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ABSTRACT: The effect of charge hydration asymmetry
(CHA)non-invariance of solvation free energy upon solute
charge inversionis missing from the standard linear response
continuum electrostatics. The proposed charge hydration
asymmetric−generalized Born (CHA−GB) approximation
introduces this effect into the popular generalized Born (GB)
model. The CHA is added to the GB equation via an analytical
correction that quantifies the specific propensity of CHA of a
given water model; the latter is determined by the charge
distribution within the water model. Significant variations in
CHA seen in explicit water (TIP3P, TIP4P-Ew, and TIP5P-E)
free energy calculations on charge-inverted “molecular
bracelets” are closely reproduced by CHA−GB, with the accuracy similar to models such as SEA and 3D-RISM that go
beyond the linear response. Compared against reference explicit (TIP3P) electrostatic solvation free energies, CHA−GB shows
about a 40% improvement in accuracy over the canonical GB, tested on a diverse set of 248 rigid small neutral molecules (root
mean square error, rmse = 0.88 kcal/mol for CHA−GB vs 1.24 kcal/mol for GB) and 48 conformations of amino acid analogs
(rmse = 0.81 kcal/mol vs 1.26 kcal/mol). CHA−GB employs a novel definition of the dielectric boundary that does not subsume
the CHA effects into the intrinsic atomic radii. The strategy leads to finding a new set of intrinsic atomic radii optimized for
CHA−GB; these radii show physically meaningful variation with the atom type, in contrast to the radii set optimized for GB.
Compared to several popular radii sets used with the original GB model, the new radii set shows better transferability between
different classes of molecules.

1. INTRODUCTION

The conceptual simplicity of the implicit solvation (solvent
treated as a structureless continuum dielectric medium)
framework1−4 facilitates fast quantitative estimates of solvation
effects that are key in biomolecular computation. In this
framework, one often approximates the solvation free energy
free energy change to transfer a solute from gas phase to
aqueous phaseas a sum of its electrostatic (polar) and non-
polar parts, that is, ΔGsolv = ΔGpol + ΔGnp. Among these, ΔGpol
is by far the largest contribution in the majority of molecules;
ΔGnp has not been the computational bottleneck so far,
perhaps due to the simplistic nature of the popular
approximations most commonly used in this context.5 The
defacto “workhorse” for estimation of ΔGpol in most practical
computations is the linear response continuum treatment of
electrostatics based on numerical solutions of the Poisson (PE)
or Poisson−Boltzmann (PB) equation,3 or the generalized
Born (GB) model,4 which is an approximation to the PE.
Because of its closed analytical form, the GB is arguably the
fastest among these implicit solvent models. Some noteworthy
applications of GB include protein folding,6−15 “large scale”
motions in biomolecules,16−18 analysis of nucleic acid
conformational energetics,19,20 binding between proteins and

nucleic acids,21−23 modeling of peptides in membrane environ-
ment,24−28 and many others.29−32

A number of approximations of various severity separate the
linear response continuum PE/PB or GB models from the
more accurate explicit solvent treatment.33 One such serious
approximation is the neglect of charge hydration asymmetry
(CHA)34−41the characteristic dependence of solvation free
energy, ΔGsolv, on the sign of the charges in a solute. The effect
is clearly missing from the linear response continuum model, in
which ΔGsolv ∼ q2/R for a single spherical charge q of radius R.
A straightforward example of CHA is the large difference
between experimental ΔGsolv for oppositely charged ions of
similar ionic radius; for example, K+ and F−42,43 differ roughly
by 50 kcal/mol, which is about 50% of their individual ΔGsolv
values.
Within the continuum framework, experimental solvation

energies of single-charge spherical ions could be reproduced
accurately by ad hoc adjustments made to the ion radii.44,45

