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Abstract.—We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection
and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA
sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due
to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior
predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model
fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which
is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient,
requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new
perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the
perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing
models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics;
posterior predictive.]

Criticizing the model used is an important step
in phylogenetic analyses (Sullivan and Joyce 2005;
Ripplinger and Sullivan 2010). Many Bayesian
phylogenetic analyses use ModelTest (Posada and
Crandall 1998), MrModelTest (Nylander 2008), or
JModelTest (Posada 2008) software to choose the model.
These programs use output from PAUP* (Swofford
2002) or PhyML (Guindon et al. 2010) to perform
likelihood ratio tests (LRTs; Wilks 1938), or compute
the Akaike information criterion (AIC; Akaike 1974)
or the Bayesian information criterion (BIC; Schwarz
1978) in order to rank models. Although practical, this
approach is less than ideal because LRTs, AIC, and BIC
all judge a model solely on how it performs at its best
(the maximum likelihood point), ignoring the prior
distribution, which is an important component of any
Bayesian model. The marginal likelihood provides an
alternative to AIC and BIC that correctly accounts for
the effect of the prior distribution on model fit but at
the cost of greater computational effort. Recent work
has greatly improved the accuracy and efficiency of
marginal likelihood estimation, and thermodynamic
integration (Lartillot and Phillippe 2006; Friel and Pettitt
2008), stepping-stone (SS) sampling (Fan et al. 2011; Xie
et al. 2011), and the inflated density ratio method (Arima
and Tardella 2012) are already available in Bayesian
software (Lartillot et al. 2009; Baele et al. 2012; Ronquist
et al. 2012).

The marginal likelihood represents the average fit
of a model to the observed data, where the average
is over the entire parameter space and is weighted by
the prior. The marginal likelihood also serves as the
normalizing constant needed to ensure that the posterior
probability density integrates to 1.0, and in this role

appears as the denominator in Bayes’ rule. Although
marginal likelihoods (including Bayes factors) represent
the method of choice in Bayesian model selection, there
is room for other opinions. An investigator may be less
interested in the average fit of a model to the observed
data than in how well the model performs in predicting
new data. That is, would new data simulated from a
model be similar to the data used to fit the model? If not,
this failure in prediction would be a cause for concern
even for models that fit the observed data well, and
predictive ability thus represents a different viewpoint
for assessing model performance.

Bayesian model selection methods that measure the
predictive ability of a model using parameters sampled
from the posterior distribution are known as posterior
predictive methods. Building on the posterior predictive
P-value approach of Bollback (2002), this article explores
two additional posterior predictive methods: Gelfand–
Ghosh (GG) L-measure and conditional predictive
ordinate (CPO).

POSTERIOR PREDICTIVE MODEL SELECTION

The posterior distribution is defined by Bayes’ rule,

p(θM|y,M)= p(y|θM,M)p(θM|M)
p(y|M)

, (1)

where y represents the observed data, M is the model,
θM represents the set of parameters specific to model
M, p(y|θM,M) is the likelihood of model M, p(θM|M)
is the joint prior probability density, p(y|M) is the
marginal likelihood of model M, and p(θM|y,M) is the
posterior probability density. We treat the tree topology
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as part of the model M and the edge lengths of the
tree as components of θM. Because it depends only
on ratios of posterior densities, Markov chain Monte
Carlo (MCMC) allows a sample to be obtained from
the posterior distribution without knowledge of the
marginal likelihood; however, the marginal likelihood
must be estimated accurately if it is to be used in model
selection.

For nucleotide sequence data, yi for site i (i=1,··· ,ns)
is a vector of length nc with elements

yij =
{

1 if ith site matches jth pattern
0 otherwise,

(2)

where nc =4nt is the number of possible patterns and nt
is the number of taxa. A four-taxon example is depicted
in Figure 1 in which state A is observed in taxa 1-3 for site
i, while state C is observed for taxon 4. Let y· =∑i yi be
the vector of total pattern counts. An example of y· from
a data set with 1284 sites is shown in Figure 1. y· will be

Taxon 1
Taxon 2
Taxon 3
Taxon 4

1 2 3 4 5 nc

A A A A A . . . T
A A A A A . . . T
A A A A C . . . T
A C G T A . . . T

(0, 0, 0, 0, 1, 0)

(252, 9, 2, 0, 4, 254)

. . .

. . .

FIGURE 1. The notation yi refers to a vector of length nc that (assuming
no missing data or ambiguities) has a single nonzero element (where nc
is the number of possible data patterns). This single nonzero element
corresponds to the particular data pattern observed for site i and
has value 1. The vector y2 corresponding to site i=2 is shown for
illustration. The result (y·) of summing yi over all i=1,2,··· ,ns is also
shown (where ns is the number of sites).

written y when individual elements of y· do not need to
be referenced.

Rather than basing model selection on the marginal
likelihood, posterior predictive model selection depends
instead on the posterior predictive distribution,

p(ỹ|y,M)=
∫

p(ỹ|θM,M)p(θM|y,M)dθM. (3)

Here, p(ỹ|y,M) is the probability of a new data set ỹ
given the observed data y and model M. The data set ỹ
may be generated by simulating from model M using
a particular set of parameter values θM (Fig. 2). The
distribution of θM, in turn, is provided by the posterior
distribution p(θM|y,M). A sample from p(ỹ|y,M) can
therefore be obtained by sampling parameters from the
posterior distribution (using MCMC), and for each set of
parameter values sampled, generating at least one data
set by simulation using those parameter values. Several
software packages facilitate the simulation of posterior
predictive data sets (Rambaut and Grassly 1997; Brown
and ElDabaje 2009; Lartillot et al. 2009).

GG APPROACH

The method described by Gelfand and Ghosh (1998),
here abbreviated GG, balances the tradeoff between
goodness-of-fit and posterior predictive variance. The
term “L-measure” (where L stands for “loss”) has been
used (Ibrahim et al. 2001; Chen et al. 2004) for this
class of Bayesian posterior predictive model selection
methods.

We illustrate the GG method using a simple example
involving only two taxa, then discuss extending
the approach to multiple-taxon sequence alignments.

A TATACTAT...
B ATTAATAT...
C TATATTAT...
D GCTGCTAT...

