1.

3.1. NIST Statistical Test Analysis. The NIST statistical test
suite (version 2.1.1) is proposed by the National Institute
of Standards and Technology [20]. The suite includes 15
tests, which focus on a variety of different types of non-
randomness that could exist in a sequence. These tests
are frequency (monobit), block-frequency, cumulative sums,
runs, longest run of ones, rank, fast Fourier transform
(spectral), nonoverlapping templates, overlapping templates,
Maurer’s “universal statistical,” approximate entropy, random
excursions, random-excursion variant, and serial and linear
complexity. The testing process consists of the following steps:

(1) state the null hypothesis; assume that the binary
sequence is random;

(2) compute a sequence test statistic; testing is carried out
at the bit level;

(3) compute the P-value; P-value € [0, 1];

(4) fix «, where « € [0.0001,0.01]; compare the P-
value to «; Success is declared whenever P-value > «;
otherwise, failure is declared.

Given the empirical results from a particular statistical
test, the NIST suite computes the proportion of sequences
that pass. The range of acceptable proportion is determined
using the confidence interval defined as

~ p(1-p) (6)
3\ ——,
pt \j -
where p = 1 — « and m is the number of binary tested

sequences. In our setup, m = 1000. Thus the confidence
interval is

0.99 (0.01
0.99+3 0.99(001) _ 0.99 + 0.0094392. (7)
1000

The proportion should lie above 0.9805607.

The distribution of P-values is examined to ensure uni-
formity. The interval between 0 and 1 is divided into 10
subintervals. The P-values that lie within each subinterval are
counted. Uniformity may also be specified through an appli-
cation of x* test and the determination of a P-values cor-
responding to the goodness-of-fit distributional test on the
P-values obtained for an arbitrary statistical test, P-values of
the P-values. This is implemented by calculating

1 (F, - s/10)°
; s/10 ®)

where F; is the number of P-values in subinterval i and
s is the sample size. A P-values is calculated such that

P-value; = IGAMC(9/2,x°/2), where IGAMC is the
complemented incomplete gamma statistical function. If
P-value; > 0.0001, then the sequences can be deemed to be
uniformly distributed.

Using the proposed pseudorandom Using the proposed
pseudorandom bit generators were generated 1000 sequences
0f 1000000 bits. The results from all statistical tests are given
in Table 1.

The entire NIST test is passed successfully: all the P-
values from all 2 x 1000 sequences are distributed uniformly
in the 10 subintervals and the pass rate is also in acceptable
range. The minimum pass rate for each statistical test with the
exception of the random excursion (variant) test is approx-
imately 980 for a sample size of 1000 binary sequences for
both of pseudorandom generators. The minimum pass rate
for the random excursion (variant) test is approximately 589
for a sample size of 603 binary sequences for Chebyshev
polynomial based PRBG and 604 for a sample size of 618
binary sequences for Duffing map based PRBG. This shows
that the generated pseudorandom sequences feature reliable
randomness.

Overall, the results confirm that the novel chaotic cryp-
tographic schemes based on Chebyshev polynomial and
Dufting map accomplish a very high level of randomness of
the bit sequences.

3.2. DIEHARD Statistical Test Analysis. The DIEHARD suite
[21] consists of a number of different statistical tests: birthday
spacings, overlapping 5-permutations, binary rank (31 x 31),
binary rank (32 x 32), binary rank (6 x 8), bit stream, Over-
lapping Pairs Sparse Occupancy, Overlapping Quadruples
Sparse Occupancy, DNA, stream count-the-ones, byte count-
the-ones, 3D spheres, squeeze, overlapping sums, runs up,
runs down, and craps. For the DIEHARD tests, we generated
two files with 80 million bits each, from the proposed
chaotic pseudorandom bit generators. The results are given
in Table 2. All P-values are in acceptable range of [0, 1). The
proposed pseudorandom bit generators passed all the tests of
DIEHARD software.