These adjustments essentially amount to redefining the
dielectric boundary, which (to an extent) implicitly accounts
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for the missing CHA by making the boundary depend on the
ion charge. While for single ions the procedure works well, its
generalization to the multi-atom case did not yet lead to a
single consensus46 set of atomic radii; a set that works well for a
certain class of molecules does not necessarily perform equally
well for a different class of structures (see, for example, Table
1). We argue that to a significant degree the problem is the

missing CHA; we show that once the effect is explicitly added
into even the simplest of the continuum models, the GB, a
more universal set of atomic radii can be developed. Several
existing “beyond PE” semi-empirical approaches such as the
semi-explicit assembly (SEA)51 (assembling hydration shells of
solutes using the precomputed properties of hydration shells of
charged spheres in explicit solvent) or integral equations based
reference interaction site models (RISM, 3D-RISM)52−55

already implicitly account for CHA, along with many other
effects missing from the linear response continuum framework.
However, these methods are not comparable to the GB model
in computational efficiency and conceptual simplicity, which
gives us an additional motivation to attempt to introduce CHA
directly into the GB model.
Elsewhere,56 we presented a derivation of a CHA-aware

analogue of the Born equation,57 which can be regarded as a
single spherical charge limit of the generalized Born
approximation. A key novelty of our approach lies in a distinct
separation between the placement of the solute dielectric
boundary and the manner in which one accounts for the
asymmetric response of the solvent (water) to the sign of the
solute charge. Within the approach, the CHA effects no longer
have to be mimicked by a redefinition of the dielectric
boundary via ad hoc adjustments to the atomic radii. Instead,
the asymmetric response is accounted for by a scaling factor
applied to the Born electrostatic solvation energy; the scaling
contains the details of the asymmetric response specific to the
water model one wants to emulate. Here, we apply the strategy
to derive a CHA-aware analogue of the GB equation, which we
call the charge hydration asymmetric−generalized Born
(CHA−GB) model. By direct comparison with explicit
solvation energies, we will show how CHA−GB improves the
accuracy of the GB framework. The new model was also
compared with several other recent semi-continuum models
such as SEA51 and 3D-RISM.52−55

2. CHARGE HYDRATION
ASYMMETRIC−GENERALIZED BORN: CHA−GB

The “CHA-aware” modified Born formula for a single spherical
ion of radius ρ and charge q is given by56

where εin and εout are dielectric constants of the solute and the
solvent, respectively, and ρw = 1.4 Å is the water probe radius.
The first part in eq 1 describes the charge-symmetric dielectric
response of the original Born equation,57 accurate in the limit
of a continuum “charge-symmetric” solvent. (Throughout this
article we will loosely use the word “symmetric” for models
devoid of charge hydration asymmetry.) One such model is the
mean spherical approximation58 (MSA) for which the Born
model is exact; the dielectric boundary is shifted up by Rs =
0.52 Å relative to the surface of the spherical solute of radius ρ.
Later in this work, we will extend this dielectric boundary
definition to solutes. Once the charge-symmetric solvation is
accounted for in the “Symmetric Born” part of eq 1, the charge
hydration asymmetry (CHA) correction enters via a multi-
plicative scaling factor η. In η, the CHA of a water model being
emulated is controlled by the model dependent parameter ROH

z

= Q̃zz/p, where Q̃zz and p are respectively the primitive (non-
traceless) quadrupole and dipole moments of the n-point water
model (Table 2).

We now seek an analogue of the CHA-aware Born equation,
eq 1, for molecules. Without the CHA, such analogue is well
knownthe canonical (charge-symmetric) generalized Born
(GB) equation
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where qi(j) is the atomic partial charge of atom i(j). The
empirical function f ij

GB is

= + −f r R R r R Rexp( /(4 ))ij ij i j ij i j
GB 2 2

(3)

where rij is the distance between the ith and jth atom, and Ri and
Rj are their effective Born radii. The effective Born radius of an
atom characterizes its degree of burial inside the solute. Many
efficient methods exist for computing this quantity (see ref 33
for a recent review).
The generalized Born approximation can be viewed as an

interpolation between the two limiting cases: case (a) rij → ∞,
that is, charged atoms are treated as separate distant (non-
interacting) charged spheres and case (b) rij → 0, that is, all
charges merge to form a single sphere of charge ∑iqi and
effective Born radius R. The empirical correction, exp(−rij2/
(4RiRj)) in f ij

GB, eq 3, originally introduced by Still et al.,59

performs the interpolation in a way that at least partially
accounts for non-spherical shapes of realistic molecules.4 Our
strategy is to utilize the same interpolation to derive the CHA-
aware analogue of eq 2 by matching the asymptotes, (a) and

Table 1. Root Mean Square Error (rmse, in kcal/mol) of the
GB ΔGpol Relative to the Explicit Solvent (TIP3P)
Referencea

radii set small molecules amino acid analogs

Bondi48 (10) 1.55 1.99
Parse49 (10) 2.33 7.45
ZAP950 (13) 0.82 2.88

aThe numerical R6 GB calculations47 (see Methods) are based on
three common sets of atomic radii;48−50 the number of atom types for
each radius set is shown in parentheses. The corresponding errors in
numerical PE ΔGpol (not shown) are not smaller.