πA = 0.288
πC = 0.175
πG = 0.215
πT = 0.322
κ = 1.870

TL = 0.229

100

ỹ(1)

A

B

C

D

A TTTGAACT...
B TTTGATCA...
C TTTGATCT...
D TTTGATCC...

πA = 0.297
πC = 0.177
πG = 0.209
πT = 0.317
κ = 1.603

TL = 0.216

200

ỹ(2)

A

B

C D

A ATCAGCAT...
B GTCAAGAT...
C ATCTGCTT...
D ATCTAGAC...

πA = 0.278
πC = 0.177
πG = 0.213
πT = 0.332
κ = 1.811

TL = 0.218

300

ỹ(3)

A

B

C

D

A TATAGAAT...
B ATTAGAAC...
C AATAGAAT...
D AATAGAAT...

πA = 0.287
πC = 0.177
πG = 0.211
πT = 0.325
κ = 1.997

TL = 0.225

400

ỹ(4)

A

B C

D

FIGURE 2. Generation of posterior predictive data sets ỹ(k) under a HKY substitution model for a four-taxon problem. Numbers at
the top represent the MCMC iteration at which a posterior sample was drawn, TL=tree length (sum of the five edge length parameters),
�=transition/transversion rate ratio, and �A,�C,�G,�T=nucleotide equilibrium relative frequencies. For each iteration, the sampled parameter
values and tree are used to simulate one data set, the vector of pattern counts of which constitute ỹ(k).
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TABLE 1. Examples of pattern counts illustrating the type of
information used by the GG method to discriminate among models

Pattern Uniform JC69 K80

AA 52 237 196
AC 71 9 2
AG 64 6 23
AT 67 13 2
CA 62 9 3
CC 64 215 255
CG 68 10 1
CT 49 6 24
GA 63 12 18
GC 67 10 1
GG 66 227 207
GT 59 4 2
TA 59 11 3
TC 65 9 29
TG 60 10 3
TT 64 212 231
Lossa 2344.2 0.0 177.7

aUses the “JC69” column as the reference distribution.

The first column in Table 1 shows the nc =42 =16
patterns possible for two taxa and four nucleotide
states, and the remaining three columns represent
data sets simulated using the Uniform, JC69, and K80
models. The Uniform model has no free parameters
and simply places each new site in one of the 16
bins at random (discrete uniform distribution). The
second model is a JC69 model (Jukes and Cantor
1969) with one parameter, the expected number of
substitutions per site, or evolutionary distance, �=0.5.
The third model (K80; Kimura 1980) has two parameters:
the evolutionary distance (�=0.5 substitutions/site)
and the transition/transversion rate ratio (�=10). The
purpose of this table is to simply show that different
models produce different data pattern distributions
when asked to simulate data. It is clear from comparing
counts for different site patterns that data generated
by the Uniform model is strikingly different from data
produced by the other two models. The differences
between JC69 and K80 are more subtle, but if many
data sets were simulated from both of these models,
it would be clear that the K80 model consistently
produces many more sites representing transition-
type substitutions (A↔G, C↔T) than does the JC69
model.

The GG method involves simulating data from a
candidate model and comparing the simulated data sets
to each other and to the observed data. GG rewards
models that do well at producing data sets that are
consistently similar to the observed data and punishes
models that produce either (i) highly variable data
sets (in the sense that replicate simulated data sets
bear little resemblance to one another) or (ii) data
sets that systematically differ from the observed data.
GG does not explicitly penalize a model for having
extra parameters: it measures the effect of the model’s
parameters with respect to both goodness-of-fit and
predictive variance. Models that are too simple tend to

fail with respect to goodness-of-fit, and the GG penalizes
such models for having poor fit to the observations.
Models that are more complex than they need to be tend
to produce data that is too variable, and the GG penalizes
these models for their gratuitous variability.

Any method using comparisons of simulated data to
observed data to assess model performance must solve
two problems. First, a model must be parameterized to be
used for simulation. For example, if one were to simulate
data using the HKY model, what value should be used
for the edge lengths (�), transition/transversion rate ratio
(�), and nucleotide frequencies (�)? We have already seen
that choosing �=0.5, �=1, and �={0.25,0.25,0.25,0.25}
(equivalent to assuming a JC69 model) produces data
sets that are noticeably different than when �=10
(equivalent to the K80 model). The GG solves this
problem by using samples of parameter values from the
posterior distribution (obtained during the course of a
Bayesian MCMC analysis) to fully specify the model. In
this, GG is similar to the posterior predictive P-value
approach advocated by Bollback (2002). Second, a means
for comparing data sets must be chosen. GG uses loss
functions for this purpose.

The Deviance Loss Function
Loss functions are designed such that zero represents

a perfect match (i.e., no loss) and larger (strictly positive)
values represent increasing amounts of mismatch
between the function’s arguments. The GG method is
flexible in terms of the loss function used, but in this
study, we restrict our attention to the deviance loss
function, which is appropriate for comparing discrete
categorical data sets such as those encountered in
molecular phylogenetics. The deviance loss function
used here, L(y,a), compares an observed or simulated
data set y with a reference data set a. L(y,a) is, by
definition, twice the natural logarithm of the ratio
of two probabilities, each of which is a product of
categorical probabilities, one for each possible pattern.
A categorical probability distribution is appropriate
when each observation (yi) falls into one of nc bins; the
Bernoulli distribution is a special case when the number
of bins equals just 2. The quantity pj is the probability
that any given observation falls in bin j (j=1,··· ,nc;∑

j pj =1). The joint categorical probability function can
be written as

p(y)=
nc∏

j=1

p
y·j
j . (4)

The numerator and denominator of the deviance loss
function both take this form and differ only in the
choice of values for pj. A saturated model is used in
the numerator: i.e., pj =y·j/ns. In the denominator, the
p vector is obtained from the pattern counts composing
the reference data set. As an example, let the counts from
the “Uniform” column in Table 1 be y and counts from
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the “JC69” column be a. The deviance loss function is
thus

L(y,a)=2log

⎧⎪⎨
⎪⎩
(

52
1000

)52 ( 71
1000

)71 ( 64
1000

)64 ···
(

64
1000

)64

(
237
1000

)52 ( 9
1000

)71 ( 6
1000

)64 ···
(

212
1000

)64

⎫⎪⎬
⎪⎭

=2344.2. (5)

