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Abstract

Background—Corticotropin releasing factor (CRF) and urocortin play an important role in

many stress responses and also can regulate ethanol intake. Adaptations in CRF signaling in the

central amygdala promote ethanol consumption after long-term ethanol intake in dependent

animals and also after brief periods of binge ethanol intake. Thus, even brief episodes of ethanol

consumption can alter the function of the CRF system, allowing CRF to regulate ethanol intake.

Here, we examined whether brief binge ethanol consumption leads to CRF receptor adaptations

within the ventral tegmental area (VTA), a structure involved in signaling rewarding and aversive

events and important in the development and expression of drug and alcohol addiction.

Methods—We utilized a mouse model of binge drinking known as drinking in the dark (DID),

where C57BL/6J mice drink approximately ~6 gkg/4 hours and achieve blood ethanol

concentrations of approximately 100 mg/dL, which is equivalent to binge drinking in humans. We

used ex vivo whole-cell recordings from putative VTA dopamine neurons to examine CRF

regulation of NMDA receptor (NMDAR) currents. We also examined the impact of CRF receptor

antagonist injection in the VTA on binge ethanol intake.

Results—Ex vivo whole-cell recordings from putative VTA dopamine neurons showed enhanced

CRF–mediated potentiation of NMDA receptor (NMDAR) currents in juvenile mice that

consumed ethanol in the DID procedure. CRF-induced potentiation of NMDAR currents in

ethanol drinking mice was blocked by administration of CP-154,526 (3 μM), a selective CRF1

receptor antagonist. Furthermore, intra-VTA infusion of CP-154,526 (1 μg) significantly reduced

binge ethanol consumption in adult mice. These results were not due to alterations of VTA

NMDAR number or function, suggesting that binge drinking may enhance signaling through VTA

CRF1 receptors onto NMDARs.

Correspondence should be addressed to Woody Hopf, Gallo Research Center, 5858 Horton St., Suite 200, Emeryville, CA 94608,
phone: 510-985-3892, fax: 510-985-3101, woody@gallo.ucsf.edu; or Antonello Bonci, NIDA Intramural Program, Bethesda, MD,
21224, phone: 443-740-2463, fax: 510-985-3101, antonello.bonci@nih.gov..
*authors contributed equally to this work.

NIH Public Access
Author Manuscript
Alcohol Clin Exp Res. Author manuscript; available in PMC 2014 October 01.

Published in final edited form as:
Alcohol Clin Exp Res. 2013 October ; 37(10): 1680–1687. doi:10.1111/acer.12153.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Conclusion—Altered CRF1R-mediated signaling in the VTA promotes binge-like ethanol

consumption in mice, which supports the idea that CRF1Rs may therefore be a promising

pharmacological target for reducing binge drinking in humans.
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INTRODUCTION

Corticotropin releasing factor (CRF), a 41 amino acid peptide, has been implicated in a

number of ethanol-related behaviors. Stress-induced reinstatement of ethanol self-

administration is reduced by a systemic CRF antagonist and increased by

intracerebreventricular (i.c.v.) infusion of CRF (Le et al., 2000; Stewart, 2000). In addition,

long-term ethanol intake and ethanol dependence enhance CRF function in the central

amygdala, and i.c.v. and intra-amygdalar administration of a CRF receptor antagonist

reduces ethanol self-administration after a period of ethanol deprivation in ethanol-

dependent rats (Funk et al., 2006; Valdez et al., 2002). Recent evidence has also shown that

CRF is a crucial neuromodulator during brief periods of binge ethanol drinking, as four days

of DID ethanol intake also enhances CRF function in the central amygdala, and systemic,

i.c.v., and intra-amygdalar administration of a CRF1 antagonist reduces binge DID intake

(Lowery et al., 2010; Lowery-Gionta et al., 2012; Sparta et al., 2008). Additionally, the

CRF1 receptor also contributes to acute tolerance to ethanol in mice (Jee et al., 2012).

Finally, urocortins also bind to the CRF R1 and R2 receptors with a high affinity and have

been implicated in mediating alcohol consumption (Reul and Holsboer, 2002; Ryabinin et

al., 2012), and thus urocortins could mediate the CRF receptor activation that has been

shown to promote excessive ethanol intake.