Table 2. ROH
z = Q̃zz/p for the Three Water Models Used in

This Worka

aQ̃zz = ∑iqizi
2 and p = qizi, where zi is the azimuthal-symmetry

coordinate of charge qi with respect to the molecule center. A
geometric interpretation of ROH

z for the TIP3P water model is shown
in the schematic on the right.
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(b), to the CHA-aware Born formula (eq 1). In what follows,
we consider these two limiting cases in detail.
Case (a): From eq 2, the ΔGpol = (−1/2)(1/εin − 1/

εout)∑i(qi
2/Ri), that is, the sum of self-energies of every atom in

the molecule. Comparing with the symmetric Born part of eq 1,
the effective Born radius, Ri, is seen as equivalent to the
dielectric boundary radius, ρ + Rs. To add CHA correction in
this limit, we scale each GB self-energy term by the
corresponding ηi = {1+sgn[qi]ROH

z /(Ri − Rs + ρw)}
−1 from eq

1. This implies ΔGpol → (−1/2)(1/εin − 1/εout)∑i(qi
2/Ri)ηi as

rij → ∞.
Case (b): In this limit, all the charges are merged together to

form a single sphere of effective Born radius, R, with the total
charge of ∑iqi. Using charge-symmetric eq 2, we can write
ΔGpol = (−1/2)(1/εin − 1/εout)(∑iqi)

2/R. To add the CHA
according to eq 1, the overall ΔGpol must now be scaled with
the CHA factor that depends upon the net charge of the
molecule, that is, η = {1 + sgn[Σiqi]ROH

z /(R − Rs + ρw)}
−1. This

implies ΔGpol → (−1/2)(1/εin − 1/εout){∑i(qi
2)/R}η as rij →

0.
In short, for case (a), each self-term of eq 2 has to be scaled

by its respective CHA scaling factor, whereas for case (b), a
global CHA-scaling is needed. To consistently satisfy both of
these asymptotes while preserving the overall GB functional
form set by eqs 2 and 3, we need a single functional form for
the CHA scaling factor ηi that is aware of other charges in the

molecule. To this end, we make ηi a function of ∑jqje
−τrij

2/(RiRj)

and scale the effective Born radii accordingly
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where τ is a positive constant that controls the effective range of
the neighboring charges (j) affecting the CHA of atom (i). For
realistic molecules, the rij’s are of the same order of Ri’s, and
hence, it can be argued that τ is of the order of 1. Indeed, the
value of τ that we obtain by systematic fitting against explicit
solvent reference ΔGpol’s (see Methods) is close to 1. Using eq
4, the charge hydration asymmetric−generalized Born (CHA−
GB) approximation can be written as
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where f ij
CHA−GB = (rij

2 + R̃iR̃j exp (−rij2/(4RiRj)))
1/2. In line with

our philosophy of separating the CHA effects from the purely
geometric dielectric boundary, we do not use the CHA-
corrected effective radii in the exp (−rij2/(4RiRj)) factor due to
its “geometry correction” role in the GB model.
Charge-Symmetric Dielectric Boundary. The dielectric

boundary, which separates the low dielectric solute from the
high dielectric solvent, is a key concept in the standard
continuum solvation approach. Just like in the original GB
model, the boundary is needed in our CHA−GB formalism for
the computation of the effective Born radii via an integral over
the solute surface (see Methods). The dielectric boundary
definition we propose, Figure 1, is a generalization of the single
spherical ion case, eq 1, designed to account for the charge-
symmetric part of the solvent dielectric response. The idea is to
make the boundary manifestly invariant to inversion of charges
within the solute, as is the case in the classical macroscopic
continuum electrostatics framework60 on which the GB or PE