It is clear that L(y,a) would be zero if the probabilities
of site patterns specified by a exactly matched those
in the saturated model. Because the saturated model
represents the best possible fit to the counts in y,
the probability ratio is greater than or equal to 1,
guaranteeing that the loss function is greater than or
equal to zero. The last row in Table 1 compares loss
functions calculated for the example counts, assuming
that the “JC69” column represents the reference data
set. The largest loss (2344.2) is associated with the
data set simulated under the Uniform model, while the
“K80” data set is much closer (177.7) to the reference
data set “JC69.” In the GG method, loss functions
compare either the observed data (y) or a data set (ỹ(k))
simulated from the posterior predictive distribution
to a reference data set a representing a compromise
between y and ỹ(k), where k =1,··· ,n and n is the size
of the sample obtained using MCMC from the posterior
distribution.

The GG Criterion
The GG criterion for a model M is defined as the sum

of two terms:

GG=E[L(ỹ,a)]+�L(y,a). (6)

The first term on the right side measures the expected
loss of a posterior predictive data set ỹ compared with a
reference data set a. The second term measures the loss
of the observed data y relative to the same reference data
set a, weighted by an arbitrary factor � that specifies the
relative importance of goodness-of-fit compared with
predictive variance. A value of � greater than 1 places
more weight on models that fit the observed data well;
� less than 1 emphasizes models with low posterior
predictive variance. In this article, �=1 is used, a choice
supported by theoretical considerations (Ibrahim et al.
2001; Chen et al. 2004). The reference data set a is chosen
to minimize the value of GG. That is, the value GG
used to compare model M to other models is optimized
to give model M the best possible chance of being
considered the best model. In practice, the reference data
set a is a weighted average of the observed data set
and all posterior predictive data sets. Thus, unlike the
observed data and any of the posterior predictive data
sets, a has pattern counts that are not necessarily whole
numbers.

It is possible to choose the appropriate a analytically
given the form assumed for the loss functions involved.
For the deviance loss function, the minimizing a turns

out to be

a= μ+�y
�+1

, (7)

where y represents the observed data and μ represents
the average of the posterior predictive data sets. Each
pattern count in μ is a simple average of the counts of
the corresponding pattern from all posterior predictive
data sets. If �=1, then each pattern count in a is a simple
average between the count of that pattern in y and μ.

Incorporating the above definition for a into the loss
functions reveals that GG can be written as the sum of
two components, one (GGp) directly related to posterior
predictive variance and the other (GGg) directly related
to goodness-of-fit:

GG=GGp +GGg (8)

GGp =2ns

⎡
⎣
⎛
⎝ 1

np

np∑
�=1

t(ỹ(�))

⎞
⎠−t(μ)

⎤
⎦ (9)

GGg =2ns(�+1)
{

t(μ)+�t(y)
�+1

−t
(

μ+�y
�+1

)}
, (10)

where np is the number of posterior predictive data sets
generated (np ≥n) and ns is the total number of sites. The
function t(y) is defined as follows:

t(y)=
nc∑

j=1

(y·j
ns

)
log

(y·j
ns

)

=−logns + 1
ns

nc∑
j=1

y·j logy·j. (11)

The t function is the negative of the nat version of the
Shannon entropy measure (Shannon 1948). Thus, it is
highest (near its maximum value of zero) when entropy
is low (a few patterns dominate) and lowest (near its
minimum value of −lognc, or −logns if ns <nc) when
entropy is high (counts spread evenly over site pattern
classes). The value nc, for DNA sequence data, equals
the number of possible patterns, or 4nt , but can be much
smaller if patterns are combined (see later).

GGp measures the posterior predictive variance. If
the individual posterior predictive data sets are very
different from one another, the value of GGp will be
large. If all of the individual posterior predictive data
sets were identical, GGp would equal zero. Lower values
of GGp are desirable in a model because low posterior
predictive variance means that the model is consistent
in its predictions.

The quantity GGg measures goodness-of-fit of the
model to the observed data. If the posterior predictive
data sets ỹ(�)(�=1,··· ,np) are all very similar to the
observed data y, then their average μ will also be similar
to y and GGg will be small. GGg becomes larger as μ and
y diverge, which happens only if the posterior predictive
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data sets generated by the model consistently differ from
the observed data.

The goal is thus to find the model with the lowest
value of GG. This model best manages the tradeoff
between GGp and GGg compared with the other models
in contention. As with all model choice methods, the
values GGp and GGg (and thus GG) are relative; models
can only be judged better or worse than other models.

The Dimension Problem and a Binned Solution
In the evolutionary distance example presented

earlier, there were only 16 possible data patterns, and
consequently, a high probability that all 16 pattern counts
are nonzero. Increase the number of taxa to match
those typical of phylogenetic problems, however, and
the number of possible patterns becomes unwieldy,
greatly exceeding the number of sites and leading
to many patterns with counts equal to zero in y or
even in μ. To avoid sparse data vectors, we chose to
combine bins to reduce the dimension of the categorical
distributions used in the deviance loss function. The
GG analyses in this article use the following 15-bin
strategy: bins 1–4 represent patterns constant for
A, C, G, or T, respectively; bins 5–10 contain patterns
composed of two nucleotide states (AC, AG, AT, CG,
CT, or GT, respectively); bins 11–14 contain patterns
composed of three nucleotide states (ACG, ACT, AGT,
or CGT, respectively); and the final bin contains patterns
composed of all four nucleotide states. This binning
strategy has the advantage of simplicity and wide
applicability but is nevertheless arbitrary and other
binning strategies may prove to be more effective in
capturing the essential features of a data set.

THE CPO APPROACH

The Conditional Predictive Ordinates (CPO) method
represents a posterior predictive approach distinctly
different from GG that has proven useful in Bayesian
model selection (Geisser 1980; Gelfand et al. 1992; Chen
et al. 2000) and which holds promise for exploratory data
analysis in Bayesian phylogenetics. The CPO measures
the fit of the model to an individual site: specifically, the
CPO for a given site i equals p(yi|y(−i)): the probability
of the data for that site (yi) conditional on the data (y(−i))
for all other sites. Its definition also makes CPO a cross-
validation method because evaluation of a particular site
is based on only data from other sites.