3.3. ENT Statistical Test Analysis. The ENT package [22]
performs 6 tests (entropy, optimum compression, y* distri-
bution, arithmetic mean value, Monte Carlo 7 estimation,
and serial correlation coeflicient) to sequences of bytes stored
in files and outputs the results of those tests. We tested
output of the two strings of 125000000 bytes of the proposed
Chebyshev polynomial based pseudorandom bit generator
and Dufling map based pseudorandom bit generator, respec-
tively. The results are summarized in Table 3. The proposed
pseudorandom bit generators passed all the tests of ENT.

4. Image Encryption Based on Chebyshev
polynomial and Duffing Map

Here, we describe an image encryption scheme based on
the proposed Chebyshev polynomial and Duffing map based
pseudorandom bit generators. We also provide security
analysis of the encrypted images.
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TasLE 1: NIST statistical test suite results for 2 x 1000 sequences of size 10°-bit each generated by the proposed Chebyshev polynomial based
pseudorandom bit generator and Duffing map based pseudorandom bit generator.

NIST statistical test Chebyshev PRBG Duffing PRBG

P-value Pass rate P-value Pass rate
Frequency (monobit) 0.649612 990/1000 0.490483 989/1000
Block-frequency 0.455937 991/1000 0.777265 992/1000
Cumulative sums (forward) 0.877083 990/1000 0.660012 988/1000
Cumulative sums (reverse) 0.983938 992/1000 0.284024 987/1000
Runs 0.062427 995/1000 0.490983 993/1000
Longest run of ones 0.215574 993/1000 0.612147 992/1000
Rank 0.848027 991/1000 0.212184 988/1000
FFT 0.194813 993/1000 0.013474 993/1000
Nonoverlapping templates 0.504571 990/1000 0.458442 990/1000
Overlapping templates 0.219006 992/1000 0.279844 988/1000
Universal 0.660012 986/1000 0.278461 991/1000
Approximate entropy 0.000478 990/1000 0.363593 991/1000
Random excursions 0.508738 597/603 0.671829 612/618
Random excursions variant 0.614825 596/603 0.490932 612/618
Serial 1 0.585209 991/1000 0.779188 990/1000
Serial 2 0.767582 989/1000 0.713641 993/1000
Linear complexity 0.711601 986/1000 0.699313 991/1000

TaBLE 2: DIEHARD statistical test results for two 80 million bits
sequences generated by the proposed Chebyshev polynomial based
pseudorandom bit generator and Duffing map based pseudorandom
bit generator.

DIEHARD statistical test Chebyshev PRBG  Duffing PRBG

P-value P-value
Birthday spacings 0.377207 0.640772
Overlapping 5-permutation 0.410588 0.051538
Binary rank (31 x 31) 0.551701 0.900609
Binary rank (32 x 32) 0.940609 0.604265
Binary rank (6 x 8) 0.530332 0.504383
Bit stream 0.428729 0.461876
OPSO 0.493583 0.498226
0QSO 0.582980 0.478843
DNA 0.632916 0.505181
Stream count-the-ones 0.759561 0.853126
Byte count-the-ones 0.605761 0.479987
Parking lot 0.425621 0.412316
Minimum distance 0.522822 0.486276
3D spheres 0.468043 0.414503
Squeeze 0.236035 0.416625
Overlapping sums 0.543661 0.439732
Runs up 0.234988 0.775408
Runs down 0.527703 0.679825
Craps 0.128550 0.423157

4.1. Encryption Scheme. The proposed image encryption
algorithm is modification of the classical substitution-
permutation scheme [9], column by column shuffling and
masking procedures [23], and the diffusion-substitution

model [24]. Here, every single pixel relocation is based
on random permutation at once with substitution. The
novel derivative scheme has the features of a two-round
permutation-substitution color image encryption algorithm.
The image encryption method is based on the unique combi-
nation of the output bits of the new proposed pseudorandom
bit generators.

Without loss of generality, we assume that the dimension
of the plain images is m X n size, where m is the number of
rows and # is the number of the columns. The binary lengths
of mand n are n, and m,, respectively. The encryption process
is divided into two stages. In the first stage, we generate buffer
image B of m x n size by rearranging and modifying the pixel
values of the plain image P by Chebyshev polynomial based
PRBG. In the second stage, we generate ciphered image C of
m X n size by modifying the buffer pixel values by Duffing
map based PRBG. The encryption process starts with empty
buffer image. The plain image pixels are passed sequentially
left to right and top to bottom. The entire encryption process
is given below.