are based. Charge hydration asymmetry of a more realistic
solvent has to be added as an external correction to electrostatic
solvation energy, for example, as done above for the case of the
proposed CHA−GB formalism. A sharp dielectric boundary is
defined by a set of atomic radii and the rolling probe radius. In
principle, one could find a set of optimal charge-symmetric
atomic radii ρi by an optimization against solvation energies
computed within a charge-symmetric explicit water model such
as BNS61 or an even simpler model in which the appropriate
point dipole is placed at a single vdW center.56 In practice, we
will first add CHA via eqs 4 and 5, and then iteratively optimize
the radii to obtain best fit against a more realistic charge-
asymmetric explicit solvent (TIP3P) ΔGpol for a representative
set of realistic molecules.

3. METHODS
Molecule Sets. Four molecule sets38,62−64 were used to test

the performance of the proposed model.
Set 1: This is a polar solute series38 of several “bracelet”-like

regular planar polygonal (triangle to octagon) molecules made
with a single aromatic carbon “ca” atom type (Figure 2). These
charge-inverted bracelets were specifically designed to study
solvent-dependent CHA effects.38 Two charge configurations
for each molecular geometry were considered, the N and P
bracelets, that is, one atom in the molecule charged −1e (N
bracelet) or +1e (P bracelet), whereas the rest of the atoms
were equally charged such that the overall molecule is neutral.
The explicit ΔGpol in TIP3P and TIP4P-Ew were obtained
using standard thermodynamic integration (TI)65 in Amber
12,66 whereas the TIP5P-E ΔGpol were deduced from ref 38
(Supporting Information).
Set 2: A set of 248 rigid diverse neutral small molecules was

selected from a larger set of 504 molecules commonly used to
test solvent models;47,51,62,67 the corresponding explicit water
(TIP3P) ΔGpol values were taken from ref 62. The rationale for
focusing on the rigid molecules is as follows. It is well known
that solvation free energies are sensitive to the solute
conformations;67 poor conformational sampling may lead to
errors in estimated solvation energies relative to the experi-
ment. However, our primary goal here is to improve the
implicit solvent estimates of the polar part of solvation energy,
and so we believe that a comparison with the single
conformation polar solvation free energy in the explicit solvent
is the best strategy. That is, we would like to minimize the

Figure 1. Charge-symmetric dielectric boundary used in CHA−GB for
multi-atom solutes. The schematic inset shows the key construction
steps. Each atomic radius (ρi, red circle) is increased (purple area) by
the same correction Rs = 0.52 Å. The dielectric surface (blue line) is
outlined by rolling a probe of radius ρw − Rs. The smaller than the
standard ρw = 1.4 Å probe ensures invariance of the solvent accessible
surface around the solute.
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number of other factors that affect the ΔGpol estimates. In order
to compare with the explicit ΔGpol, we therefore chose the most
rigid 248 molecules that showed small conformational
variability during the molecular dynamics simulations per-
formed on the same 504 molecule set as in ref 67 (see the
Supporting Information for details).
Set 3: This is a set of 48 structures of single amino acid

analogs of the form N-acetyl-X-N′-methylamide (X refers to
one of the 20 amino acids). Among these, 40 structures were
taken directly from ref 63, to which we added eight additional
molecules by neutralizing the charged structures: ASP, LYS,
GLU, and ARG (Supporting Information).
Set 4: A set of 19 neutral small protein structures with

average sizes of 30 amino acid residues were randomly selected
from a larger set used in ref 64 (Supporting Information).
Parameter Optimization: Realistic Molecule Sets. For

CHA−GB, 10 parameters (ρi of nine atom types, Table 3, and τ
= 1.47) were optimized against the explicit (TIP3P) solvation
free energy with a training set comprised of 124 molecules from
the rigid small molecule set and 24 molecules from the set of
amino acid analogs. These molecules in the training set were
sampled to approximate an equal representation of the span of
solvation free energies as well as of the atom types of the entire
set (Supporting Information). We used the Nelder−Mead
simplex algorithm68 with the objective function that weighs
equally RMS deviations from the reference ΔGpol of the small
molecules and the amino acid analogs. Convergence to the
optimum set of parameters (Table 3) was ensured within 100
independent runs with random initial guess parameters (within
a physical range) (Supporting Information). For all realistic
molecules, we use the analytical linearized Poisson−Boltzmann
(ALPB) model,69 which is a correction to GB, eq 2, that
introduces a physically correct dependence on the dielectric
constants while keeping the computational efficiency of the
original. In ALPB, ΔGpol is approximated as

