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Abstract

Segmentation of the lungs within magnetic resonance (MR) scans is a necessary step in the

computer-based analysis of thoracic MR images. This process is often confounded by image

acquisition artifacts and disease-induced morphological deformation. We have developed an

automated method for lung segmentation that is insensitive to these complications. The automated

method was applied to 23 thoracic MR scans (413 sections) obtained from 10 patients. Two

radiologists manually outlined the lung regions in a random sample of 101 sections (n=202 lungs),

and the extent to which disease or artifact confounded lung border visualization was evaluated.

Accuracy of lung regions extracted by the automated segmentation method was quantified by

comparison with the radiologist-defined lung regions using an area overlap measure (AOM) that

ranged from 0 (disjoint lung regions) to 1 (complete overlap). The AOM between each observer

and the automated method was 0.82 when averaged over all lungs. The average AOM in the lung

bases, where lung segmentation is most difficult, was 0.73.
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I. INTRODUCTION

Segmentation is a necessary preprocessing step in computer-based analysis of medical

images. Many computer-aided diagnostic (CAD) systems apply segmentation as a first step

within the larger methodology. This step increases both the specificity and sensitivity of the

task and decreases computation time by limiting analysis to specific structures of interest.

Segmentation of lung regions has been extensively researched in thoracic computed

tomography (CT) scans;1-7 however, the need for lung segmentation in magnetic resonance

(MR) scans of the thorax has been limited because long acquisition times and severe image

artifacts have, until recently, restricted the clinical utility of thoracic MR scans. Increased in-
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plane resolution, improved pulse sequences, decreased acquisition time, and use of new

contrast media (e.g. hyperpolarized gas) have made thoracic MR a viable imaging study,

which has renewed interest in lung segmentation.8-17 Previous segmentation methods

concentrated on edge-based and model-based11 methods instead of the alternative region-

based segmentation method presented in this paper. The edge-based methods include

application of active contours using non-linear diffusion,15 merging of multiple active

contours,17 and an active contour/neural network combination16 to minimize the impact of

imaging artifacts on segmentation accuracy.

Magnetic resonance imaging has value in differentiating normal lung tissue from other

anatomic structures and diseases. Although normal lung produces almost no MR signal,

many diseases (for example mesothelioma) exhibit a high signal intensity even without the

introduction of a contrast agent.8 Unfortunately, image acquisition artifacts can still corrupt

MR images and complicate subsequent attempts at image segmentation. Examples of such

artifacts include, but are not limited to, partial volume effects, localized signal loss

(shadowing), chemical shift artifacts, and motion artifacts.

One of the most common and severe artifacts is image ghosting due to patient motion.

Ghosting along the phase-encoding dimension results when any repetitive motion (e.g.,

cardiac and pulmonary motion) occurs during image acquisition.18 The cardiac motion

artifact appears as a large column of noise (image ghosting) that extends along the

anteroposterior dimension of the image. This column often masks the underlying lung, as

demonstrated in Figure 1. Injection of a contrast agent such as gadolinium further enhances

the gray-level intensities in the heart and thus exacerbates this artifact. Two types of

pulmonary motion artifact related to respiration may be present in thoracic MR scans. The

first (Fig. 1) creates ghost contours of the chest, while the second results when the motion

and high gray-level values of the diaphragm artificially increase the signal in the lung bases.

Disease may also adversely impact automated lung segmentation. The morphologic

deformation of the lungs caused by diseases such as mesothelioma and pleural effusion can

degrade the results of segmentation methods based on lung-shape descriptors and gray-level

thresholding alone (Fig. 1). In this study, we developed an automated method for lung

segmentation that accounts for common thoracic MR image artifacts and morphological

lung deformation due to disease.19 This method was validated based on the manual lung

segmentations of two radiologists using an area of overlap measure and observer ratings of

disease/artifact extent and level of lung boundary obscuration.