Step 1. The Chebyshev polynomial based PRBG is iterated
continuously to produce m, and n, bits pseudorandom
numbers i’ and j' which are transformed modulo m and n,
respectively.

Step 2. Repeat Step 1 until an empty pixel with (i', j') coordi-
nates in the buffer image is detected.

Step 3. Continue to do iteration of Chebyshev polynomial
based PRBG until 24 bits are produced.

Step 4. To produce buffered image pixel b(i', j'), do XOR
between a plain image pixel p(i, j) and the last generated 24
bits.
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TaBLE 3: ENT statistical test results for two 80 million bits sequences generated by the proposed Chebyshev polynomial based pseudorandom
bit generator and Duffing map based pseudorandom bit generator, respectively.

ENT statistical test Chebyshev PRBG results Duffing PRBG results

Entropy 7.999999 bits per byte 7.999999 bits per byte

Optimum compression OC would reduce the size of this 125000000 OC would reduce the size of this 125000000
byte file by 0% byte file by 0%

For 125000000 samples it is 222.98 and
randomly would exceed this value 92.68% of

x* distribution
the time

127.49810 (127.5 = random)
3.142062386 (error 0.01%)

Arithmetic mean value
Monte Carlo 77 estimation

Serial correlation coefficient

—0.000026 (totally uncorrelated = 0.0)

For 125000000 samples it is 228.17 and
randomly would exceed this value 88.54% of
the time

127.5050 (127.5 = random)
3.140968178 (error 0.02%)
0.000018 (totally uncorrelated = 0.0)

Step 5. Repeat Steps 1-4 until all of the plain image pixels are
processed.

Step 6. Iterate the Duffing map based PRBG to produce mxnx
24 bits. Then, do XOR operation between the pseudorandom
bit sequence and all of the buffer pixels in the buffered image
to produce the encryption image C.

For the reasons of security, we propose several overall
rounds of the encryption procedure.

4.2. Security Analysis. The novel image encryption algorithm
is implemented in C++ language. All experimental results
discussed in the next subsections have been taken by using
one iteration of the scheme.

Sixteen 24-bit color images have been encrypted for the
security tests. The images are selected from the USC-SIPI
image database, miscellaneous volume, available and main-
tained by the University of Southern California Signal and
Image Processing Institute (http://sipi.usc.edu/database/).
The image numbers are from 4.1.01 to 4.1.08, size 256 x 256
pixels, from 4.2.01 to 4.2.07, size 512 x 512 pixels, and House,
size 512 x 512 pixels. The chosen images are currently stored
in TTFF format and we have converted them into BMP format
(24 bits/pixel).

4.2.1. Key Space Analysis. The key space is the set of all
possible keys that can be used in encryption/decryption
algorithm. The key of the proposed image encryption scheme
is that it is produced by the combination of Chebyshev
polynomial based PRBG and Duffing map based PRBG.
The novel scheme has eight secret keys x(0), y(0), k, I,
Uy, V9> Uyg> and v,,. According to the IEEE floating-
point standard [25], the computational precision of the 64-bit
double-precision number is about 107"°. If we assume the
precision of 107'4, the secret key’s space is more than 10" =
2%”3, This is large enough to defeat brute-force attacks [26]
and it is larger than key space size of the image encryption
algorithms proposed in [10, 27-29].

Moreover, the initial iteration numbers K, L,, M, and
N, can also be used as a part of the secret key.

4.2.2. Visual Testing. The new algorithm is tested using
simple visual inspection of the plain images and corre-
sponding encrypted images. The visual observation does
not find convergences between every plain image and its
encrypted versions. As an example, Figure 1 shows the plain
image 4.2.05 Airplane (F-16), Figure 1(a), and its encrypted
version, Figure 1(b). The encrypted image does not contain
any constant regions in representative color or texture. The
proposed chaos based image encryption breaks any visual
data from the plain images.

4.2.3. Histogram Analysis. An image histogram of pixels is
a type of a bar graph. It illustrates the visual impact of a
distribution of colors that are at certain intensity. We have
calculated histograms of red, green, and blue channels of both
plain images and their encrypted version by the new image
encryption scheme. One representative example among them
is shown in Figure 2. The histograms of encrypted image are
completely uniformly distributed and considerably different
from that of the plain image.

