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Abstract

Rare variants have recently garnered an immense amount of attention in genetic association

analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare

variant analysis often requires some method of aggregation, since single marker approaches are

poorly powered for typical sequencing study sample sizes. Advancements in sequencing

technologies have rendered next-generation sequencing platforms a realistic alternative to

traditional genotyping arrays. Exome sequencing in particular not only provides base-level

resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and

exons. Here we propose the use of penalized regression in combination with variant aggregation

measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal

gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes,

focusing on gene-based LASSO and exon-based sparse group LASSO models. By using gene

membership as a grouping variable, the sparse group LASSO can be used as a gene-centric

analysis of rare variants while also providing a penalized approach toward identifying specific

regions of interest. We apply extensive simulations to evaluate the performance of these

approaches with respect to specificity and sensitivity, comparing these results to multiple

competing marginal testing methods. Finally, we discuss our findings and outline future research.
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INTRODUCTION

Genome-wide association studies (GWAS) have been conducted for a large number of

phenotypes on the principle that complex diseases are the result of multiple common single

nucleotide polymorphisms (SNPs), known as the common disease common variant

hypothesis (CD-CV) [Reich and Lander 2001]. While much success has been achieved in

identifying a large number of common risk-associated loci for various complex diseases

[Hindorff, et al. 2009], the reported SNP associations are generally of low effect sizes and
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explain a modest proportion of the total estimated heritability [Manolio, et al. 2009]. This

has prompted investigators to extend association analysis beyond the scope of CD-CV and

consider other sources of genetic variation, notably with respect to rare variants [Pritchard

2001]. While traditional genotyping microarray chips are generally not designed to capture

rare variation, recent advancements in next-generation sequencing technologies, such as

whole-exome sequencing (WES), have made large-scale interrogation of rare variation

logistically plausible. These assays have resulted in an invigorated evaluation of rare variant

analysis for complex traits, with multiple associations identified [Holm, et al. 2011;

Nejentsev, et al. 2009; Rivas, et al. 2011].

Unlike common polymorphisms, traditional single marker analyses for rare variants are

often underpowered for typical sequencing study sample sizes due to low minor allele

frequencies (MAFs) [Li and Leal 2008] and specialized statistical methods are required for

association analysis. It has been noted that multiple causal variants may aggregate in

biologically relevant functional domains, such as genes [Bansal, et al. 2010]. This has led to

multi-marker analysis strategies that evaluate the aggregate effect of multiple variants within

a given region of interest (ROI), rather than at the individual variant level. These modes of

analysis amount to identifying regions of rare variant enrichment, indicating incidence

disparity of rare variation in the ROI across affected status. There have been recent

developments of multiple statistical methods to detect such clustering of rare variation.

Burden testing, such as the Madsen-Browning weighted sum statistic (WSS) [Madsen and

Browning 2009], collapses all of the variants in the ROI into a single variable of interest,.

Collapsing methods will suffer if there is a presence of both risk and protective variants in

the ROI, since the effects will be canceled out in the collapsing measure. To address this,

variance component tests such as C-alpha test [Neale, et al. 2011] and the sequence kernel

association test (SKAT) [Kwee, et al. 2008; Wu, et al. 2011], a generalized form of the C-

alpha, were developed to evaluate the association of a genomic ROI with a trait. Other

methods include scan-based clustering approaches, which use a sliding window to localize

variant clustering over a much larger genomic segment [Fier, et al. 2012; Ionita-Laza, et al.

2012; Schaid, et al. 2013].

Given that disease risk may be the result of contributions from many genes, there is interest

in jointly modeling the effects of rare variants across multiple genes simultaneously. Such a

model may result in more powerful detection of associations in contrast to marginal ROI

analyses [Ayers and Cordell 2013; Clayton 2012]. However, regression models attempting

to simultaneously assess all potential rare variant risk associations will be grossly

underdetermined for any typical sequencing study sample size, requiring some form of

model selection. Exhaustive combinatorial searches over the model space in conjunction

with a model selection criterion would be computationally infeasible for most applications.