Although CRF immunoreactive fibers are evident in many brain areas, the physiology of

CRF in the VTA is also particularly interesting in relation to motivated behaviors (Swanson

et al., 1983). The VTA is considered part of the reward/reinforcement system of the brain,

and is critically involved in the etiology of drug and alcohol abuse (Hahn et al., 2009;

Luscher and Malenka, 2011; Wang et al., 2005; 2007; Wise and Morales, 2010). At a

cellular level, CRF potentiates NMDAR currents in VTA dopamine (DA) neurons in vitro

(Ungless et al., 2003), and the CRF enhancement of VTA NMDAR currents is greater after

cocaine exposure (Hahn et al., 2009). In addition, CRF receptors in the VTA mediate stress-

induced reinstatement for cocaine (Wang et al., 2005; 2007) and ethanol intake under

longer-term intermittent access (Hwa et al., 2012). Furthermore, inactivation of the VTA

reduces DID-induced binge drinking (Linsenbardt and Boehm, 2009; Melon and Boehm,

2011; Moore et al., 2007; Moore and Boehm, 2009). Thus, the purpose of the current studies

was to determine if altered CRF R1 receptor signaling in the VTA could contribute to the

molecular mechanisms underlying binge drinking of ethanol.
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MATERIALS AND METHODS

Animals

Male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) were used in all experiments.

For electrophysiology experiments, mice were between 21-35 days old. For in vivo

microinjection and biochemistry experiments, mice were between 6-8 weeks old at the start

of the experiment. All mice were single housed, with standard rodent chow available at all

times. The vivarium rooms were maintained at an ambient temperature of 22°C with a 12-

hour/12-hour light/dark cycle. All experiments were performed in accordance with the

guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory

Animals, and were approved by the Institutional Animal Care and Use Committee of the

Ernest Gallo Clinic and Research Center and the University of California, San Francisco.

Drinking in the Dark Procedures

All mice underwent a modified DID protocol (Rhodes et al., 2005; 2007; Sparta et al.,

2008). The home cage water bottle was replaced with a single bottle of 20% (v/v) ethanol, 3

hours into the start of the dark phase. Mice had access to ethanol for 2 hours/day for 3

consecutive days (Training Days). On Day 4 (Test Day), all mice had access to 20% ethanol

for 4 hours, starting 3 hours into the dark cycle. Our control ethanol-naïve mice were

handled and weighed daily during DID training (Days 1-4). Additionally, these mice had

water bottles replaced 3 hr into the dark cycle with another water bottle to mimic the same

behavioral training parameters that the binge-drinking ethanol group received.

Reagents

CRF and CP-154,526 were obtained from Tocris (Ellisville, MO). For all ex vivo patch

clamp recordings, CRF and CP-154,526 were dissolved in DMSO. For all in vivo

experiments, CP-154,526 was dissolved in 10% DMSO, 90% saline. Antibodies used

included anti-NR1 (Cell Signaling Technology, Danvers, MA, 4204, 1:1000), anti-NR2A

(Santa Cruz, Santa Cruz, CA, sc-1568, 1:1000), anti-NR2B (Santa Cruz, sc-1469, 1:1000),

and anti-GAPDH (Santa Cruz, sc-25778, 1:50,000).

Electrophysiology

Because the DID procedure models binge drinking, and binges occur several hours into

withdrawal from a prior drinking session, we examined the effect of CRF on evoked NMDA

receptor (NMDAR)-mediated currents in vitro (and biochemical measurements, described

below) at ~16 hours after the final drinking session (Day 4). These results were compared

with ethanol-naïve mice that received the same behavioral training parameters except with a

water bottle instead of an alcohol bottle. Mice were euthanized and brain slices prepared

(Madhavan et al., 2010; Wanat et al., 2008). VTA neurons in brain slice were visualized

using infrared differential contrast illumination, and whole-cell voltage-clamp recordings

were performed with an Axopatch 1D amplifier (Axon Instruments, Sunnyvale, CA). 3-4

MΩ electrodes contained (in mM): 117 cesium methansulfonic acid, 20 HEPES, 0.4 EGTA,

2.8 NaCl, 5 TEA-Cl, 2.5 MgATP, 0.25 MgGTP; pH 7.2-7.4, 275-285 mOsm. A bipolar

stimulating electrode was placed ~100 μm rostral to the recording electrode and was used to
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stimulate excitatory afferents at 0.1 Hz. Glutamatergic EPSCs were recorded using IgorPro

software (Wavemetrics, Portland, OR), and filtered at 2 kHz and digitized at 5-10 kHz.