In addition, the average pixel intensity calculations in
Table 4, for all of the encrypted images, confirmed the
uniformity in distribution of red, green, and blue channels.

4.2.4. Information Entropy. The entropy H(X) is statistical
measure of uncertainty in information theory [1]. It is defined
as follows:

255

H(X) = —ZP (x;)log,p (x;). ©)
=0

where X isa random variable and p(x;) is the probability mass
function of the occurrence of the symbol x;. Let us consider
that there are 256 states of the information source in red,
green, and blue colors of the image with the same probability.
We can get the ideal H(X) = 8, corresponding to a truly
random source.

The information entropy of red, green, and blue channels
of the plain images and their corresponding encrypted images
are computed and displayed in Table 5. From the obtained
values, it is clear that the entropies of red, green, and blue
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FIGURE 1: Comparison of the plain image and the encrypted image: (a) original picture 4.2.05 Airplane (F-16); (b) encrypted image of 4.2.05

Airplane (F-16).
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FIGURE 2: Histogram analysis of plain image and encrypted image: (a), (c), and (e) show the histograms of red, green, and blue channels of
plain picture 4.2.05 Airplane (F-16); (b), (d), and (f) show the histograms of red, green, and blue channels of encrypted picture 4.2.05 Airplane

(F-16).

colors of the encrypted images are very close to the best
possible theoretical value, which is an indication that the
new chaos based image encryption scheme is trustworthy and
secure upon information entropy attack.

4.2.5. Correlation Coefficient Analysis. The adjacent pixels
in plain images are strongly correlated in either horizontal,

vertical, or diagonal direction. The correlation coefficient r
between two adjacent pixels (a;, b;) is computed in accordance
with the way described in [30]. Consider

cov (a,b)

R 10
\D (a) VD (b) 1)
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TABLE 4: Average pixel intensity of plain image colors and encrypted image colors.
File name Plain image color Encrypted image color
Red Green Blue Red Green Blue
4.1.01 75.827 52.559 46.305 127.661 127.203 127.458
4.1.02 42.075 30.086 27540 128.033 127.233 127.413
4.1.03 137.603 139.958 144.018 127.265 127.394 127.697
4.1.04 129.218 99.267 125.199 127.393 127.275 127.021
4.1.05 146.564 133.000 142.023 127.779 127.268 126.878
4.1.06 132.202 124.902 143.263 127.563 127.377 127.346
4.1.07 179.204 180.650 142.348 127.152 127.325 127.378
4.1.08 174.897 170.866 128.346 126.856 127.426 127.563
4.2.01 176.270 70.494 108.898 127.562 127.118 127.468
4.2.02 234.195 208.644 163.552 127.101 127.729 127.722
4.2.03 137.391 128.859 113.117 127.199 128.126 127.392
4.2.04 180.224 99.051 105.410 127.266 127311 127519
4.2.05 177.577 177.852 190.214 127.331 127.565 127.654
4.2.06 131.007 124.304 114.893 127.254 127.850 127.450
4.2.07 149.821 115.568 66.534 127.368 127.379 127.257
House 155.436 168.226 142.209 127.419 127.659 127.525
TABLE 5: Entropy results of plain images and encrypted images.
File name Plain image color Encrypted image color
Red Green Blue Red Green Blue
4.1.01 6.42005 6.44568 6.38071 7.96418 7.96805 7.96648
4.1.02 6.24989 5.96415 5.93092 7.96622 7.96734 7.96629
4.1.03 5.65663 5.37385 5.71166 7.96606 796740 796398
4.1.04 7.25487 727038 6.78250 796692 7.96552 7.96741
4.1.05 6.43105 6.53893 6.23204 7.96587 7.96618 7.96776
4.1.06 7.21044 7.41361 6.92074 7.96598 7.96697 7.96786
4.1.07 5.26262 5.69473 6.54641 7.96392 796634 796632
4.1.08 5.79199 6.21951 6.79864 7.96515 7.96651 796782
4.2.01 6.94806 6.88446 6.12645 7.96799 7.96762 7.96848
4.2.02 4.33719 6.66433 6.42881 796825 7.96838 7.96582
4.2.03 770667 7.47443 7.75222 7.96999 7.96778 796859
4.2.04 7.25310 759404 6.96843 7.96777 796932 7.96998
4.2.05 6.71777 6.79898 6.21377 7.96715 7.96807 7.96883
4.2.06 7.31239 7.64285 721364 7.96799 7.96749 796791
4.2.07 7.33883 749625 7.05831 7.96864 7.96756 7.96730
House 7.41527 7.22948 7.43538 7.96849 7.96825 7.96735
where b)), obtained from