II. MATERIALS AND METHODS

A) Database

Twenty-three thoracic MR scans (413 total sections) were collected retrospectively from ten

patients (7 males and 3 females; age range: 59-77 years, mean: 68 years) with appropriate

IRB approval. The 256×256 T1-weighted spoiled GRASS (SPGR) MR scans were acquired

on a 1.5T scanner (Genesis Signa; GE Medical Systems, Fairfield, CT) with repetition times

between 150-200ms, 3.1-4.2ms echo times, mean slice thickness of 8mm, and spatial

resolutions between 1.63 and 1.77mm. Eight pair of scans consisted of the same patient
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before and after the administration of contrast agent. Five patients had multiple pre-contrast

and/or post-contrast scans (mean separation time: 21 days). Sections containing anatomy

superior to the lung apices or inferior to the lung bases were manually removed from each

scan. Twenty of the 23 patient scans (9 of 10 patients) were abnormal and included

pathology such as mesothelioma, scarring, pleural plaques, enlarged lymph nodes,

hydropneumothorax, lung resection, lung nodules, intrathoracic extrapleural fat, and

pericardial effusion.

B) Automated Segmentation Method

The automated lung segmentation method was based on a core segmentation method2 (Fig.

2). The thorax is segmented from the background within each section of the MR scan using

a gray-level threshold obtained by analyzing the slope of the average cumulative gray-level

histogram constructed along two lines extending from the center of the image to its top

corners. After application of this threshold to create a binary image from the original image,

the contour of the largest contiguous group of “on” pixels in the binary image defines the

“thoracic contour.” All pixels of the original image that lie within the thoracic contour then

constitute the thoracic region. Shape descriptors that mathematically quantify morphological

characteristics of image regions (e.g., area and compactness20) are calculated from the

thoracic region and compared with empirically determined descriptor thresholds (Table 1).

If the thoracic descriptors fall outside their respective thresholds, then the gray-level

threshold is lowered by a value of 5 and the process is repeated. If the threshold reaches

zero, then we assume the initial threshold was too low. The process is then repeated with an

initial threshold equal to half the mean gray-level value of the image. After the thorax is

detected, a series of erosion and dilation filters is applied to smooth the thoracic contour

prior to lung segmentation.

Once the thorax-segmented image is created, histogram-based gray-level thresholding

techniques are applied to create a lung-thresholded image. A gray-level threshold for lung

segmentation is determined by searching the gray-level histogram of the segmented thorax

for the local minimum with the lowest overall gray-level value (Fig. 3). After application of

this threshold to create a binary image from the thorax-segmented image, the contours of all

contiguous groups of “on” pixels in the binary image define the “lung contours.” All pixels

of the thorax-segmented image that lie within a lung contour then constitute a lung region.

Area, compactness, center of mass, and contour length shape descriptors are computed for

each region and non-lung regions are eliminated based on empirically determined descriptor

thresholds (Table 1). If no regions exist in the thresholded image, then the gray-level

threshold is automatically lowered by a value of 2 and the process is repeated. If the

threshold is set to zero, then the initial threshold was set too low. The initial threshold is then

increased by a third of the difference between the thoracic and the initial thresholds and the

process is repeated. If no lung is found after eighty tries, then the image is determined to

contain no viable lung regions; otherwise a lung-segmented image is formed (Fig. 4).

The presence of disease or artifact has the potential to confound the core method, which

generates acceptable segmentation results for only a narrow subset of MR sections. Task-

specific modifications were added to the core method to increase segmentation accuracy and

Sensakovic et al. Page 3

Med Phys. Author manuscript; available in PMC 2014 April 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



robustness (Fig. 2). In parallel with the core method, a second lung-thresholded image is

created to capture valid lung areas that might be absent from the first lung-thresholded

image because of artifact or disease. First, a 3×3-pixel grayscale erosion operator is applied

to the segmented thorax. This filter lowers the gray levels of the lung regions masked by

artifact or disease by assigning the minimum of the local neighborhood to the pixel of

interest (Figs. 2 and 5). The filtered lung pixels more accurately approximate the actual gray

levels of the lung because artifact and disease are typically not homogeneous. Thus, masked

lung pixel values are simultaneously lowered and homogenized by the filter. Gray-level

thresholding techniques, morphological filters, and shape descriptors (Table 1), as described

previously, are then applied to the filtered section.