Putative VTA DA neurons were identified by the presence of an Ih current (Johnson and

North, 1992), using a series of 500 ms hyperpolarizing steps from a −70 mV holding

potential. Although Margolis et al. (2006) have shown that Ih current is also present in

nondopaminergic VTA neurons, >90% of Ih positive neurons contain tyrosine hydroxylase

when recordings are made just medial to the medial terminal nucleus of the accessory optic

tract (Madhavan et al., 2010; Wanat et al., 2008), where patching was performed here.

NMDAR-mediated EPSCs were recorded at +40 mV and measured 25 ms after the

stimulation artifact, when the EPSC is primarily NMDAR-mediated. Picrotoxin (100 μM)

was present throughout the experiments to block GABAA receptor-mediated IPSCs.

In vivo VTA microinjections

Mice were surgically implanted with a 26-gauge bilateral cannula (Plastics One, Roanoke,

VA) aimed at the VTA using the following stereotaxic coordinates: 3.2 mm posterior to

bregma, +/− 0.5 mm lateral to the midline, and 4.7 mm ventral to the skull surface. After

surgery, mice recovered for approximately two weeks before the start of DID training. One

week before behavioral testing, mice were handled daily and given 2 sham injections

consisting of insertion of the injector needle into the cannula (to 0.5 mm beyond the end of

the cannula) for approximately 10 min, the same amount of time the animal was restrained

and infused on Test Day. During behavioral training (Days 1-3) all mice were handled and

give sham injections to habituate them to restraint and stress. On Day 4, mice were given

intra-VTA injections of CP-154,526, a selective CRF1 antagonist (1 μg, 0.5 μl per side) or

vehicle (90% saline/10% DMSO). We chose a volume of 0.5 μl in order to minimize any

injection issues due to the viscosity of the drug. We have used injection volumes of 0.5 μl in

mice in order to consistently deliver the light activated opsin ChR2 to selective brain regions

(Adamantidis et al., 2011; Stuber et al., 2011), and have observed little or no overflow to

adjacent brain regions. Nonetheless, even though our injections targeted the VTA (Fig. 6b),

we may not be able to completely rule out effects through regions near to the VTA such as

the PAG (Miguel et al., 2011). Also, we chose a dose of the CRF1 antagonist to get a

maximal pharmacological effect (see Lowery et al., 2010).

Following behavioral experimentation, mice were euthanized and brains were processed to

verify placements of injector tracks. 200 μm coronal sections of the VTA were taken and

were stained in cresyl violet, and injector site verified using histology. Mice that had injector

tracks that did not terminate within the VTA were excluded from analysis.

Biochemistry

Mice (6-8 week old) were euthanized and VTA samples were collected approximately 16

hours after the last DID session (Day 4) in binge-drinking DID mice, and also 16 hr after the

last intake session in ethanol-naïve control mice that drank water under a DID schedule (see

above in “Drinking in the Dark Procedures”). Tissue from 3 mice was combined for each

control or binge-drinking replicate in western blot experiments comparing NMDAR subunit

levels. VTA samples were frozen in liquid nitrogen and resolved by SDS-PAGE on 4-12%

BIS-Tris gel and transferred overnight at 4°C on nitrocellulose membranes. Membranes
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were blocked in milk solution (5% milk in Tris Buffered Saline with Tween-20 (TBST)),

and were then incubated with primary antibodies diluted in TBST with 1% milk for 1 hour.

Following washes in TBST, membranes were incubated with horseradish peroxidase-

conjugated secondary antibodies for 1 hour. Immunoreactivity was detected using enhanced

chemiluminescence (GE healthcare, Buckinghamshire, UK) and captured using CL-X

Posure™ X-ray film (Thermo Scientific, Rockford, IL). Results were quantified using NIH

ImageJ 1.41.

Data Analysis

All data are presented as means ± SEM. For ex vivo patch clamp experiments, one way or

two way analyses of variance was used, with Tukey post-hoc tests. Since CRF produced a

delayed increase in NMDAR currents that persisted beyond washout of CRF, as previously

observed (Ungless et al., 2003), we calculated the CRF-related change in NMDAR currents

by averaging the 10 min of data after ending exposure to CRF; data were expressed relative

to the average of the 8 min of baseline before CRF expression which were normalized to

100%. For in vivo microinjection and biochemistry experiments, unpaired t-tests were used.

In all experiments, differences between mean values were considered significant when p <

0.05.