Consider a constant site having (for example) base A
for every taxon. If other sites in the sequence yield an
estimate of 0.001 for the total tree length, chances are
that the focal site is slowly evolving as well. Given the
very low substitution rate and reasonably equal base
frequencies, the probability of a constant, exclusively-A
site is about 0.25. This represents a very high CPO value.
Imagine now a contrasting case in which all other sites
yield edge length estimates greater than 1.0 for every
edge in the tree. In this case, the probability of a constant,

exclusively-A site is much lower than 0.25 because all
other sites suggest a large amount of substitution, which
is inconsistent with a constant site pattern. Interestingly,
CPO will generally be low for all sites if substitution
rates are high. This is because it is simply inherently
difficult to make accurate predictions in the face of a
large amount of change. There are very few patterns
when substitution is low but very many patterns when
substitution is high. Because CPO tends to be inversely
proportional to evolutionary rate, CPO can be used to
identify fast-evolving regions using a simple model that
does not estimate the rate at each site separately.

CPO is attractive because, unlike most cross-validation
and posterior-predictive approaches (including
GG), no extra simulation is required beyond the
MCMC simulation used to sample from the posterior
distribution. CPO thus provides, essentially for free, a
measure of both overall and site-specific model fit using
samples from the same MCMC analysis used to estimate
model parameters and the tree topology. Examination
of a plot of CPO values can identify regions of sequences
that, for one reason or another (incorrect alignment,
differing nucleotide composition, etc.), exhibit poor
model fit compared with the majority of sites.

CPO and Log Pseudomarginal Likelihood
Letting y(−i) denote data from all sites except i, the

CPO for the ith site (CPOi) emerges as the posterior
harmonic mean of the ith site likelihood:

CPOi =p(yi|y(−i))=
∫

p(yi|θ)p(θ|y(−i))dθ

=
∫

p(yi|θ)

[ ∏
j �=i p(yj|θ)p(θ)∫ ∏
j �=i p(yj|θ)p(θ)dθ

]
dθ

= p(y)∫ ∏
j �=i p(yj|θ)p(θ)dθ�������∫

p(y|θ)p(θ)
p(y)

dθ

=
(∫ ∏

j �=i p(yj|θ)p(θ)

p(y)
dθ

)−1

=
(∫ p(yi|θ)

∏
j �=i p(yj|θ)p(θ)

p(yi|θ)p(y)
dθ

)−1

=
(∫

1
p(yi|θ)

p(θ|y)dθ

)−1
. (12)

(The Appendix discusses the relationship of CPO to
the harmonic mean method for estimating marginal
likelihood.) Although counterintuitive, equation (12)
shows that it is possible to perform cross validation
(computing the probability of the data from one site
given data from all other sites) without the necessity of
performing ns separate analyses. Equation (12) suggests
the following MCMC approximation (Chen et al. 2000,
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eq. 10.1.9, p. 310):

̂CPOi =
⎛
⎝1

n

n∑
k=1

1
p(yi|θk)

⎞
⎠

−1

, (13)

where θk is the kth sampled parameter vector from
an MCMC analysis targeting the posterior distribution
(k =1,··· ,n). The quantity p(yi|θk) is generally only
available on the log scale, so the following provides a
more useful computing formula:

loĝCPOi = logn+li,min −log
n∑

k=1

exp
{
li,min −li,k

}
, (14)

where li,k = logp(yi|θk) is the site likelihood for the ith
site computed using the kth sampled parameter vector,
and li,min =min{li,k :k =1,··· ,n}.

The log pseudomarginal likelihood (LPML) is
obtained by summing the ns individual site values:

LPML=
ns∑

i=1

loĝCPOi. (15)

EXAMPLES

Data Sets
The following two data sets were used in the examples

that follow. The alignments used are available in
the supplementary materials (Dryad data repository,
doi:10.5061/dryad.6b7c1) associated with this article.

Algae Protein-Coding Plastid Data Set.—These data are
from four protein-coding plastid genes (psaA, psaB, psbC,
and rbcL) in chlorophyceaen green algae (Tippery et al.
2012, treebase.org study number 11663). Seven taxa
with more than 20% missing data and 537 sites with
missing data in more than 5% of taxa were removed,
leaving 28 taxa and 5487 sites.

Angiosperm Ribosomal Protein Data Set.—These data
are from the rps11 ribosomal protein gene in five
angiosperms (Bergthorsson et al. 2003; nature.com,
supplementary information). The original data set
comprised 47 taxa and was determined by Bergthorsson
et al. (2003) to be chimeric in the dicot Sanguinaria
canadensis (bloodroot): the 237 nucleotides at the 3′ end
of the gene (456 sites total) apparently resulted from
a horizontal transfer from a monocot mitochondrion.
When reduced to the five taxa reanalyzed here, 54 sites
had only gaps and were excluded from the analysis,
yielding 180 sites in the 5′ end and 222 sites in the 3′
end (402 sites total).

Example 1: GG and Edge Length Priors
Ideally, Bayesian model selection methods should be

sensitive to cases in which informative priors negatively
affect model performance. We conducted a series of
analyses differing only in the assumed edge length prior

distributions. All edge length priors were exponential
distributions, a common choice in Bayesian phylogenetic
studies. The exponential distribution is a special case of
the gamma distribution in which the standard deviation
equals the mean. Exponential distributions with smaller
means are more informative when used as prior
distributions due to their smaller variance. Furthermore,
because the prior is applied to every edge length
parameter, and there are often many such parameters
(2nt −3 for unrooted trees), the choice of edge length
prior distribution often has a much greater impact than
prior choices made for most other model parameters. In
fact, what appears to be a very reasonable edge length
prior may induce a very informative (often unreasonably
so) prior on the tree length (Brown et al. 2010; Rannala
et al. 2011). The sum of ne independent edge lengths, each
of which has an exponential (�) distribution (mean 1/�,
variance 1/�2), is a tree length with a gamma (ne, �−1)
distribution (mean ne/�, variance ne/�

2), also known
as an Erlang distribution. Such induced tree length
priors have been known to strongly affect the scaling of
edge lengths in the posterior distribution. For example,
Marshall (2010) reports an analysis of mitochondrial
protein-coding data from cicadas in which the tree
length was estimated to be 7.7 despite evidence that 1.5
is closer to the true value. For this 51-taxon study, the
exponential edge length prior with mean 0.1 induced a
gamma tree length prior having mean 9.9 and standard
deviation 0.99, suggesting that the estimated tree length
of 7.7 resulted from a tug-of-war between the likelihood,
which was arguing for something close to 1.5, and the
prior, which was arguing for 9.9. Brown et al. (2010)
provide examples in which the posterior distribution of
tree length is clearly being determined largely by the
edge length prior. For the “clams” data and “large” mean
edge length prior, the interval containing the middle
95% of the induced Erlang prior on tree length was
(157.4, 210.4), nearly identical to the 95% credible interval,
(156.5, 208.2). The maximum likelihood tree length, by
comparison, was only 1.96!

