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Abstract

Obesity, metabolic syndrome, and type 2 diabetes (T2D) are related disorders with widespread 

deleterious effects throughout the body. One important target of damage is the brain. Persons with 

metabolic disorders are at significantly increased risk for cognitive decline and the development of 

vascular dementia and Alzheimer’s disease. Our review of available evidence from 

epidemiological, clinical, and basic research suggests that neural dysfunction from T2D-related 

disease results from several underlying mechanisms, including metabolic, inflammatory, vascular 

and oxidative changes. The relationships between T2D and neural dysfunction are regulated by 

several modifiers. We emphasize two such modifiers, the genetic risk factor apolipoprotein E and 

an age-related endocrine change, low testosterone. Both factors are independent risk factors for 

Alzheimer’s disease that may also cooperatively regulate pathologic interactions between T2D and 

dementia. Continued elucidation of the links between metabolic disorders and neural dysfunction 

promises to foster the development of effective therapeutic strategies.
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Introduction

The related conditions obesity, metabolic syndrome, and type 2 diabetes (T2D) have 

significant independent and combined effects on metabolic, inflammatory, and other 

pathways, which in turn have wide ranging deleterious effects on numerous organ systems 

including the cardiovascular and endocrine systems (1). A rapidly accumulating literature 
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also identifies the nervous system as a target of obesity, metabolic syndrome, and T2D. We 

discuss evidence that this collection of metabolic disorders results in increased risks for both 

cognitive decline and dementia. There remain numerous unresolved issues, including the 

relative importance of several different degenerative mechanisms to the observed 

neuropathologies and whether observed impairments represent a continuum of a single 

degenerative process or a collection of separate pathologies that are differentially expressed.

Among the many harmful neural effects of T2D and its precursor conditions is an increased 

risk for Alzheimer’s disease (AD). The most common form of dementia, AD has a high and 

rapidly growing prevalence in the aging population. In the US alone, the number of persons 

afflicted with AD is estimated to be 5.1 million, a figure that is anticipated to rise to 

approximately 7.7 million by 2030 (2). Given that obesity and T2D also exhibit high 

prevalence with increasing trajectories, the interaction of these diseases poses a serious 

health threat. Thus, while we broadly discuss the range of neural effects of T2D on the brain, 

we will emphasize the impact of metabolic disorders on AD.

Metabolic dysfunction increases risk of cognitive impairment

Cognitive function is adversely affected by the prediabetic risk factors central obesity and 

metabolic syndrome. Longitudinal studies indicate worsening performance on measures of 

global cognitive function and some, but not all, specific abilities including working memory 

in persons with metabolic syndrome (3, 4). In some populations, there is evidence that 

women with metabolic syndrome may be particularly vulnerable to cognitive decline (5). In 

the absence of T2D, impairment in glucose regulation and increased serum insulin can lead 

to mild cognitive impairment (MCI), suggesting that lack of glycemic control may 

contribute to the observed cognitive decline (6, 7). Another key factor contributing to 

worsening of cognitive abilities in aging populations is obesity. Central obesity is associated 

with impairment in various aspects of cognitive functioning (8, 9). This relationship may be 

most important during middle age (8) and diminish during advanced age (10).

Like obesity and metabolic syndrome, T2D is also associated with significant impairments 

in various aspects of cognitive functioning. For example, a recent fMRI study showed that 

T2D patients have altered spontaneous neuronal activity in several brain regions that 

correlated with poorer cognitive performances (11). Other imaging studies show increased 

brain atrophy in individuals with T2D associated with cognitive impairments (12, 13). 

Additional factors such as ethnicity and smoking habits can increase the association between 

diabetes and cognitive impairment (14, 15). Notably, the rate of cognitive decline in persons 

with T2D is generally rather slow (16), although a subset of patients show rapid decline 

(17). Recent evidence suggests that a key factor underlying accelerated cognitive decline 

among people with T2D is depression. People with diabetes that score highest on depression 

indices also show the poorest performance on a range of cognitive tasks (18). Unclear is 

whether the observed variation in rates of cognitive decline reflect differential vulnerability 

of some patients to dementia.
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Metabolic dysfunction increases risk of dementia

Obesity, metabolic syndrome, and T2D not only contribute to impaired cognitive function, 

but also increase the risk of AD. In the past several years, a wealth of data has shown that 

persons with T2D and features of metabolic syndrome are at significantly increased risk for 

development of dementias including AD (19, 20). The magnitude of the risk is a matter of 

debate. For example, one longitudinal study showed that people with T2D have more than a 

two-fold increase in risk for developing AD as compared to those without T2D (21). 

However, other studies indicate a more modest relationship between T2D and AD or even 

the lack of an association (22). A recent meta-analysis of longitudinal studies suggests that 

the relative risk for AD is approximately 1.5-fold higher among persons with T2D (23). As 

with cognitive decline, the increased risk of dementia associated with T2D appears to be 

affected by age. A longitudinal study showed that central obesity in middle-aged people 

increased the risk for dementia independent of diabetes (24). In the aged population, obesity 

and T2D appear to be only weakly related to AD risk (25).