An alternative strategy is to apply regularized regression methods, such as the least absolute

shrinkage and selection operator (LASSO) [Tibshirani 1996], to simultaneously perform

model selection and parameter estimation. Regularized regression approaches are not

uncommon in genomic data analysis due to the vast feature sets, with applications proposed

for microarray [Gui and Li 2005], GWAS [Liu, et al. 2011], and methylation data [Sun and

Wang 2012]. Basu et al. [Basu, et al. 2011] explored global testing using penalized

regression models and permutation for common variation. Recently, a number of methods
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have been proposed [Ayers and Cordell 2013; Zhou, et al. 2011; Zhou, et al. 2010] using

group penalties on individual rare (and common) variation based upon prior biological

information (i.e., gene structure) for large-scale applications on multiple genes.

Due to rapid population expansion and weak purifying selection, rare variation is actually

quite common with respect to the number of identified polymorphic sites in a given study.

Recent work by Nelson et al. [Nelson, et al. 2012] revealed that variant sites occurred every

21 bp on average across 12,514 subjects of European ancestry, with a vast majority observed

in one or two subjects. For a ~30 Mb exome capture, this variant density would yield over 1

million variants for simultaneous consideration, which could be computationally taxing for

complex penalties. Alternatively, gene structures can be used to inform the formulation of

collapsing measures, corresponding to weighted sums of minor allele counts over predefined

regions such as genes or exons. This approach also defines the maximal model

dimensionality, since the quantity of unique ROIs is fixed a priori.

Examination of the latest build (hg19) of the consensus coding sequence (CCDS) regions

[Pruitt, et al. 2009] reveals the human exome consists of 18,305 protein coding genes

corresponding to ~180,000 unique exons in the human genome. While genes tend to be

favored for ROI definition as a base biologically functional unit, WES also provides a

natural alternative through using multi-marker collapsing measures of variants with respect

to individual exons. Collapsing rare variation at the exon-level strikes a compromise

between gene-level aggregations and no collapsing altogether, resulting in a fine partitioning

of the exome. Examination of the CCDS data reveals that, with rare exception, exon length

≤ 1000 bp and has a median value equal to 126 bp. Figure 1 illustrates the distributions of

exon lengths and number of exons per gene across the genome. There is also strong

evidence that exons are correlated with functional domains in proteins for complex

organisms [Kolkman and Stemmer 2001; Liu and Grigoriev 2004], supported by the “exon

shuffling” theory [Gilbert 1978; Gilbert 1985]. Thus, it is possible that rare variants may not

only cluster in genes, but that a given complex disease may be the result of specific

alteration in protein activity by disrupting functional domains through localized exon-

specific rare variation. A notable example of such a phenomenon is exon 11 in BRCA1,

which harbors multiple variants associated with increased risk of breast and ovarian cancers

[Risch, et al. 2001]. Biologically, exon 11 in BRCA1 encodes two putative nuclear

localization signals [Chen, et al. 1996] and contains a domain that interacts with the DNA

damage repair gene RAD51 [Zhang and Powell 2005]. Another example of acute

localization was found in the rare variant analysis of DISC1 exon 11 for schizoaffective

disorders [Green, et al. 2011], which identified multiple case-only missense RVs.

Given that exons naturally group to form genes, it may be reasonable to expect the existence

of an effect for a given exon to be potentially related to other exons within its respective

gene, a hierarchical relationship which can be exploited in regularized modeling procedures.

It is also possible that only certain exons within a gene may be enriched for RVs. Use of the

sparse group LASSO [Friedman, et al. 2010a] can impose sparsity both across groups and

within groups, which accommodates rare variant enrichment localized to specific domains

within a gene. This strategy is of particular relevance to sequencing studies, and naturally

accommodates WES data analysis.
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In this paper, we explore the use of the penalized regression with variant collapsing

measures to assess rare variant enrichment for case-control WES studies, which we

respectively refer to as gene-based LASSO (GB-L) and exon-based sparse group LASSO

(EB-SGL). We analyze their performance under a variety of disease model scenarios via

simulation study, characterizing sensitivity and specificity and comparing gene-level

performance against existing methods. We conclude with a discussion of the benefits and

shortcomings of these approaches, as well as outline future research directions.