∑
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where β = εin/εout, α = 0.571412, and A is the electrostatic size
of the molecule, essentially the overall size of the structure
computed analytically.69 We add the CHA correction to ALPB
by replacing f ij

GB by f ij
CHA−GB similar to eq 5. To avoid

uncertainties associated with the effective Born radii estimation,
we use numerical “R6” radii,70 which were shown47,71 to deliver
ΔGpol estimates essentially as accurate as those based on the
perfect72 PE-based radii. Specifically, the effective radii are
computed via
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where r is the position of the infinitesimal surface element dS
that encloses the charge-symmetric dielectric boundary ∂V
(Figure 1), and ri is the coordinate of atom i. Unless otherwise
stated, for canonical GB, we use the Lee−Richards molecular
surface73 obtained with the standard water probe radius ρw =
1.4 Å. We use a numerical approximation of eq 7, representing
the dielectric boundary as a triangulated mesh with density of 6
vertices/Å2 obtained using MSMS74 package. For proteins
structures, following ref 71, we add a uniform correction of
0.028 Å−1 to the Ri

−1 in eq 7.
Parameter Optimization: N and P Bracelets. The

intrinsic radius of the aromatic carbon, “ca” atom type, was
obtained by fitting against the TIP4P-Ew ΔGpol − optimal
ρ(“ca”) = 1.37 Å. The same value of τ = 1.47 as above was used
in eq 4.

3D-RISM. We computed single point 3D-RISM ΔGpol
(TIP3P) using the implementation75 in AMBER-1266 with
the protocol from http://dansindhikara.com/Tutorials/. These
estimates were adjusted76 by two parameters, a1 and a2, fit
against the explicit solvent ΔGpol

ρΔ = Δ + +‐G G a V apol
corr

pol
3D RISM/GF

1 2 (8)

where ΔGpol
3D‑RISM/GF is the 3D-RISM ΔGpol using the

Kovalenko−Hirata closure77 assuming Gaussian fluctuation of
the solvent, ΔGpol

corr is the corrected polar solvation energy, V is
the partial molar volume, and ρ = 0.0333A−3 is the solvent

Figure 2. Polar solvation free energies of the charged-inverted “bracelets”. Atomic structures of the N-bracelets are shown on the top horizontal axis,
while the P-bracelets are shown at the bottom. Explicit solvent energies for three different water models ((a)TIP4P-Ew, (b)TIP3P, and (c)TIP5P-E)
are denoted by red dots for N-bracelets and blue dots for P-bracelets. The corresponding CHA−GB energies are shown by the black triangles; the
ROH
z parameter that controls the propensity for CHA in CHA−GB, eq 5, is set to the value appropriate for the given explicit water model (Table 2).

Table 3. Optimized Intrinsic Atomic Radii Sets for CHA−GB and GB

radii set (Å)

C H N O S F Cl Br I

CHA−GB 1.56 0.47 1.59 1.37 1.88 1.44 1.84 1.92 2.29
GB 1.76 1.29 1.46 1.50 2.04 1.16 1.25 2.04 1.72
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number density. The optimized values of a1 and a2 are provided
in the Supporting Information.