Application of the grayscale erosion filter is indiscriminate and often results in the

incorporation of non-lung areas within the thresholded lung regions. These non-lung areas

typically include pixels representing surrounding soft tissue with gray levels that had been

modified by the grayscale erosion filter. To eliminate these non-lung areas a closing and

opening filter are applied to the lung regions, and a series of rolling ball filters1 (with

diameters of 9, 7, and 5 pixels, respectively) is applied to the internal aspect of the lung

segmentation contours to eliminate these non-lung “protrusions” (Fig. 2). At each lung

contour pixel, a disc is placed inside the contour (Fig. 6) with an orientation that yields the

greatest amount of overlap between the lung contour and the disc boundary. The segment of

lung contour that exists between the two extreme points of contact with the disc boundary is

analyzed. If the lung contour segment exceeds a predefined fraction of the corresponding

disc boundary segment (Table 1), then a line is drawn to connect the two contact points; if

the intersection of the new connecting line and the original lung contour exceeds a

predefined threshold (Table 1), then the lung contour is considered to be too contorted, and

the original contour is maintained to avoid creating a contour that might be inconsistent.

With both length and contortion checks passed, the non-lung portion of the contour (i.e.

beyond the new connecting line) is eliminated. Thus, these disc-shaped filters locate and

eliminate protrusions in the lung contour based on shape characteristics.

Application of the rolling ball filters in the second lung-thresholded image may eliminate

valid lung areas along with the non-lung areas. These incorrectly eliminated lung areas,

however, are often present in the first lung-thresholded image and thus can be correctly

retained. The lung region shape characteristics from the second lung-thresholded image are

analyzed and those that are within predetermined values are combined with regions from the

first lung-thresholded image through application of a logical OR operator to construct the

final lung-segmented image. The circularity21 for each new region added to the first lung-

thresholded image is calculated. Circularity is defined as

(1)

where Rcircle is the number of region pixels falling within an area-equivalent circle that is

centered at the region's center of mass and Rtotal is the total number of pixels in the region.

The region is eliminated if it is not within an empirically determined circularity threshold

(Table 1). This process eliminates rinds of non-lung pixels that are incorrectly segmented
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due to the grayscale erosion filter, but not eliminated by the rolling ball. The result is a lung-

segmented image using the complete method (Figs. 4 and 7). This automated lung

segmentation method was applied to all 413 sections of the 23-case database of thoracic MR

scans.

C) Automated Method Evaluation

A random sample of 101 sections was chosen from the 413-section database. Two thoracic

radiologists independently manually outlined the lung regions in each section through a

computer interface. For each lung in each section, one of the radiologists rated the impact of

artifact and disease on the visualization of the lung contour on four separate scales. The

percentage of the lung contour affected by imaging artifacts (“extent”) was rated on a scale

from 1 (no artifact present along the lung contour) to 5 (75 to 100 percent of the lung

contour affected). The degree to which artifact caused uncertainty in the visualization of the

lung contour (“obscuration”) was rated on a scale from 1 (does not obscure lung contour) to

5 (completely obscures lung contour). Similarly, the extent and obscuration due to disease

was rated for each lung.

An area of overlap measure (AOM) was used to compare the observer-outlined lung regions

with each other and with regions created by the complete and the core automated method.

The AOM measure is defined as:

(2)

where A is a lung region from one observer or method and B is a lung region from another

observer or method. AOM is defined on the scale [0, 1], with a value of 0 corresponding to

disjoint regions and a value of 1 corresponding to complete overlap.

III. RESULTS

The distributions of radiologist extent and obscuration ratings for the randomly sampled

sections are shown in Figure 8. The radiologist rated n=5 lungs as artifact free and n=112

lungs as disease free. Obscuration was rated only for those lung regions in which either

disease or artifact existed (i.e., extent greater than 1). These ratings served to characterize

the complexity of the database.

The AOM values between the manual lung contours of the two radiologists are shown in

Table 2. The two disjoint lung regions between the radiologists were located in the base

sections of the lungs; severe motion and partial volume artifacts due to the diaphragm

rendered the composition of these regions difficult to ascertain so that one radiologist

identified lung in a base section while the other did not. There was a substantial increase in

the standard deviation of the AOM and decrease in average AOM for lung bases compared

with the AOM for all lungs.