MATERIALS AND METHODS

Aggregation Measures

Consider an exome sequencing study dataset involving J genes on N = NC + ND subjects,

where NC (ND) is the number of controls (cases) and each gene consists of Kj exons (j = 1,

…, J) for a total of  exons. Define a set of genetic positions within a given exon

designated to be rare by some minor allele frequency (MAF) threshold criterion (e.g., MAF

≤ 0.05), whereby the vector gijk = (gijk1, gijk2, …)′ represents the minor allele count of these

variants for subject i, gene j, exon k. This vector can in turn be summarized using a scalar

collapsing measure, zijk, which is a univariate summary of gijk and can be considered a

“super-variant.” Although there are many options for zijk as a function of gijk [Dering, et al.

2011a; Dering, et al. 2011b], we consider the Madsen and Browning weighted-sum (WS)

genetic score [Madsen and Browning 2009], which up-weights positions based upon the

empirical rarity in the control cohort. The aggregation measure is then defined such that

where Ljk is total number of variant positions in gijk and  is the sum of control subject

alternative alleles at position l. The discriminative value of zijk is thus a function of the

underlying MAF distribution, sample size, and number of true risk RVs for the given exon.

We can similarly define a gene-based measure where exon membership is ignored and

collapsing is conducted at the gene level, resulting in , where gij = (gij1, …, gijKj)

′. Alternative weighting schemes could be used that take advantage of any additional

annotation, including functional prediction tools such as SIFT [Kumar, et al. 2009] or

Polyphen2 [Adzhubei, et al. 2010].

Penalized Models

Let y be a vector of binary disease status indicators, such that yi is 1 if the ith subject is a

case and 0 if a control, and define X to be an N × m matrix of additional confounding

covariate data, such as age or sex. For EB-SGL, let Z be an N × p matrix of aggregation

measures, such that the ith row of Z is zi = (zi11, zi12, …)′. We similarly define the N × J

matrix Z* with ith row  for GB-L. We use logistic regression on these data

in order to detect differences in the collapsing measures across case-control status. Under
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this model, we apply a logit link on the probability of affected status for subject i, Pr(yi = 1|

xi, zi) = μi, such that for EB-SGL

where xi is the ith column of X, β the respective model parameters corresponding to X, and θ
the corresponding parameters to Z. Model fitting can then be conducted by maximizing the

log-likelihood, which can be written as

where Θ = (β0, β, θ) is the full set of model parameters. In order to induce sparsity at both

the gene and exon level for EB-SGL, we apply the sparse group LASSO penalty, such that

the criterion for the penalized model fit is given as

where  is correction factor accounting for the group size of gene j, θj = θj1, θj2, …)′ is

a vector of exon-level parameters for a given gene, and  is the complete p-

length exon regression coefficient vector. In this formulation β0 and β are unpenalized

parameters, but β could be also included in the LASSO penalty if desired.

For GB-L, the regression model is very similar to EB-SGL, except that no group penalty is

included and the model fitting criterion is given as

where L(Θ*, y) is the model likelihood regressing affected status on Z* rather than Z and θ*

is the J-length vector of regression coefficients corresponding to the gene-level collapsing

measures.

Model fitting for G-BL was conducted in R using the glmnet package [Friedman, et al.

2010b], which employs cyclical coordinate descent algorithms. To implement model fitting

for EB-SGL, we utilized a blockwise descent (BD) algorithm put forth by Simon et al.

[Simon, et al. 2013] provided in the R package SGL. The BD algorithm takes advantage of

the group-level separability of the penalty function by cyclically iterating over the covariate
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groups, performing generalized gradient steps for each group with at least one non-zero

regression coefficient.

Tuning Parameter Selection

Specific to EB-SGL, previous work by Zhou et al. [Zhou, et al. 2010] applying mixtures of

group and traditional LASSO penalties for association analysis indicated that framing the

relationship  is an effective strategy for identifying disease associations. This also

reduces the path space for tuning parameter selection by fixing the value of c a priori, such

that optimization corresponds to identifying a proper value of λ = λ1 + λ2 where λ1 = (1 −

c)λ and λ2 = cλ. Based upon empirical evidence under various simulation conditions, we

conducted our analyses with c fixed at 0.80.