RESULTS

We allowed mice to drink under the DID paradigm before preparation of brain slices for in

vitro electrophysiology in VTA neurons. Mice increased their drinking over the course of

the DID procedure and on Day 4 (Test Day) they consumed approximately 10.4 g/kg of

ethanol, which was significantly greater than during the three previous days [Fig. 1; F(3,83)

= 13.15, p < 0.001]. We examined the effect of CRF on evoked NMDA receptor (NMDAR)-

mediated currents in vitro ~16 hours after the final drinking session (Day 4); we compared

results with those from an age-matched, ethanol-naive control group. We utilized a

concentration of CRF (100 nM) that previously was shown to be the lowest dose tested that

had the possibility of enhancing VTA NMDAR currents (Ungless et al., 2003). CRF (100

nM) significantly enhanced NMDAR currents (Fig. 2A,B) in putative VTA DA neurons

from binge-drinking mice, but had no effect in neurons from naïve mice [t(14) = 2.159, p =

0.049 naïve vs binge-drinker]. CRF potentiation of VTA NMDAR currents in the binge-

drinking ethanol group was blocked by application of CP-154,526 (3 μM), a selective CRF1

receptor antagonist [Fig. 3A,B; t(17) = 2.138, p = 0.047].

Next, we determined whether the levels of the NMDAR subunits were altered after binge

ethanol drinking. Fig 4 depicts the total VTA protein levels of the NMDAR subunits (NR1,

NR2A, NR2B) in binge-drinking and naive mice. Western blot analyses revealed no

differences in total protein levels of the three subunits between the two groups (Fig. 4; t(4) <

0.5 and p > 0.1 for naïve versus binge-drinker for each NMDAR subunit). To examine

whether NMDAR function was altered after binge ethanol drinking, we evoked NMDAR

currents at 4 different stimulus intensities to generate an input-output curve. Analysis

revealed no difference of evoked NMDAR currents at any of the intensities tested between

the binge-drinking ethanol (n = 5) and naïve (n = 6) mice [Fig. 5; stimulation intensity:
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F(4,36) = 11.076, p < 0.001; group: F(1,9) = 0.110, p = 0.747; interaction: F(4,36) = 0.579,

p = 0.680].

Finally, since our in vitro experiments suggested that the greater CRF enhancement of

NMDAR currents in VTA neurons occurred through CRF1 receptors, we examined whether

intra-VTA blockade of the CRF1 receptor would attenuate binge ethanol drinking on the

Test Day (Day 4). Mice were given an intra-VTA infusion of CP 154,526 (1 μg, 0.5 μl/side)

approximately 15 min before access to the 20% ethanol bottle. CP-154,526 significantly

reduced ethanol consumption compared with vehicle [Fig. 6A; n = 12 for each group; t(22)

= 2.143, p = 0.043]. Together these results suggest that binge ethanol drinking is sustained

by increased VTA CRF1 receptor signaling.

DISCUSSION

Here, we used the DID model of binge drinking in mice to show that binge ethanol intake is

associated with CRF1 receptor enhancement of NMDAR currents in the VTA, and that VTA

CRF1 receptors are necessary for high levels of binge ethanol intake. CRF at 100 nM

significantly enhanced NMDAR currents in VTA DA neurons in the binge-drinking ethanol

group, with no effect in ethanol-naive control mice. CRF enhancement of NMDAR currents

in DID mice was blocked by co-application of CP-154,526, a selective CRF1 receptor

antagonist. Accordingly, intra-VTA administration of CP-154,526 significantly reduced

binge ethanol consumption. Finally, our biochemical and electrophysiological analyses

suggest that binge ethanol intake enhances CRF1 receptor signaling at VTA NMDARs

receptors without increasing the number of NMDARs or their baseline function. Together,

these data expand and add to a growing body of literature implicating altered CRF signaling

as an important regulator of ethanol consumption (for review see Lowery and Thiele, 2010).

Recent studies have suggested that the CRF system modulates binge-like ethanol drinking in

mice (Kaur et al., 2012; Lowery et al., 2010; Lowery-Gionta et al., 2012; Ryabinin et al.,

2008; Sharpe and Phillips, 2009; Sparta et al., 2008), although not in rats (Ji et al., 2008),

though this study noted that longer duration of intake might allow CRF regulation of binge

intake in rats. Koob and colleagues have proposed that CRF function is increased within the

“extended amygdala” after chronic ethanol administration and dependence (Koob, 2003), in

particular the central amygdala (Funk et al., 2006), and recent work has shown that CRF

within the central amygdala regulates binge ethanol intake under the DID model (Lowery-

Gionta et al., 2012). Urocortins also bind to CRF receptors with high affinity (Reul and

Holsboer, 2002; Ryabinin et al., 2012) and thus could mediate the CRF receptor activation

that can promote ethanol intake.