1Y _\2
D(a) = MZ((J,- -a)’,
i=1

D(b)=$

M

>(n-5),

i=1

M
cov (a,b) = Z (a; —a) (b,» —l;),

i=1

(1)

M is the total number of couples (a;,
the image, and @, b are the mean values of g; and b,
respectively. Correlation coefficient can range in the interval
[~1.00; +1.00].

Table 6 shows the results of horizontal, vertical, and
diagonal adjacent pixels correlation coefficients calculations
of the plain images and the corresponding encrypted images.
It is clear that the novel image encryption scheme does not
retain any linear dependencies between observed pixels in
all three directions: the inspected horizontal, vertical, and
diagonal correlation coefficients of the encrypted images are
very close to zero. Overall, the correlation coefficients of
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TABLE 6: Horizontal, vertical and diagonal correlation coefficients of adjacent pixels in plain images and encrypted images.

File name Plain image correlation Encrypted image correlation

Horizontal Vertical Diagonal Horizontal Vertical Diagonal
4.1.01 0.956725 0.952503 0.937836 0.001274 0.001785 0.003044
4.1.02 0.908923 0.944135 0.889084 —-0.007292 0.007162 0.004493
4.1.03 0.970861 0.916864 0.895799 —0.005882 —-0.004236 0.002140
4.1.04 0.956759 0.964448 0.930833 —-0.004143 —-0.006414 0.008894
4.1.05 0.982138 0.974908 0.962532 0.005939 —-0.001269 —-0.002035
4.1.06 0.959183 0.934498 0.926566 0.003809 0.011929 —-0.002274
4.1.07 0.988603 0.987932 0.979855 —-0.008391 0.001379 —-0.000308
4.1.08 0.977248 0.979839 0.958275 0.000991 —-0.000089 —0.002968
4.2.01 0.978507 0.970863 0.964947 0.001250 —-0.000860 0.001454
4.2.02 0.896888 0.909936 0.863983 0.000449 0.001230 —-0.000765
4.2.03 0.907119 0.877498 0.839639 -0.001320 —-0.000628 —-0.000366
4.2.04 0.933223 0.958036 0.918587 —-0.004386 0.000342 0.000569
4.2.05 0.962496 0.915378 0.914867 0.004689 0.000547 0.000136
4.2.06 0.969769 0.968659 0.953038 0.000850 0.005358 0.003821
4.2.07 0.964885 0.961169 0.948114 0.001554 -0.001897 0.002504
House 0.975076 0.959036 0.944382 0.001099 —-0.002301 0.001799

TaBLE 7: NPCR and UACI results of encrypted plain images and encrypted with one pixel difference plane images.
File name NPCR test UACI test
Red Green Blue Red Green Blue

4.1.01 99.5701 99.5911 99.6155 33.6394 33.3493 33.4648
4.1.02 99.6613 99.5743 99.5804 33.4397 33.3669 33.4438
4.1.03 99.6094 99.6216 99.6109 33.3171 33.5476 33.3226
4.1.04 99.6323 99.6384 99.6155 33.4149 33.5338 33.3298
4.1.05 99.5987 99.6201 99.5743 33.4149 33.5670 33.4883
4.1.06 99.5693 99.5972 99.5705 33.4311 33.4601 33.4934
4.1.07 99.5941 99.6094 99.5972 33.5586 33.4576 33.4826
4.1.08 99.6490 99.6414 99.6536 33.4083 33.5591 33.4937
4.2.01 99.6346 99.6033 99.6311 33.4646 33.4548 33.4644
4.2.02 99.6120 99.6056 99.5894 33.4073 33.5304 33.4401
4.2.03 99.6197 99.6021 99.6273 33.4377 33.3873 33.4169
4.2.04 99.6109 99.6094 99.6185 33.4668 33.5337 33.3924
4.2.05 99.6025 99.5975 99.6101 33.4869 33.4080 33.4413
4.2.06 99.6136 99.5953 99.6361 33.3937 33.5238 33.5039
4.2.07 99.6426 99.6231 99.6300 33.4659 33.5129 33.4368
House 99.6357 99.6082 99.6220 33.3519 33.4210 33.4300