Many strategies exist in general for selecting an appropriate value of λ in penalized

regression. One option is to define a fine grid of values for λ and apply cross-validation,

although this may be a very computationally demanding process. If we can assume a very

sparse set of true associations, an efficient alternative approach is to employ a bracketing

and bisection algorithm [Wu, et al. 2009] to identify a set of values for λ that result in small

additions to the active set of covariates. Let θλ indicate the vector of non-zero coefficients

under a model fit for a given value of λ, such that these coefficients correspond to the active

set of nλ = ||θλ||0 covariates. If we a priori fix the maximum possible size of nλ to be very

small nθ, we can iteratively fit penalized models by reducing λ until nλ exceeds nθ. This is a

particularly appealing strategy in exploratory analyses when a small set of ROIs is desired

for further investigation. This approach can be combined with a model selection criterion,

such as the Bayesian Information Criterion (BIC) [Schwarz 1978], which is defined as

where d is the model degrees of freedom and Lλ(Θ, y) is the model likelihood specific to the

value of λ. The minimization of BIC(Θ; λ) can then be used to select a value of λ over the

path of values in order to yield a final fit such that the size of θλ is equal to nλ ≤ nθ. The

calculation of d requires that the model selection procedure be taken into consideration. For

the LASSO procedure, this is equivalent to the size of the active set [Zou, et al. 2007]. An

approximation for EB-SGL can be shown (see Appendix) to reduce to the trace of the

smoother hat matrix of the model fit, which can be written as

where W = diag(μi(1 − μi)), X̃ = [1 X Zλ], Zλ is a subset of Z corresponding to the nonzero

subset of θ, θλ, for a given value of λ, and Ω = diag(ω), where the first m + 1 elements of ω
are 0 since they correspond to unpenalized parameters (β0, β), and the remaining nλ are

penalty weights corresponding to θλ and equal to .
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Model criteria based in part upon prediction performance may result in a large number of

false positives, which stands in contrast to the prevailing objective of identifying a confident

subset of associated genes for follow-up analyses. If we are instead interested in gene-level

control of the false positive rate, we may employ the permutation-based method described in

Ayers et al. [Ayers and Cordell 2010], which selects λ by repeatedly permuting case-control

status and identifying values that result in the first covariate (i.e., false positive) entering the

active set. For EB-SGL, translating this procedure to gene-level association is complicated

by defining what constitutes a false positive result. We adopt a minor modification that is

based upon admittance of covariates at the group level, such that we record smallest values

of λ that allow exon-level measures into the active set from at most one gene. We focus on

this mode of tuning parameter selection for the remainder of the paper, as we foresee it

being of greatest utility for large-scale sequencing studies (e.g., whole exome).

Data Simulation

To base our simulations on realistic exome sequence data characteristics, we downloaded

the empirical distribution of rare (MAF≤0.05) variants from the NHLBI-ESP Exome Variant

Server (release ESP6500). We isolated the European American minor allele frequencies for

all observed polymorphic sites on chromosome 1, which we then annotated with exon

membership information from the CCDS data (including appended 10bp flanking regions

for potential splice site variation). Finally, we excluded genes exhibiting minimal variation,

such that for all included genes the sum of MAFs across all variants in a given gene ≥ 0.005

and the total number of variants ≥ 10. Our final variant list consisted of a total of 28,552

unique sites on 6000 exons in 597 genes, with median values of 3 variants per exon and 37

variants per gene. The corresponding MAFs ranged from 0.00012 to 0.05, with a mean value

of 0.00121. We generated genotype data for 30,000 simulated individuals, assuming Hardy-

Weinberg equilibrium proportions and independence between variant sites.

For our disease models, we selected five unique genes to harbor causal variants,

concentrating on moderately sized genes with a variety of exon distributions and total

variant counts (see Table I). While some of these genes have a relatively large number of

variants, the vast majority of these variants are very rare and unlikely to be observed on an

individual basis in any given simulation replicate. To simulate phenotypes based upon

genotypes, we applied a logistic regression approach whereby the Bernoulli probability of

affected status conditional on genotype is given as

where ORj is the odds ratio associated with variant j, gij the corresponding minor allele

count for subject i, and β0 is an intercept adjusted to result in a population prevalence of

approximately 5%.