4. PERFORMANCE OF THE NEW MODEL
CHA−GB closely reproduces the explicit polar solvation energy
(ΔGpol) (Figure 2) of the charge inverted N and P “bracelet”
molecules in TIP3P (rmse = 0.67 kcal/mol), TIP4P-Ew (rmse
= 1.02 kcal/mol), and TIP5P-E (rmse = 0.50 kcal/mol) water
models emulated in CHA−GB by using the appropriate value
of ROH

z from Table 2. Note that using identical (for all water
models) dielectric boundaries for the N and P bracelets of same
size properly captures the propensity for CHA of each of the
three explicit water models tested. It is interesting that within
CHA−GB, the CHA contributions from both self-terms and
cross terms in eq 5 are significant. For example, for TIP3P, the
ratio of magnitude of CHA in cross terms to that in the self-
terms, ⟨|ΔΔGpol(cross)/ΔΔGpol(self)|⟩ = 0.6. These contribu-
tions have opposite effects on the overall CHA; the CHA in
self-terms is partially negated by the CHA in cross terms. As
expected, the canonical GB does not capture the CHA (Figure
2a); the best fit to explicit solvent ΔGpol results in very different
values of ρ(“ca”) for different water models as the readjustment
of the dielectric boundary compensates for the missing CHA.
The inability of the Poisson treatment to capture CHA of the
same “bracelet” molecules was noted earlier.38 In contrast, our
fairly simplistic way of introducing the CHA into the linear
response continuum already captures the effect at a level similar
to considerably more complex “beyond Poisson” models such
as 3D-RISM76,78 and SEA51 (Figure 3). A noteworthy

observation is that the atomic radii optimized for CHA−GB
have physically meaningful variations with the atom type
(Table 3) unlike the ones optimal for GB that have ρ(I) <
ρ(Br) and ρ(H) > ρ(Cl). It is also reassuring that the optimal
hydrogen radius ρ(H) = 0.47 Å in the CHA−GB model is such
that the realistic distance79 of about 2 Å observed between the
hydrogen and its electronegative partner in the hydrogen bond
can now be reproduced. Compared against the reference
(TIP3P) ΔGpol, CHA−GB shows approximately 40% improve-
ment in accuracy (root mean square error, rmse) over the
canonical GB (Table 4) for the 248 small molecules and 48
amino acid analogs. The largest errors and the average errors
are also reduced in the CHA−GB model. For small proteins,
CHA−GB also shows an improvement in accuracy; note that
this type of structure was not used to train the radii sets.
Arguably, the most impressive achievement of CHA−GB is that
it provides equally good accuracy of better than 1 kcal/mol
simultaneously for both the small molecules and amino acid
analogs. This is in contrast to GB. For example, GB with a
ZAP9 set (13 atom types) specifically optimized for small

molecules can yield similar good accuracy (ΔGpol rmse = 0.82
kcal/mol) for the 248 small molecules, but then the
corresponding errors for the 48 amino acid analogs become
large (ΔGpol rmse = 2.88 kcal/mol) (Table 1). We have
checked directly that the uniformity of the accuracy improve-
ment or equivalently the improved transferability of the new
radii set is indeed the consequence of introducing the CHA
into the GB model. Namely, even if the new dielectric
boundary of Figure 1 is used in the charge-symmetric GB, the
model still cannot reach the 1 kcal/mol rmse accuracy of ΔGpol
simultaneously for both the small molecules and amino acid
analogs(Supporting Information). Our overall conclusions do
not change, and the accuracy of CHA−GB remains essentially
the same if we extend the molecule set to include the flexible
molecules from the original set of 504 neutral molecules
(Supporting Information). A comparison of the performance of
CHA−GB and 3D-RISM77 is presented in Table 5. Note that

the same training set and optimization technique (see Methods
and Supporting Information) was used to obtain best fit
parameters for both models. A systematic comparison of
CHA−GB with other “beyond PE” models is out of the scope
here. However, we note that the published performance of the
SEA51 model relative to the explicit solvent on the same set of
504 small molecules (same partial atomic charges) (ΔGpol rmse
= 0.81 kcal/mol) is comparable to that of CHA−GB (rmse =
0.89 kcal/mol).
Because many disparate approximations separate reality from

the linear response continuum framework,80 it is noteworthy
that adding only CHA to it (here via GB) yields accuracy in
ΔGpol estimates similar to or even better than those of some
more complex approaches that implicitly incorporate not only
CHA but also other explicit solvent effects missing from the
linear response continuum. At the same time, the reported
computational cost of such methods, for example, SEA51 and
especially of 3D-RISM,75 is much higher than that of the
canonical GB,47 while CHA−GB is only about ∼1.5 folds
slower than GB.