The AOM values between the manual lung contours of each radiologist and the contours

generated by the complete automated method are shown in Tables 3 and 4. The average

AOM values over all lung regions with respect to Radiologist 1 and Radiologist 2 were 0.82
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+ 0.16 and 0.83 + 0.13 respectively. A comparison between each radiologist and the core

automated method applying only thresholding and shape descriptors (excluding the use of

the second grayscale eroded image) is also shown in Tables 3 and 4 for comparison. The

average AOM was increased when the complete method was applied to the MR sections. A

paired Student's t-test for differences in means showed that this accuracy increase between

the core method and the complete method was statistically significant, with p<0.01 when the

two automated methods were evaluated with the manual contours of Radiologist 1 and

p<0.001 when evaluated with the manual contours of Radiologist 2. The task specific

modifications included in the complete method reduced the number of disjoint lung regions

by five for each radiologist when compared with the core automated method. There was a

substantial increase in the standard deviation of the AOM and decrease in average AOM (1)

for lung bases compared with the AOM for all lungs and (2) for left lung regions compared

with right lung regions.

To further analyze the performance of the complete automated method compared with

radiologists, a Student's t-test was performed between 1) the AOM of Radiologist 1 and the

complete automated method vs. the AOM of Radiologist 2 and the complete automated

method (p=0.96), 2) the AOM of Radiologist 1 and the complete automated method vs. the

AOM of Radiologist 1 and Radiologist 2 (p=0.67), and 3) the AOM of Radiologist 2 and the

complete automated method vs. the AOM of Radiologist 1 and Radiologist 2 (p=0.61).

The complete automated method utilizes several empirically determined shape descriptor

thresholds (Table 1) to segment lung regions. However, the empirically determined nature of

these thresholds introduces the possibility of reducing robustness by over-training based on

a given data set. The sensitivity of the complete method to each threshold was determined

by varying each parameter threshold individually by both +30% and –30% and by

determining the resulting AOM value between the complete automated method (with

modified parameter thresholds) and both radiologists for the same 101 randomly selected

sections. The maximum area threshold was not increased because lung region area should

never exceed half the thoracic area. The complete set of mean AOM values is presented in

Table 5. The greatest change in mean AOM value that results between the two modified

thresholds for a single descriptor occurred for the x-axis center-of-mass range; the resulting

change in mean AOM was 0.5%, suggesting that the complete automated method is robust

to variations in shape descriptor thresholds.

IV. DISCUSSION

The main goal of this study was to develop a fully automated method to segment lung

regions from transverse MR sections. The method was run using unoptimized code written

in Matlab 7 on an AMD XP 2500+ with 1 Gigabyte of RAM and the Linux operating

system. The average total time per section for complete segmentation was 21 seconds. The

average time per section to calculate acceptable thoracic and lung thresholds is 1.6s

(corresponding to 7 iterations) and 0.6s (corresponding to 3 iterations) respectively. The

remaining time per section is spent applying the rolling ball, minimizing filter,

morphological filters, logical OR, grayscale erosion filter, and retrieving DICOM header

information.
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This study differs from previous MR segmentation studies by using an area-based

segmentation approach and in the evaluation methodology by segmenting in the presence of

disease. Previous segmentation methods concentrated on edge-based and model-based11

methods. The edge-based methods include application of active contours using non-linear

diffusion,15 merging of multiple active contours,17 and an active contour/neural network

combination16 to minimize the impact of imaging artifacts on segmentation accuracy. These

studies utilize databases with vastly different size and composition and report results based

on disparate evaluation methods. Specifically, most of these previous studies reported

segmentation results from analysis of partial thoracic MR scans, MR scans without the

specification of image acquisition parameters, or MR images without a description of

possible diseases. The fully automated method presented in this study was evaluated on a

large database of MR scans that contained a range of diseases, image artifacts, and

acquisition parameters, including both contrast and non-contrast enhanced sections. The

randomly sampled sections displayed a range of values for both extent and obscuration due

to artifact and disease, thus making the sample set diverse. The application of the complete

automated method to such a diverse clinical database and the resulting high AOM values

suggest an encouraging level of robustness.