Since the success of specific rare variant association methods depends largely upon the

underlying assumptions of the disease model, we examined a variety of potential scenarios
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in our simulation study. We considered models where approximately 20% or 40% of the

total number of variants are deleterious, such that the corresponding ORj > 1. To define each

ORj, we considered two different approaches: a uniform, or fixed, effect model where ORj =

3.0 for all causal variants regardless of population allele frequency, and an MAF-dependent

scheme where , akin to settings in Wu et al. [Wu, et al. 2011].

Deleterious variant selection was also conducted using two different approaches. We first

considered causal variants to be randomly sampled uniformly from the total set of variants,

regardless of exon membership. The second method selected causal variants from a subset

of variants defined by falling within designated causal exons. These exons were selected to

capture approximately 50% of the total number of variants, enforcing localization of causal

variation to a fraction of the total exons for each gene. Table II details the causal variants for

each gene by derived MAF across these scenarios. A total of 1000 cases and 1000 controls

were sampled from the population of 30,000 subjects for each simulation replicate, with 500

replicates conducted per unique set of simulation conditions. In total, we evaluated eight

distinct simulation scenarios to examine performance under a variety of underlying causal

variant models.

Comparison with Other Methods

We have framed the application of EB-SGL and GB-L with respect to hypothesis testing via

variable selection, with non-zero coefficients corresponding to significantly associated

genes. While no other explicit exon-based methods exist to our knowledge, there is interest

in how EB-SGL compares to current gene-based testing approaches that are agnostic to the

additional exon structure information. We denote gene-level significance in the context of

variable selection in EB-SGL such that gene j is said to be associated with the response if ||

θj||2 > 0 for a given value of λ.

We compared gene-level power of EB-SGL and GB-L to a number of leading omnibus tests:

C-alpha; the sequence kernel association test SKAT; SKAT-O [Lee, et al. 2012], an

optimized combination of SKAT and burden-based testing; the Madsen-Browning WSS test;

and the Cohort Allelic Sums Test (CAST) [Morgenthaler and Thilly 2007]. We applied

SKAT and SKAT-O under the linear weighted kernel using the SKAT package in R, p-

values from the WSS testing were derived with the approximation method under 100

permutations, and the C-alpha and CAST tests were performed using code from the

AssotesteR package reporting asymptotic p-values. All remaining settings were set to the

default values for the respective tests, with statistical significance for each test determined

based upon p-values using a Bonferroni-corrected Type I error level of α = 0.05 (i.e,

0.05/597 ≈ 8.38e-05).

To achieve a comparably sized testing for GB-L and EB-SGL at the gene-level, we applied

the previously described permutation-based approach for a priori selecting the tuning

parameter λ. In the interest of computational cost for our simulation study, we approximated

this procedure by assuming that the same values of λ were applicable across all simulation

replicates for a given scenario, since the sampled population and causal variation were

identical across replicates. We conducted 500 initial simulation replicates for each scenario,

permuting case-control status once prior to computing Z and Z*, and ran EB-SGL and GB-L
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on the respective permuted datasets. We selected the λ value that admitted a total of 25 false

positive genes across all replicates for each unique simulation scenario, resulting in a

comparable Type I error rate (25/(500*597) = 0.05/597).

Finally, for both EB-SGL and GB-L, we noted in our preliminary simulation studies that the

presence of singletons often led to poor statistical power. Although the mechanism behind

this issue has not yet been fully resolved, we nonetheless present simulation results for both

approaches with singletons either included or filtered prior to analysis. Since previous work

[Ladouceur, et al. 2013] has illustrated that removal of singletons in general leads to

decreases in power in the competing gene-level tests, these methods were applied solely to

the unfiltered data.

RESULTS

We first examined the Type I error rate control across the various testing procedures,

presented in Table III. Surprisingly, these varied greatly across methods, but were relatively

stable within methods across simulation scenarios. The C-alpha testing results yielded

highly elevated Type I error rates, generally two orders of magnitude larger than the nominal

level, indicating possible issues with asymptotic assumptions. SKAT, SKAT-O, and CAST

generally exhibited near nominal Type I error control and tended toward being conservative,

while GB-L and WSS results were slightly liberal and comparable in value. EB-SGL Type I

error rates were also elevated, although moreso than GB-L and WSS and often close to an

order of magnitude increase relative to the nominal level. With respect to both of the

penalized approaches, the exclusion of singletons led to differing impacts on Type I error

rates, with EB-SGL exhibiting larger scale effects than GB-L, although these impacts were

relatively modest overall.