the proposed algorithm are similar to results of four other
image encryption schemes [27-30].

4.2.6. Differential Analysis. In the main, a typical property
of an image encryption scheme is to be sensitive to minor
alterations in the plain images. Differential analysis supposes
that an enemy is efficient to create small changes in the
plain image and inspect the encrypted image. The alteration
level can be measured by means of two metrics, namely, the
number of pixels change rate (NPCR) and the unified average
changing intensity (UACI) [30, 31].

Suppose encrypted images before and after one pixel
change in plain image are C; and C,. The NPCR and UACI
are defined as follows:

Yo Yo D
NPCR = ¢)) x 100%,
W xH
W-1H-1 C -C
UACI_ Z ZI l(l] 2(1 .])| XIOO%,
i=0 j=0
(12)

where D is a two-dimensional array, having the same size as
image C, or C,, and W and H are the width and height of the



The Scientific World Journal

TaBLE 8: Correlation coefficients between the corresponding pixels of the 48 different encrypted images obtained from the 16 plain images

by using the three slightly different secret keys: K1, K2, and K3.

Encrypted imagel Encryptedimage2  Correlation coefficient ~ Encrypted imagel  Encrypted image2  Correlation coefficient
4.1.0LK1 4.1.01L.K2 0.006252 4.2.01.K1 4.2.01.K3 0.001802
4.1.02.K1 4.1.02.K2 0.002129 4.2.02.K1 4.2.02.K3 0.000867
4.1.03.K1 4.1.03.K2 0.006434 4.2.03.K1 4.2.03.K3 0.001430
4.1.04.K1 4.1.04.K2 0.001634 4.2.04.K1 4.2.04.K3 0.000064
4.1.05.K1 4.1.05.K2 —-0.001745 4.2.05.K1 4.2.05.K3 0.003107
4.1.06.K1 4.1.06.K2 —-0.005686 4.2.06.K1 4.2.06.K3 —-0.001260
4.1.07K1 4.1.07.K2 0.000907 4.2.07K1 4.2.07.K3 —-0.001401
4.1.08.K1 4.1.08.K2 —-0.003864 House.K1 House.K3 —-0.001986
4.2.01.K1 4.2.01.K2 0.000299 4.1.01.K2 4.1.0LK3 -0.002088
4.2.02.K1 4.2.02.K2 0.001053 4.1.02.K2 4.1.02.K3 —-0.001454
4.2.03.K1 4.2.03.K2 0.000103 4.1.03.K2 4.1.03.K3 -0.003497
4.2.04.K1 4.2.04.K2 0.001290 4.1.04.K2 4.1.04.K3 —-0.002121
4.2.05.K1 4.2.05.K2 0.000557 4.1.05.K2 4.1.05.K3 -0.002167
4.2.06.K1 4.2.06.K2 -0.000290 4.1.06.K2 4.1.06.K3 0.000598
4.2.07.K1 4.2.07.K2 0.001601 4.1.07.K2 4.1.07K3 0.004454
House K1 House.K2 0.000905 4.1.08.K2 4.1.08.K3 0.001396
4.1.0L.K1 4.1.01.K3 —-0.001953 4.2.01.K2 4.2.01.K3 0.004092
4.1.02.K1 4.1.02.K3 0.002054 4.2.02.K2 4.2.02.K3 —-0.000099
4.1.03.K1 4.1.03.K3 0.004989 4.2.03.K2 4.2.03.K3 0.000007
4.1.04.K1 4.1.04.K3 0.001796 4.2.04.K2 4.2.04.K3 0.000170
4.1.05.K1 4.1.05.K3 -0.000826 4.2.05.K2 4.2.05.K3 0.002596
4.1.06.K1 4.1.06.K3 0.004114 4.2.06.K2 4.2.06.K3 0.003894
4.1.07K1 4.1.07K3 -0.000977 4.2.07.K2 4.2.07.K3 -0.001332
4.1.08.K1 4.1.08.K3 -0.000203 House.K2 House.K3 —-0.000282
image. The array D(i, j) is defined by C, (i, j) and C, (3, j); if TaBLE 9: Time test (seconds).
C,(, j) = C,(i, j), then D(i, j) = 1; otherwise, D(i, j) = 0. The " el Rel Ref
NPCR and UACI test results from the proposed chaos based nage cerence cerence €EreNe  Our scheme
algorithm are shown in Table 7. e [24] [32] [33]