The VTA has been previously implicated as a critical regulator of binge ethanol drinking, as

intra-VTA infusions of agents that may inhibit VTA function, including an endocannabinoid

agonist and a GABAB receptor agonist, reduce DID ethanol consumption (Lisenbardt and

Boehm, 2009; Moore et al., 2007; Moore and Boehm, 2009). Here, we show a novel finding,

that CRF1-receptor-mediated signaling within the VTA promotes binge-like ethanol intake

in mice. Also, although we did not measure the effects of intra-VTA blockade of CRF1

receptor on general fluid intake, CRF1 antagonists can reduce alcohol consumption without
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altering non-binge ethanol intake or sucrose or water intake (Hwa et al., 2013; Lowery-

Gionta et al., 2012; Sparta et al., 2008), and CRF1 receptor knockout mice drink less ethanol

but more sucrose than wild type controls (Kaur et al., 2012), suggesting that the CP-154,526

effects observed here were not mediated through non-selective motor or intake effects.

Since NMDAR level or function were not altered after binge ethanol consumption, we

speculate that binge drinking caused an upregulation of CRF1 receptors on VTA dopamine

neurons, although it is also possible that increased levels of VTA CRF after DID training

(Lowery-Gionta et al., 2012) could contribute. We did not examine CRF1 receptor levels

due to relatively poor CRF receptor-selective antibodies. Also, previous studies have

implicated CRF2 receptor in the effects of CRF in the VTA including CRF modulation of

NMDARs (Hahn et al., 2009; Ungless et al., 2003; Wang et al., 2007), although the CRF2

receptor antagonist did not reduce the effects of CRF in the VTA in vitro (not shown). This

agrees with a recent report showing no change in DID drinking in the CRF2 knockout mouse

(Kaur et al., 2012). Thus, our in vitro and behavioral results instead implicate the CRF1

receptor. The VTA receives three main sources of CRF input: the bed nucleus of the stria

terminalis, the central nucleus of the amygdala, and the paraventricular nucleus of the

hypothalamus (Rodaros et al., 2007). Future studies will be required to examine which of

these CRF pathways into the VTA are activated after binge ethanol drinking, as well as the

molecular basis of the CRF-related adaptation with ethanol intake. In addition, our NMDAR

results contrast with previous work showing that ethanol withdrawal (Spanagel, 2009),

intermittent ethanol exposure in culture (Qiang et al., 2010) and longer-term ethanol

intoxication in rodents (Chen et al., 1997; Haugbøl et al., 2005) can all be associated with

increased NMDAR levels. Our results differ in that we examine NMDARs in a specific

region, the VTA, rather than in the whole brain. Also, our studies involved a relatively brief

period of ethanol intake relative to previous work (Chen et al., 1997; Haugbøl et al., 2005).

We should note that we used younger, juvenile (p21-35) mice for patch-clamp experiments

than were used for in vivo CRF1 receptor antagonist experiments (~8 wk old). However, our

results suggest that CRF1 receptors are related to binge ethanol intake in both ages of mice.

In particular, we found that juvenile mice given an i.p. injection of CP-154,526 (10 mg/kg)

consumed significantly less ethanol than the vehicle-treated group (Vehicle: 6.86 ± 0.59

g/kg, n = 8; 10 mg/kg CP-154,526: 4.67 ± 0.82 g/kg, n = 8; t(14) = 2.194, p = 0.045), which

are in line with the finding in Sparta et al. (2008) which showed a reduction in Day 4 ethanol

consumption after systemic administration of the same CRF1 receptor antagonist in adult

mice, and our own results in Fig. 6 in ~8 wk old young adult mice. Nonetheless, differences

in glutamatergic and dopaminergic systems have been noted between juvenile and adult

animals (Liu et al., 2004; Walker et al., 2004; Zhou and Baudry, 2006 but see Cao et al.,

2000) and could be present in the VTA also. Thus, a CRF1 receptor blocker may decrease

DID intake in both juvenile and adult mice but could do so by a different mechanism.