The data used for the following example were from
the psaB gene in the algae protein-coding plastid data set.
Figure 3 shows results from eight independent analyses,
each using a different prior model for edge lengths.
The General Time Reversible substitution model with
discrete gamma among-site rate heterogeneity (GTR+G)
and partitioning scheme (partitioned by codon position)
were identical across models. Flat Dirichlet priors were
used for state frequencies and GTR exchangeabilities,
an exponential (1) prior was used for the four-category
discrete gamma shape parameter, and a flat relative rate
prior (Fan et al. 2011) was used for the partition subset
relative rates. Tree diagrams below the plot show the
final tree sampled from each analysis. It is clear that
as exponential edge length prior means become not
only smaller but also more informative, the number
of distinct data patterns in posterior predictive data
sets drops and goodness-of-fit decreases (i.e., G rises).
The P component of GG did not have any appreciable
effect, suggesting that none of the models produced
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FIGURE 3. Comparison of prior models using the GG criterion for
the gene psaB in the algae example data set. Solid line with squares:
the mean number of distinct data patterns in posterior predictive data
sets. Solid line with open circles: the overall GG measure (smallest is
best). Dashed line with downward-pointing triangles: the goodness-
of-fit component (GGg) of the GG criterion. Dotted line with upward-
pointing triangle: the variance component GGp of the GG criterion.
Trees shown below the plot are the last tree sampled for each of the
eight analyses. The prior mean used for each analysis is 10x, where
x is the abscissa, except for the point labeled “hyper” in which the
exponential prior mean was a hyperparameter in a hierarchical model.

posterior predictive data sets that strongly differed from
the mean. Figure 3 makes it clear that for these data it is
better to err on the side of larger means for exponential
edge length priors (but note that studies such as Brown
et al. (2010) suggest this result may not generalize). GG
was nearly constant for prior means ranging from 10
down to 0.01, but prior means smaller than 0.01 had
a clearly negative impact on G, producing many more
constant patterns and many fewer variable patterns than
were present in the observed data. Interestingly, the best
choice for prior mean was 0.01, which falls at a point
where the tree length shortening effect of the edge length
prior is becoming clearly evident. For these data, the
maximum likelihood estimate of tree length was 8.2
based on a GARLI 2.0 (Zwickl 2006) analysis using the
same model and partitioning scheme. This tree length is
the sum of 67 edge lengths (unrooted tree of 35 taxa),
yielding an average edge length of 0.12, which is an
order of magnitude larger than the best prior mean edge
length (0.01).

One model (labeled “hyper”) used a hyperparameter
as the mean of the separate exponential edge length
priors applied to internal and external edge lengths.
The hyperprior for this model was inverse gamma prior
(mean 1, variance 10), as suggested by Suchard et al.

(2001). Using a hierarchical model allows the prior mean
to be estimated from the data, relieving the investigator
of the burden of having to choose the edge length prior
mean. The estimated edge length hyperparameters were
0.12 (internal) and 0.18 (external), which are both close
to the maximum likelihood average edge length (0.12).
The empirical Bayesian edge length prior suggested
by Brown et al. (2010) would have mean 0.17, slightly
larger than the maximum likelihood average edge length
(0.12) and close to the estimated external edge length
hyperparameter in the hierarchical model (0.18).

Why is the GG choice an order of magnitude smaller
than both the maximum likelihood estimate and the
posterior mean hyperparameter values? It is important
to point out that GG judges models on their ability
to generate data sets that consistently and accurately
mimic the observed data, and a model that does well
at this task can win out regardless of how well it fits
the observed data (as measured by the likelihood).
Placing weak constraints on edge lengths, keeping edge
lengths slightly shorter than their maximum likelihood
estimates, tends to slightly improve the predictive ability
of the model in this case. The improvement in GG of
the best model over the hierarchical model is minor,
however, and this example illustrates the fact that the
hierarchical approach does quite well at automatically
choosing appropriate values for prior means.

Example 2: CPO Analysis of Green Algal
Protein-Coding Data

Our second example is designed to illustrate how
CPO can be used to learn about evolutionary rates
using a simple model of evolution (GTR+G). The data
comprise portions of four protein-coding genes (psaA,
psaB, psbC, and rbcL) from the algae protein-coding
plastid data set. Figure 4a plots CPOi for each site i when
data are partitioned by gene. The tree topology and edge
lengths are linked across partition subsets, but otherwise
the parameters (nucleotide relative frequencies, GTR
exchangeability parameters, and the discrete-gamma
shape parameter used to model among-site relative
rates) of a GTR+G model were estimated separately
for each subset. Each subset was allowed its own edge
length scaler, accommodating differences in relative
rate of substitution across subsets. Flat Dirichlet priors
were used for state frequencies and GTR relative rates,
an exponential(1) prior was used for the four-category
discrete gamma shape parameter, a single exponential
prior was used for every edge length, with mean a
hyperparameter for which the hyperprior was an inverse
gamma prior (mean 1, variance 10) distribution, and a
flat relative rate prior was used for subset relative rates.
Dotted lines in Figure 4a denote gene boundaries.