Simulation results with respect to overall power (Table IV) indicated that EB-SGL and GB-

L performed very poorly when the variant-level effect sizes were not dependent upon the

underlying MAF, especially relative to the competing gene-level methods. This is somewhat

unsurprising, since the weighting scheme explicitly places more weight on rarer variation. A

similar pattern was observed with respect to the WSS test, which uses the same weighting

scheme, although the overall power for this approach was much higher relative to GB-L and

EB-SGL. Statistical power was also in general higher for each given method when the true

causal proportion was higher and when the effect sizes were MAF-dependent rather than

uniform across variants. SKAT-O and WSS tended to perform the best across all scenarios,

taking into account proper control of Type I errors.

Focusing on gene-specific power under the MAF-dependent effect models (Figure 2),

illustrates that the performance of the penalized methods was highly dependent upon the

underlying causal variation. Overall, GB-L exhibited higher power over EB-SGL in every

scenario except for the results for gene 2 under the exon-based variant selection model.

Interestingly, the gene-wise power for the penalized approaches were much more powerful

than the competing tests in isolated instances, while in others the opposite was observed. For

example, from Figure 2 we observe that GB-L performed well for genes 1, 3, and 4 across

all scenarios, with the version excluding singletons often exhibiting comparable, or better,
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power relative to the competing approaches. However, these competing approaches grossly

outperform GB-L for gene 2. Examination of the results relative to the underlying causal

variation for each scenario indicates that the penalized approaches tend to perform better

when both the causal and neutral variant MAFs are relatively low (<0.005).

DISCUSSION

In this paper, we have extended existing work for penalized regression on sequencing data

by combining LASSO and sparse group LASSO logistic regression with variant collapsing

to identify rare variant enrichment in case-control exome sequencing studies. While

collapsing methods for rare variant analysis are commonplace for omnibus testing, our

approaches explore simultaneous assessment of multiple collapsing measures in a regression

framework, which can also accommodate adjustment for confounding variables. We

considered a gene-based method using a simple LASSO logistic regression model, GB-L,

where rare variants within individual genes are summarized by a univariate weighted sum

for each subject. Motivated by biological principles of the coding content of exons within

genes, we also examined an exon-based sparse group LASSO approach, EB-SGL, which

may provide more acute localization of rare variant associations in contrast to gene-level

testing by operating on an ROI definition with finer granularity.

Overall, our simulation results indicated that the power of EB-SGL to be quite poor unless

causal variation is highly localized with multiple causal variants. This may in part be

attributable to the exon structure of the genes we modeled, which we observed to be often

composed of multiple very small exons. Given that much of the observed variation in the

ESP6500 data is very rare or private, this resulted in most exons in our simulations

harboring ≤ 1 variant, rendering any collapsing measure over exons superfluous. In this

context, these results agreed with Ayer et al. [Ayers and Cordell 2013], who noted similarly

poor performance for variant-level sparse group LASSO. As gene-wise functional domain

annotation for coding proteins improves, however, it may be worthwhile to revisit this type

of sub-gene aggregation.

The simulation performance of the GB-L penalized regression approach was much more

encouraging, and was the highest powered method in two of our eight simulation scenarios.

Although the Type I error rate was slightly elevated relative to the nominal level, this may

be potentially due to the approximation approach we employed to select the tuning

parameter λ. Of greater interest was the wide variety of gene-specific performance observed

across simulation scenarios, as seen in Figure 2, with some instances where the power for

GB-L was dramatically greater than the competing testing procedures. Examination of these

cases indicated this disparity to be dependent upon the MAF distribution of the causal

variation, as we observed GB-L to be relatively more sensitive when the causal variants

were very rare. It was also interesting to note the sizable increases in power for both GB-L

and EB-SGL by filtering out singletons in the model fitting procedure while maintaining

comparable Type I error rates. This may be due in part to issues of quasi-complete

separability in the regression model for genes with minimal variation, and further evaluation

of filtering mechanisms may be necessary prior to model fitting.
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From a computational perspective, the source of the computational burden for both EB-SGL

and GB-L largely stems from running the permutation fits necessary to select the value of λ,

although this is an easily parallelizable process. Final model fits completed in < 2 minutes

for either approach on a modern Linux workstation equipped with a Quad-Core AMD

Opteron™ Processor and 16 Gb of RAM. Methods based upon iterative model fits, particular

bracketing and bisection algorithms, require considerably more computational time. This is

particularly true for EB-SGL, where the burden of such model fits is heavily dependent upon

the maximum desired model size, nθ.