The first assessment of performance compared the core automated method with the

complete automated method. The core method used only gray-level thresholding and

regional shape descriptors to segment lung regions, while the complete method included the

additional steps of grayscale erosion and rolling ball filtering. These additional steps

substantially increased the segmentation accuracy as demonstrated by the AOM values of

Tables 3 and 4. The AOM values between each radiologist and the complete automated

method were both comparable with the AOM values achieved between radiologists. This

suggests that, overall, the complete automated method performed very well when compared

with differences among radiologists. The results of the paired Student's t-test support our

notion that the automatically segmented lung regions are comparable to radiologist

segmented lung regions and that the task specific lung segmentation modifications

minimized the extent to which disease and artifact easily confounded the automated method.

The AOM values for the left lung were consistently lower than those for the right lung

across all comparisons. This asymmetry is primarily due to cardiac motion artifact. The

decision of how much of the great vessels to include within the lung regions complicates

construction of the lung contour along the mediastinal aspects of both lungs; however, the

position of the heart in the left hemithorax makes the left lung field especially susceptible to

cardiac motion artifact, which increases the difficulty of constructing the mediastinal aspect

of the left lung contour and increases the likelihood that left lung mediastinal contours will

be constructed differently, thus decreasing the AOM value.

The lung bases are the most difficult part of the lung to automatically segment. The large

regions are replaced by thin, irregular, C-shaped regions due to the intrusion of the

diaphragm into the imaging plane. These sections are made even more irregular due to

patient respiration, which introduces both motion and partial volume artifacts into the lung

base regions. These sections had the lowest AOM values for radiologists vs. complete and

core automated methods and for radiologist 1 vs. radiologist 2 as shown in Table 2. It should
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be noted, however, that although the AOM values were low between the complete

automated method and the radiologists, these values were still comparable to the between-

radiologist AOM values, thus implying satisfactory segmentation even in the difficult lung

base sections.

V. CONCLUSION

Segmentation of MR images is complicated by severe image artifacts from multiple sources.

We have created a method that is able to accurately segment lung regions even in the

presence of artifact and disease. The automated methods were applied to the MR scans of

patients with various disease states and levels of disease involvement. Comparison of the

complete automated method with radiologists yielded AOM values that suggest

segmentation accuracy comparable to human radiologists. The accuracy and robustness

demonstrate the potential of these methods in larger research or clinical CAD systems for

MR images analysis.
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FIG. 1.
Common artifacts occurring in thoracic MR sections. Cardiac motion creates a large column

of noise along the anteroposterior direction. Also note the pulmonary motion artifact present

as recurring contours of the thorax (white arrows) and lung deformation due to disease

(black arrows).
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FIG. 2.
Block diagram of the automated method for segmentation of lung regions from thoracic MR

scans.
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FIG. 3.
Thorax-segmented image and its associated gray-level histogram. The arrow in the

histogram indicates the threshold applied for lung segmentation.
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FIG. 4.
Images demonstrating segmentation due to: A) core method, B) core method with the

addition of the grayscale erosion and rolling ball filters, and C) complete method. Note the

anterior right lung region present in A and C, but lost in B due to the rolling ball (ovals).
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Fig. 5.
Demonstration of improved lung homogeneity after application of a grayscale erosion filter.

A) Original MR section with cardiac motion artifact prominent in both lungs. B) Section

after application of the filter shows a reduction in the cardiac motion artifact within both

lungs (ovals).
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FIG. 6.
Diagram of the rolling ball filter. The filter is applied to the internal aspect of all lung

contour points and searches for a contour protrusion composed of non-lung pixels. When a

protrusion is found, the filter creates a new contour segment (inset) and eliminates the

protrusion.
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FIG. 7.
Example of a typical segmentation result from the complete method. The left image is the

original artifact corrupted image and the right is the resulting automated lung segmentation

with a radiologist outline superimposed (white outline). Note that window and level have

been set to illustrate the presence of cardiac motion artifact. Also note that lung regions

severely impacted by cardiac motion artifact have been properly segmented (oval).
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FIG. 8.
Radiologist ratings for disease/artifact extent and contour obscuration. Extent of artifact or

disease was rated from 1 (none present) to 5 (75 to 100 percent of lung contour affected),

and contour obscuration from either artifact or disease was rated from 1 (does not obscure

lung contour) to 5 (completely obscures lung contour).
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Sensakovic et al. Page 18