Plotting the same log-CPO values by codon position
(Fig. 4b) clearly shows a relationship between CPO and
the rate of evolution. Third codon positions have the
highest average relative rate and the lowest average CPO
values, while second positions have the lowest rates and
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FIGURE 4. Plots of site-specific log(CPO) values for analyses of all four genes in the algae data set. a) Partitioned by gene (dotted vertical
lines show gene boundaries). b) Partitioned by gene, but sorted by codon position, with 1st (left), 2nd position (center), and 3rd position (right)
(dotted vertical lines show codon position boundaries). c) Partitioned by codon (dotted vertical lines show codon position boundaries).

highest CPO values. Importantly, even if the model was
able to perfectly estimate edge lengths, low CPO values
would nevertheless be expected if the (true) tree length
was large such that many substitutions have occurred
per site. High substitution rates yield complex data
patterns that are difficult to predict even if the model
fits perfectly. On the other hand, low rates yield simple
patterns (e.g., constant patterns) that are much easier to
predict. Although CPO values improve with models that
accommodate among-site rate heterogeneity, this basic
relationship between rate and CPO remains.

Also important to keep in mind is the fact that
completely missing data can be perfectly predicted
because any pattern suggested constitutes a successful
prediction. Hence, sites with a high proportion of
missing data yield high CPO values. In these data, sites
with greater than 5% missing data were removed. If
these sites had been included, a clear increase in CPO
near gene boundaries would be evident due to the
increased amount of missing data near the start and end
of each gene.

The pattern of CPO values suggests that partitioning
by codon position rather than by gene would improve the
model. Figure 4c plots site-specific log-CPO values for
the case of a partition with three subsets corresponding
to first, second, and third codon position. Again,
tree topology and edge lengths were linked across
subsets, and otherwise, each subset got its own GTR+G
model. Although Figure 4c looks remarkably similar
to Figure 4b, the LPML for the codon partitioning
model (−54,868) is much higher than the LPML for
the gene partitioning model (−58,414), indicating that
allowing codon positions to have their own relative rates
substantially improves the model’s predictive ability.

Example 3: CPO Analysis of Angiosperm rps11
Bergthorsson et al. (2003) discovered that the

ribosomal protein gene rps11 is chimeric in the

angiosperm Sanguinaria (“bloodroot”). The 5′ end of
the gene (219 nucleotides) supports a tree topology
consistent with vertical transmission (i.e., Sanguinaria
falls within the family of angiosperms, Papaveraceae,
in which it is classified). The 3′ end of the gene (237
nucleotides) supports a tree topology consistent with
horizontal transfer from a mitochondrion within the
monocots. To illustrate the value of CPO in exploratory
data analyses, we conducted two separate Bayesian
MCMC analyses of a five-taxon version of the rps11
data set. In both analyses, the tree topology was
fixed and the model used was GTR+G, with flat
Dirichlet priors on GTR exchangeabilities and nucleotide
frequencies, an exponential(1) prior on the shape
parameter governing the four-category discrete gamma
distribution of relative among-site rates, and an inverse
gamma prior (mean 1, variance 10) governing the mean
of an exponential prior applied to all edge lengths.
Each MCMC analysis involved 101,000 cycles (one cycle
involves an update of all model parameters), with the
first 1000 discarded as burn-in and the remaining run
sampled every 100 cycles to yield 1000 total samples from
the posterior distribution. CPO values were computed
using equation (14).

In the first of the two analyses the 5′ tree topology
(in which Sanguinaria groups with confamilial genera
Bocconia and Eschscholzia) was fixed. The site-specific
CPO values estimated from this analysis were recorded
as CPO5. In the second analysis, the 3′ tree topology
(in which Sanguinaria groups with the monocot genera
Oryza and Disporum) was fixed. The site-specific CPO
values estimated from this analysis were recorded as
CPO3. We expected that CPO3 would be greater than
CPO5 in the 3′ end of the gene in which history coincides
with the 3′ tree. Likewise, we expected that CPO5 would
exceed CPO3 in the 5′ end of the gene, where history
coincides with the 5′ tree. Figure 5 plots the difference
CPO3-CPO5 (vertical axis) as a function of site index
(horizontal axis). The vertical dotted line indicates the
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change point where history switches from the 5′ tree
topology (shown on left) to the 3′ tree topology (shown
on right). As expected, most of the CPO differences are
negative in the 5′ end of the gene (to the left of the dotted
line), and most differences are positive in the 3′ end of
the gene (to the right of the dotted line). All exceptions
to this rule are associated with autapomorphic patterns
in which all taxa are identical in state except for one.

Example 4: Partition Model Selection
The last example compares GG and CPO with a

marginal likelihood estimation method (SS; Fan et al.
2011) in assessing the relative merits of four different
partitioning schemes for the algal protein coding data.
The four partitioning schemes compared were: NONE
(no partitioning); GENE (four subsets, one for each of
the four genes: psaA, psaB, psbC, and rbcL); CODON
(three subsets, one for each codon position); and
BOTH (12 subsets, one for each codon position of
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FIGURE 5. Plot of the log of the CPO ratio, equal to log(CPO3) –
log(CPO5), where CPO5 is site-specific CPO estimated using the 5′ tree
(on left), and CPO3 is site-specific CPO estimated using the 3′ tree (on
right). Vertical dotted line separates 5′ end (left) from 3′ end (right) of
the ribosomal protein gene rps11.

each gene). In each case, each subset was provided
its own GTR+I+G model, with flat Dirichlet priors
applied to state frequencies and GTR exchangeabilities,
an exponential(1) prior applied to the shape parameter
of the four-category discrete gamma rate heterogeneity
submodel, and an inverse gamma (mean 1, variance 10)
hyperparameter governing the mean of the exponential
prior applied to each edge length. A flat relative rate
prior was applied to the subset relative rates. Figure 6
and Table 2 summarize the results. Note that better
models are associated with higher SS and CPO scores
but lower GG. All three model selection methods favored
CODON/BOTH over NONE/GENE, suggesting that
rate heterogeneity among codon positions is much
greater than rate heterogeneity among genes. According
to the two posterior predictive methods, GG and CPO,
GENE was slightly better than NONE, and BOTH
was slightly better than CODON. In contrast to the
two posterior predictive methods, marginal likelihoods
estimated using the SS method preferred CODON to
BOTH.
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FIGURE 6. Comparison of partition models for green algal protein-
coding data. NONE is unpartitioned, GENE is partitioned by gene (four
subsets), CODON is partitioned by codon position (three subsets), and
BOTH is partitioned by both gene and codon position (12 subsets).
Squares indicate GG, circles indicate SS, and triangles indicate LPML.
Solid lines use scale on left; dotted line uses scale on right.