One caveat of variant collapsing approaches is that they implicitly presume that the direction

of the effects in the ROI is uniform (i.e., all protective or all risk), an issue left unexplored in

this paper. Reductions in statistical power can arise if a mixture of both types occurs in a

given ROI, resulting in a “canceling” of effects. This is clearly a pitfall for GB-L, and an

issue shared by other collapsing procedures. EB-SGL does not completely avoid this

problem, but it does allow for the effects of aggregation measures at specific exons to be

either risk or protective oriented. A possible remedy would be to apply the sign assignment

procedure used by Hoffman et al. [Hoffmann, et al. 2010], where the weighted sum

collapsing measure takes into account whether a given variant is observed more often in

cases or controls. Evaluation of this approach when both protective and risk variants are

observed in a given gene is the focus of future work.

While we have presented these approaches with respect to detecting rare variant clustering

in case-control studies, they can be extended to other response types, such as quantitative

traits or censored survival responses under appropriate variant weighting schemes. We can

also extend GB-L to take advantage of available gene set annotation by reintroducing group-

level penalties, which can accommodate overlapping groups in the penalty function. This

circumvents the common problem of pathway-based analyses which result in dependent

pathway-specific test statistics if genes are shared across multiple pathways. More work is

necessary to further evaluate and build upon these penalized regression variant collapsing

methods.
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APPENDIX

Approximating the degrees of freedom for the EB-SGL model fit

An approximation for the degrees of freedom d for a LASSO linear regression model fit was

provided by Tibshirani [Tibshirani 1996], noting that the LASSO penalty can be written as a

ridge regression problem by redefining the penalty term as . This results in

the LASSO estimator being defined as ridge estimator, such that

where . The hat matrix is then given as H = X(X′ X + Ω)−1X′, and Tibshirani

approximates the effective number of parameters d by tr(H).

Consider a traditional logistic regression model

where X is some design matrix, β is the corresponding vector of regression coefficients, and

μ the vector of success probabilities associated with binary response vector y. Recall that the

iteratively reweighted least squares (IRWLS) estimator of regression coefficients β in

traditional logistic regression is given as

where  is the working response and W = diag(μi(1 − μi)). The

hat matrix for y* is then given as

Now, consider the penalized logistic regression model posed in our EB-SGL approach,

which can be written similarly as
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with a model fit criterion is given by

First, note that the lasso penalty term can be rewritten in the same fashion proposed by

Tibshirani, such that

Similarly, the group penalty term can be rewritten such that

Thus, the full penalty can be rewritten as

Notice that the penalty function is now in the form of a ridge penalty with weights defined

by the nature of the sparse group penalty. Thus, we can frame our calculation of the degrees

of freedom of the EB-SGL model fit in the context of a ridge-type penalized model fit,

where the diagonal penalty matrix Ω = diag(ω) for a penalty weight vector ω consisting of m

+ nλ + 1 elements. The first m + 1 elements of ω are 0, corresponding to the unpenalized

parameters β0 and β, while the remaining nλ parameters correspond to θλ and are defined as

. If we assume that λ = λ1 + λ2 and  for some fixed value of c, then this

reduces to . Approximating the degrees of freedom then amounts to
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such that X̃ = [1 X Zλ], where Zλ is a submatrix of Z with columns corresponding to the

nonzero subset of θ, θλ, for a given value of λ.
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Figure 1.
Histograms depicting distributions of (A) number of exons per gene and (B) individual exon

length for ~180,000 exons constituting 18,305 genes in CCDS data for the hg19 human

genome build. The right tails of each figure are censored, excluding approximately with

0.8% and 1.5% of the distributions, respectively.
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Figure 2.
Barplots indicating statistical power for detecting individual disease genes harboring causal

variants ORj across various methods and simulation conditions where the are defined using

the MAF-dependent scheme. Analysis results using EB-SGL and GB-L where singletons

have been removed are indicated by “NO S” in the legend.
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