Further, younger mice in our studies consumed more ethanol (10.4 g/kg) in the DID

paradigm than what has previously been reported for adult mice (5-8 g/kg) (Lowery et al.,

2010; Lyons et al., 2008; Rhodes et al., 2005; 2007; Sparta et al., 2008). Although we did

have a dummy cage to control for spillage, we believe that the amount of ethanol spillage

was not a true reflection of total ethanol loss. The juvenile mice were extremely active
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during the dark phase (unpublished observations) and could have disturbed the ethanol

bottle during testing. However, many other studies have shown that juvenile mice consume

more alcohol than adults in the DID (Moore et al., 2010) as well as other self-administration

models (Doremus et al., 2005; Maldonado et al., 2008; Strong et al., 2010; Vetter et al.,

2007). Additionally, adult mouse intake on Day 4 in experiments in Fig. 6A might have

been reduced by the microinjection procedure (see Lowery et al., 2010). Binge alcohol

drinking has been identified as an important component in the development of alcoholism

and is linked to increased cardiovascular disease and dysfunction of other organs (Bonomo

et al., 2004; Hingson 2005; 2007; Jennison, 2004; Miller et al., 2007; NIAAA, 2004; van de

Wiel et al., 2008). Thus, any factor that reduces binge intake could have multiple health

benefits. Taken together, our results suggest that binge ethanol intake in mice is associated

with greater CRF1 receptor enhancement of NMDAR currents in the VTA, without a change

in NMDAR number or function, and that VTA CRF1 receptors promote binge ethanol

intake. We propose that the VTA CRF1 receptor remains an intriguing candidate for the

treatment of binge drinking.
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Figure 1. Ethanol consumption during the DID procedure in mice used for in vitro
electrophysiology experiments
Mean consumption (g/kg) of 20% ethanol. On Days 1-3, mice had 2 hours access to the

ethanol solution. On Day 4, mice had 4 hours access to the ethanol solution. In vitro

electrophysiology was performed on Day 5. * p < 0.05 compared with days 1-3.
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Figure 2. CRF potentiates NMDAR currents after binge ethanol drinking
(A,B) (A) Example traces (inset) and data across time, and (B) averaged data showing

enhancement of evoked NMDAR currents by 100 nM CRF in VTA neurons from binge-

drinking mice but not from naïve mice. Scale bars in (A) represent 150 pA and 150 msec.

“Baseline” and “CRF-wash” indicate that example traces were taken from the pre-CRF

baseline and from 10 min after washout of CRF, a time point when the NMDAR currents

were still enhanced. Numbers in each bar correspond to the n per group. * p < 0.05.
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Figure 3. CRF1 receptor antagonists reduce the CRF-induced potentiation of NMDAR currents
in binge-ethanol-drinking mice
(A) Data across time and (B) averaged data showing the effect of 100 nM CRF on the

evoked NMDAR current in the binge-drinking ethanol group in the presence or absence of

CP-154,526, a potent CRF1 antagonist. Data without antagonist are the same as in Fig.

2A,B. Putative VTA DA neurons were administered CP-154,526 8 min before and also

during the 100 nM CRF application. CP-154,526 prevented the CRF-induced potentiation of

NMDAR currents in neurons from binge-drinking mice. Numbers in each bar graph

corresponds to the n per group. * p < 0.05.
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Figure 4. No changes in VTA total protein levels of NMDAR subunits in binge-ethanol-drinking
mice
(A) Examples and (B) grouped data of Western blot analyses of VTA protein levels of

NMDAR subunits (NR1, NR2A, NR2B) in binge-drinking and naive mice. GAPDH levels

were measured to verify equal sample loading. Numbers in each bar correspond to the n per

group. O.D.: optical density.
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Figure 5. No change in input-output relationship of NMDAR currents in binge-ethanol-drinking
mice
Evoked NMDA current at 4 different stimulus intensities (0-0.4 pA) in neurons from binge-

drinking (n = 5) and naïve mice (n = 6).
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Figure 6. Intra-VTA infusion of a CRF1 receptor antagonist reduces binge ethanol drinking
(A) Mean ethanol consumption (g/kg) on Day 4 after intra-VTA infusion of CP-154,526 (1

μg) or vehicle 15 min before access to ethanol bottles. We observed a significant reduction

of ethanol intake in mice pretreated with CP-154,526 compared with vehicle. Numbers in

each bar graph correspond to the n per group. (B) Histology of injector track targeting in the

VTA. * p < 0.05.
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