TABLE 2. Comparison of partition models using SS, LPML, GG, variance penalty component of GG (GGp), and goodness-of-fit component
of GG (GGg)

Model Subsets Parametersa SS LPML GG GGp GGg

NONE 1 63 –58,561.4 –59,200.2 1325.0 46.5 1278.5
GENE 4 96 –58,499.9 –59,097.9 1084.2 14.6 1069.6
CODON 3 85 –54,980.5 –56,367.3 357.4 15.9 341.5
BOTH 12 184 –55,019.0 –56,339.2 301.9 16.2 285.7

Note: Bold denotes best value across models.
aThe number of free parameters equals 53+10nsubsets +(nsubsets −1), where 53 is the number of edge lengths, nsubsets is the number of subsets, and
10 is the number of free parameters in the GTR+I+G model.
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DISCUSSION

Gelfand–Ghosh
Bollback (2002, 2005) was the first to introduce

posterior predictive approaches into Bayesian
phylogenetic model selection. Bollback’s posterior
predictive P-value method involved computing the
following statistic for both the observed data set y and
for each posterior predictive data set ỹ:

T(y)=
⎛
⎝ nc∑

j=1

y·j logy·j

⎞
⎠−ns logns. (16)

If T(y) lies in the tail of the distribution formed
by the T(ỹ) values, then the model is considered an
inadequate description of the observed data. There are
two potential criticisms of this approach. First, Bollback’s
method does not penalize a model for excessive posterior
predictive variance. In fact, P-value approaches reward
large posterior predictive variance: given a broad enough
distribution of T(ỹ) nearly any observed data set can
avoid being in the tail. Second, the categorical test
statistic depends only on the counts associated with
site patterns and not the patterns themselves. Thus, two
data sets that are extremely different can potentially
have identical numerical values for this statistic. Foster
(2004) found that a different test statistic—the �2 test
statistic described by Huelsenbeck et al. (2001)—worked
much better than the categorical test statistic, but the �2

statistic is designed specifically for detecting changes in
nucleotide composition across a tree. Although there is
no evidence that either pitfall described above occurs
at a frequency high enough to cause concern, the GG
method addresses both criticisms, rewarding models for
high goodness-of-fit, punishing them for being vague in
their predictions, and using the data patterns themselves
and not just the pattern counts in the criterion.

The deviance loss function used with GG, unlike
Bollback’s categorical test statistic, is attentive to pattern
identities as well as pattern counts; however, as
implemented here, the GG method is not without
its own criticisms. Although the binning strategy we
use with GG is designed to capture salient nucleotide
composition and variability in data sets, the choice to
reduce all data sets to just 15 bins is arbitrary and
may result in the loss of information important in
model selection. We note that L-measures in general,
including the class of methods introduced by Gelfand
and Ghosh (1998), are very general; our GG is a special
case tailored specifically to nucleotide sequence data
sets, and the limitations we discuss here do not apply
to all applications of L-measures. In future work, we
plan to investigate additional binning strategies as well
as alternative loss functions. Another potential criticism
involves missing data. Our GG implementation does not
address missing data explicitly. For example, a constant
pattern consisting solely of the nucleotide A (adenosine
monophosphate) for all taxa except for one, which is
scored as missing data, would be added to bin 1 in

our scheme (patterns constant for A). Arguably, such
patterns should be fractionally distributed among all
bins consistent with possible resolutions of the missing
data. More elegant solutions can be imagined that
involve data augmentation, that is, filling in values for
all missing data using the model under consideration,
but the details are yet to be elucidated. Despite these
potential pitfalls, the GG method behaved reasonably in
the partitioning example, corroborating the major results
of the SS and CPO analyses.

Conditional Predictive Ordinates
The CPO provides a measure of how well the data

pattern from each site in a sequence alignment is
predicted by the model. Summing site-log-CPO values
provides a model log-CPO value, the LPML, that can
be used to compare models with respect to their
predictive ability. Even though both use the posterior
predictive distribution, CPO is qualitatively different
than GG, and both methods offer perspectives that
the other cannot provide. CPO evaluates the posterior
predictive probability density but does not simulate
from it, and thus lacks GG’s ability to measure posterior
predictive variance. On the other hand, GG lacks the
cross validation that CPO provides (each site is evaluated
using a model parameterized from all other sites). Both
methods require minimal computational effort beyond
that required to obtain a sample from the posterior
distribution.

Besides providing its own unique perspective on
model selection, there are other possible uses for CPO.
Very low CPO values may be useful in identifying
regions of alignments where positional homology is
suspect. A region of low CPO in a sequence suggests
that those particular sites may have evolved under a
different model (substitution model or tree model) than
the majority of sites (see rps11 example and Fig. 5). The
correlation of CPO with rate of evolution allows CPO
to be used as a proxy for relative substitution rates.
Rather than performing an analysis under a parameter-
rich model in which every site is allowed to have its
own substitution rate, an analysis using a simple model
with a single substitution rate can produce site-specific
CPO values that are highly correlated with substitution
rates of individual sites. In this way, it is similar to the
TIGER method (Cummins and McInerney 2011), which
uses a measure of pairwise character compatibility as
a proxy for rate, assuming that high-rate sites will also
be those that are incompatible with many other sites.
Lack of dependence on both substitution model and
tree are strengths of the TIGER approach; however,
CPO might offer some advantages over TIGER in terms
of accuracy because it uses a substitution model. For
example, plastid-encoded third position sites, such as
those in the algae data set used in this article, exhibit a
strong AT bias (estimated �A +�T =0.88), information
that is relevant to assessment of substitution rates
but which TIGER does not use. Likewise, CPO uses
information about the tree and edge lengths, while also
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accounting for uncertainty in both. TIGER and CPO
provide complimentary approaches: CPO provides a
more accurate proxy for substitution rates given that its
dependence on a model does not lead to systematic error,
while TIGER provides a less accurate proxy but is less
subject to model misspecification.