The obtained NPCR values for the images from 4.1.01 to 256 % 256 0.22 1.34 0.35 0.9

512 x 512 1.04 5.26 0.72 0.61

4.1.08 are larger than critical values N ;s = 99.5693, Ny, =
99.5527,and Ny oy, = 99.5341 and, for the images from 4.2.01
to 4.2.07 and House image, are larger than critical values
N{ o5 = 99.5893, Ny, = 99.5810, and N o, = 99.5717 [31].

The obtained UACI values for the images from 4.1.01 to
4.1.08 are in the intervals from N s = 33.2824 to N5 =
33.6447, from N;,, = 33.2255 to N;,, = 33.7016, and from
Nyoor = 33.1594 to Ny, = 33.7677. The obtained UACI
values for the images from 4.2.01 to 4.2.07 and House image
are in the intervals from N, = 33.3730 to N ;5 = 33.5541,
from Ny, = 33.3445 to Nj,, = 33.5826, and from Nj o, =
33.3115 to Ny 5, = 33.6156 [31].

The results from NPCR and UACI computations indicate
that the new image encryption scheme is highly sensitive with
respect to small changes in the plain images and has a strong
ability of resisting differential cryptanalysis.

4.2.7. Key Sensitivity Test. Another important component of
correlation analysis is the key sensitivity test. A good image
encryption algorithm should be sensitive with respect to the
secret key, that is, a slight modification of the secret key. We
encrypted the 16 images with three similar secret keys: K1,

K2 (x(0) = 0.9798292345346, y(0) = —0.4032920230495034,
k = 29951 = 307, u;y = ~0.04, v, = 02, up, = 0.23,
and v,, = —0.13), and K3 (x(0) = 0.9798292345347, y(0) =
-0.4032920230495034, k = 2.995,1 = 3.07, u;, = -0.04,
vip = 0.2, uy, = 023, and v,;, = -0.13). The results
are shown in Table 8. It is evident that the proposed image
encryption is highly key sensitive: the calculated correlation
coeflicients are very close to 0.00.

Moreover, in Figure 3, the results of two tests are shown
to decrypt the Figure 1(b), with the secret keys K2 and K3.

We observed that the two decrypted images (Figure 3(a)
and Figure 3(b)) have no relation with the plain image 4.2.05,
Figure 1(a).

4.2.8. Speed Test. We have measured the encryption time
for 256 x 256 and 512 x 512 sized images by using the novel
image encryption algorithm. Speed analysis has been done
on 2.8 GHz Pentium IV personal computer. In Table 9, we
compared the speed of our method with [24, 32, 33]. The
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(a)
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FIGURE 3: Decryption of Image 4.2.05 Airplane (F-16): (a) encrypted with key K1 and decrypted using key K2 and (b) encrypted with key K1

and decrypted using key K3.

data show that the proposed image encryption scheme has
a satisfactory speed.

5. Conclusions

A novel image encryption algorithm based on dynamical
chaotic systems is proposed in this paper. The developed
encryption scheme combines Chebyshev polynomial based
permutation and substitution and Duffing map based substi-
tution. A precise security analysis on the novel encryption
algorithm is given. Based on the experimental results of
our computations, we conclude that the proposed chaos
based image encryption technique is perfectly suitable for the
practical image encryption.
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