Figure 3. Asymmetry in the polar part of solvation free energies,
ΔΔGpol = |ΔGpol(N) − ΔGpol(P)| for N/P bracelets using different
methods. For the SEA model, the data are adapted from ref 51.

Table 4. Accuracy of ΔGpol Estimated by CHA−GB and GB
Based on Their Respective Optimal Atomic Radii (Table 3)a

small molecules
amino acid
analogs proteins

GB
CHA−
GB GB

CHA−
GB GB

CHA−
GB

rmse 1.24 0.88 1.26 0.81 10.24 8.95
⟨err⟩ −0.53 −0.37 0.24 0.09 −6.12 −2.80
⟨|err|⟩ 0.93 0.63 0.90 0.64 7.79 7.63
r2 0.86 0.93 0.998 0.999 0.99 0.99

%(|err| >
2kBT)

30.6 14.9 25.0 16.7 84.2 89.5

rmse worst 5% 3.20 2.55 4.14 2.11 25.53 16.20
aThe accuracy is assessed relative to explicit solvent (TIP3P) ΔGpol
(kcal/mol): root mean square error (rmse), mean error (⟨err⟩), mean
absolute error ⟨|err|⟩, r2 correlation, percentage of molecules with
absolute error >2kBT, and rmse of the 5% molecules with largest |err|.

Table 5. Error (rmse relative to explicit solvent, in kcal/mol)
in ΔGpol Estimates Using CHA−GB and 3D-RISM

small molecules amino acid analogs proteins

CHA−GB 0.88 0.81 8.95
3D-RISM 0.50 5.28 18.36
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By adding the non-polar contribution to the polar part
(Supporting Information), we can compare the total solvation
energy against the experiment. The solvation free energy
predicted by CHA−GB (rmse = 1.22 kcal/mol) against the
experiment is about 20% more accurate than that of the GB
(rmse = 1.45 kcal/mol) and is comparable to the accuracy of
calculations in explicit (TIP3P) water62 (rmse = 1.26 kcal/mo)
for the same 504 small molecules. A standalone code to
perform the GB and CHA−GB calculations described here can
be downloaded from http://people.cs.vt.edu/~onufriev/
software.php.

5. CONCLUSION
The work has two main results. First, we have demonstrated
how charge hydration asymmetry (CHA)so far missing from
the conceptual framework of the linear response continuum
electrostaticscan be incorporated into what is arguably the
simplest commonly used approximation based on the frame-
work, namely, the generalized Born model. The resulting
CHA−GB model is as conceptually simple and should be
nearly as computationally efficient as the original. At the same
time, it provides a noticeable improvement in the accuracy of
electrostatic solvation energy estimates relative to explicit
solvent reference. What is perhaps even more noteworthy is
that the introduction of CHA leads to a uniform improvement
in the performance of the model on different classes of
molecules, including charged compounds. Note that standard
continuum electrostatic calculations based on commonly used
sets of intrinsic atomic radii do not show the uniform accuracy
across a range of charge states and structures, which had led to
the development of specialized radii sets. These atomic radii
often exhibit unphysical trends in the atom sizes, for example,
radius of fluorine may become smaller than that of hydrogen.
This is where the second main result of the work is: the
development of a new dielectric boundary definition to which
the CHA effects are “external”. In the proposed formalism, the
dielectric boundary is manifestly charge-symmetric, while the
CHA effects are added to the computed solvation energy as a
correction. Within this framework, atomic radii optimized for
solvation energy calculations against explicit solvent reference
show physically meaningful variation with the atom type. As is
the case with any model, there are limitations of the proposed
approach. The CHA scaling has so far been incorporated by
matching the two obvious limiting cases of the original
generalized Born equation. While these two limits are physically
well grounded, the intermediate region is treated simply as a
mathematical interpolation. Another limitation of our current
model is that the CHA is solely determined by the sign of the
solute charge, that is, independent of its magnitude. While this
is a good approximation for ions (integer charge), a more
sophisticated approach may be needed to treat fractional atomic
charges.41 One should also not forget that even at the level of
continuum solvent various CHA-unrelated microscopic solvent
effects81 are not considered by the proposed CHA−GB model.
Nevertheless, it is noteworthy that the accuracy of the basic
continuum electrostatics model can be improved noticeably by
adding only CHA to it.
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