Posterior Predictive versus Marginal Likelihood Approaches
Bayesian model selection in phylogenetics is

dominated by marginal likelihood methods (including
Bayes factors, which are ratios of marginal likelihoods).
Phylogenetics is blessed with a diversity of marginal
likelihood/Bayes factor estimation methods from which
to choose, including Savage-Dickey ratio (Suchard et al.
2001), harmonic mean (Newton and Raftery 1994),
thermodynamic integration (Lartillot and Phillippe
2006; Lepage et al. 2007), SS (Fan et al. 2011; Xie et al.
2011), inflated density ratio (Arima and Tardella 2012),
and reversible-jump MCMC (Huelsenbeck et al. 2004).
Why is it important to add posterior predictive methods
to this list? One key difference between marginal
likelihood and posterior predictive approaches lies in
the fact that the marginal likelihood measures the fit
of the model to the observed data. How well would that
model fit a different data set? For example, suppose
a different set of genes was sampled, or different
populations of the species involved were sampled for
the same set of genes? The marginal likelihood is not
designed to predict how well a model would perform on
data sets other than the one observed, yet it is clear that
such performance might be important to a researcher.

Posterior predictive methods play a similar role
in Bayesian statistics that parametric bootstrapping
plays in maximum likelihood analyses: They take into
account the extra uncertainty that comes with no longer
assuming that the only data set is the observed data set.
As such, posterior predictive model selection methods
complement the opinion provided by methods based
on marginal likelihood. An implicit assumption of the
marginal likelihood approach to model selection is that
a model fitting the observed data well would also
generate data sets by simulation that are similar to the
observed data. Posterior predictive approaches such as
GG address this issue explicitly.

A major goal of modeling is prediction. Hurricane
forecasters are concerned with the literal meaning of
prediction, whereas “interpolation accuracy” might be
a better term to use in the phylogenetics context. In a
regression context, a simple linear model might perform
better at predicting the dependent variable for as-yes-
unmeasured values of the independent variable than a
complex polynomial model whose regression line goes
through every observed point at the cost of looping
absurdly between the observations. We do not need the
model to help us with the observed data; instead, models
are needed to interpolate between the observations. It is
for this reason that the perspective offered by posterior
predictive methods is valuable.

SOFTWARE AVAILABILITY

The free and open-source software Phycas
(http://www.phycas.org/) implements both the
GG and CPO methods for standard nucleotide
models (GTR+I+G and submodels) and partitioned or
unpartitioned data sets.
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APPENDIX

The Delta method can be used to compare the critical
second moment terms of the harmonic mean estimator
of the marginal likelihood with the corresponding
term in the harmonic mean estimator of the CPO.
We demonstrate that although the two methods both
involve a harmonic mean of site likelihoods, their
numerical properties and associated statistical behavior
are expected to be very different. In particular, the
CPO estimator is not expected to share the instability
and infinite variance that characterizes the harmonic
mean marginal likelihood estimator. Later, we explain
the fundamental difference between the two methods
and show why the CPO estimator is expected to
be well behaved but do not attempt a general
proof.

Harmonic Mean Estimator of Marginal Likelihood
The harmonic mean estimator of the marginal

likelihood is

ĉ=
⎛
⎝1

n

n∑
k=1

1
p(y|θk)

⎞
⎠

−1

(A1)

based on n draws θ1,θ2,...,θn from the posterior
distribution p(θ|y). The estimator is consistent but may

http://www.phycas.org/
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have infinite variance across simulation, even in simple
models. Defining

�=1/ĉ (A2)

g(�)= log(1/�)=−log

⎛
⎝1

n

n∑
k=1

1
p(y|θk)

⎞
⎠, (A3)

the Delta method yields

Var(log(ĉ))=Var(g(�))=
(

dg(�)
d�

)2
Var(�)

=�2Var(�)

= 1
ĉ2 Var

⎛
⎝1

n

n∑
k=1

1
p(y|θk)

⎞
⎠

= 1
nĉ2 Var

(
1

p(y|θ)

)
(A4)

Focusing on the variance term,

Var
(

1
p(y|θ)

)
=E

[(
1

p(y|θ)

)2
]

−
(

E
[

1
p(y|θ)

])2

=
∫

1
p(y|θ)���p(y|θ)

·���p(y|θ)p(θ)
c

dθ

−
(∫

1

���p(y|θ)
·���p(y|θ)p(θ)

c
dθ

)2

= 1
c

∫
p(θ)

p(y|θ)
dθ− 1

c2 . (A5)

Thus,

Var(log(ĉ))= 1
nc ĉ2

∫
p(θ)

p(y|θ)
dθ− 1

nc2 ĉ2 . (A6)

The key term in the variance in equation (A6)

corresponds to the second moment of Var
(

p(y|θ)−1
)

,

E

[(
1

p(y|θ)

)2
]

= 1
c

∫
p(θ)

p(y|θ)
dθ, (A7)

which consists of a denominator, p(y|θ), that is much
more concentrated than the numerator, p(θ), due to its
large number of terms (one site likelihood term for every
site). In particular, the tail regions of the denominator
can be very tiny compared with their counterparts in
the numerator, making the variance on the log scale
unstable, leading to potentially infinite variance when
translated to the standard scale.

Comparison with CPO Estimator
The CPO, CPOi, for the ith site can be estimated

from n independent draws θ1,θ2,...,θn from the posterior

distribution p(θ|y) as follows:

̂CPOi =
⎛
⎝1

n

n∑
k=1

1
p(yi|θk)

⎞
⎠

−1

. (A8)

Equation (A8) is nearly identical to equation (A1), but
repeating the analysis above reveals a key difference in
the second moment in the case of CPO :

E

[(
1

p(yi|θ)

)2
]

=
∫

1
p(yi|θ)���p(yi|θ)

·���p(yi|θ)p(y(−i)|θ)�(θ)
c

dθ

= 1
c

∫ p(y(−i)|θ)�(θ)
p(yi|θ)

dθ. (A9)

Note that the second moment for CPO places all but one
site likelihood term in the numerator. In this case, the
numerator normally is more concentrated and exhibits
very long, low tails, whereas the denominator is more
diffuse owing to the fact that it represents a single site-
likelihood term. This construction is not likely to produce
extremely large values, leading to a more stable variance
on the log scale and finite variance on the standard
scale.
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