Table 1

Parameters and empirically determined shape descriptor thresholds

Thoracic Segmentation Core Segmentation Complete Segmentation

Minimum Area (pixels) (Field of View)/(2*Pixel
Dimension)2

350/(Pixel Dimension)2 550/(Pixel Dimension)2

Maximum Area (pixels) - (Thoracic Size)/2 (Thoracic Size)/2

Minimum Contour Length - 45/(Pixel Dimension) 60/(Pixel Dimension)

Minimum Compactness
* 15 2 5

Center of Mass Thresholds - - x ∈ [50,215]
y ∈ [50,200]

Maximum number of pixels crossing rolling ball
surface (Contortion)

- - 85% of filter boundary arc

Minimum number of pixels for contour segment
to be identified as a possible protrusion by the

rolling ball filter

- - 8 pixels

Minimum Circularity - - 0.4

*
Compactness20 (C) is defined as: 
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Sensakovic et al. Page 19

Table 2

AOM values for Radiologist 1 vs. Radiologist 2

Radiologist 1 vs. Radiologist 2 (All Sections)

Right Lung Left Lung

Avg. AOM 0.88 0.79

St. Dev. of AOM 0.10 0.16

Disjoint Lung Regions 2

Radiologist 1 vs. Radiologist 2 (Base Sections Only)

Right Lung Left Lung

Avg. AOM 0.80 0.67

St. Dev. of AOM 0.18 0.30

Disjoint Lung Regions 2
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Sensakovic et al. Page 20

Table 3

AOM values for Radiologist 1 vs. Automated Methods

Radiologist 1 vs. Automated Method (All Sections)

Rad.1 vs. Complete Method Rad.1 vs. Core Method

Right Lung Left Lung Right Lung Left Lung

Avg. AOM 0.86 0.77 0.83 0.73

St. Dev. of AOM 0.12 0.18 0.17 0.24

Disjoint Lung Regions 4 9

Radiologist 1 vs. Automated Method (Base Sections Only)

Rad.1 vs. Complete Method Rad.1 vs. Core Method

Right Lung Left Lung Right Lung Left Lung

Avg. AOM 0.78 0.61 0.72 0.48

St. Dev. of AOM 0.23 0.30 0.28 0.35

Disjoint Lung Regions 2 4
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Table 4

AOM values for Radiologist 2 vs. Automated Methods

Radiologist 2 vs. Automated Method (All Sections)

Rad.2 vs. Complete Method Rad.2 vs. Core Method

Right Lung Left Lung Right Lung Left Lung

Avg. AOM 0.86 0.80 0.83 0.72

St. Dev. of AOM 0.11 0.14 0.15 0.22

Disjoint Lung Regions 2 7

Radiologist 2 vs. Automated Method (Base Sections Only)

Rad.2 vs. Complete Method Rad.2 vs. Core Method

Right Lung Left Lung Right Lung Left Lung

Avg. AOM 0.78 0.74 0.77 0.59

St. Dev. of AOM 0.22 0.21 0.22 0.33

Disjoint Lung Regions 0 2
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Table 5

Mean AOM values (±standard deviation) that result when different descriptor thresholds are implemented.

Each threshold was varied by +30% and by –30% from the nominal value shown in Table 1.

Descriptor Nominal Threshold + 30% Nominal Threshold – 30%

Core Maximum Area - 0.821 ± 0.145

Core Minimum Area 0.821 ± 0.145 0.821 ± 0.145

Core Minimum Compactness 0.821 ± 0.145 0.821 ± 0.145

Core Minimum Contour Length 0.821 ± 0.145 0.821 ± 0.145

Complete Maximum Area - 0.822 ± 0.145

Complete Minimum Area 0.822 ± 0.144 0.821 ± 0.137

Complete Minimum Compactness 0.818 ± 0.155 0.821 ± 0.145

Complete Minimum Contour Length 0.821 ± 0.145 0.821 ± 0.145

Complete Center of Mass Range (y-axis) 0.821 ± 0.145 0.820 ± 0.145

Complete Center of Mass Range (x-axis) 0.817 ± 0.150 0.821 ± 0.145

Minimum Circularity 0.821 ± 0.145 0.821 ± 0.145
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