The association between T2D and its precursor conditions is not limited to AD. In fact, T2D 

appears to be more strongly associated with increased risk of vascular dementia (VaD) than 

AD. Some studies suggest that the relationship between T2D and dementia risk largely 

reflects promotion of VaD and stroke-related dementia rather than AD (26). Findings from a 

meta-analysis suggest that T2D patients have a 2.5-fold increase in risk for VaD, a level 

significantly higher than the risk for AD (23). Imaging studies reveal that T2D is associated 

with increased levels of lacunar infarcts (27) and white matter hyperintensities (28). The 

presence and duration of hyperglycemia and T2D contribute to increases in brain atrophy 

and lacunar infarcts as compared to non-T2D patients (29). Together, clinical and 

epidemiological findings demonstrate that T2D is associated with increased risks for 

cognitive decline and dementia. Insights into the pathways underlying these effects are 

provided by studies in animal models.

T2D exacerbates neuropathology in animal models of Alzheimer’s disease

If T2D contributes pathological mechanisms with AD, then one may expect some crossover 

between pathologies in animal models of T2D and AD. Although it remains to be 

determined to what extent AD animal models exhibit evidence of T2D-like metabolic 

changes, several recent studies have demonstrated (i) AD-like neuropathology in animal 

models of T2D and (ii) accelerated AD-like neuropathology in rodent models of AD 

following experimental induction of T2D-like metabolic changes by dietary manipulations. 

For example, the BBZDR/Wor rat model of T2D exhibits several neural changes consistent 

with AD pathology including neuron loss, dystrophic neurites, increased levels of β-amyloid 

(Aβ) and tau hyperphosphorylation, and decreased expression of insulin and IGF-1 receptors 

(30). Tau hyperphosphorylation is also observed in the OLETF rat model (31) and db/db 

mouse model of T2D (32). Tau phosphorylation (33) and impaired cognitive performance 

are seen in rats with insulin-dependent diabetes induced using streptozotocin (STZ), a toxin 

that results in β-cell atrophy (34). Recent work shows that STZ in mice causes impaired 

insulin signaling that results in reduced insulin degrading enzyme (IDE) expression in brain 

with elevated Aβ, and increased tau phosphorylation (35). IDE is a downstream target of 
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insulin signaling and is upregulated via the insulin-PI3K-AKT phosphorylation pathway, 

forming a negative feedback mechanism (36). Therefore, impaired insulin signaling may 

result in decreased IDE levels due to reduced AKT activation. Since IDE is also established 

as a significant contributor to enzymatic Aβ degradation (37, 38), a decrease in IDE levels 

would lead to reduced Aβ clearance and subsequent increased Aβ accumulation in the brain. 

Similarly, in AD mouse models, insulin resistance induced in Tg2576 AD transgenic mice 

by a high fat diet results in increased Aβ accumulation and decreased IDE (39). APP/PS1 

mice exposed to sucrose-supplemented drinking water exhibit glucose intolerance, elevated 

insulin levels, Aβ deposition, and behavioral deficits (40). Thus, findings from experimental 

paradigms link T2D-like metabolic changes with promotion of AD-like neuropathology.

Several pathways have been independently suggested as linking mechanisms between T2D 

and AD such as hyperinsulinemia, inflammation, vascular factors, and oxidative stress. 

However, a combination of two or more of these pathways may be working together to 

connect the two disorders. In this following section, we consider the major mechanisms 

implicated in both T2D and AD and how these pathways contribute to the progression of 

AD from T2D.

Pathways linking T2D and AD: Dysregulation of insulin and glucose

Dysregulation of insulin and glucose are key characteristics of diabetes. Insulin resistance 

and impaired insulin signaling also have been linked to increases in AD pathology (41). 

Insulin and insulin receptor levels in brain decrease with normal aging (42). Moreover, 

insulin receptor expression in the brain decreases further with AD (43). IDE, a zinc-binding 

metalloprotease whose substrates include both insulin and Aβ, may contribute to the 

interactions between T2D and AD. In transgenic AD mice fed a high fat diet, deficient 

insulin signaling correlated with decreased IDE levels and increased Aβ levels (36, 39). 

Partial loss-of-function mutations in IDE are capable of inducing T2D and impairing 

degradation of Aβ (44). Although the mechanism(s) underlying the T2D effect is unclear, 

one possibility is that the loss of IDE function promotes hyperinsulinemia, which in the 

long-term may contribute to insulin resistance and impaired glucose tolerance. 

Pharmacological inhibition of IDE reduces the degradation of insulin, islet amyloid peptide 

(45), and Aβ (46). Interestingly, IDE has a higher affinity for insulin as a substrate than Aβ 

(47). Thus, one mechanistic hypothesis for the role of T2D in AD risk is that the 

hyperinsulinemia characteristic of T2D results in reduced degradation of Aβ by IDE, leading 

to Aβ accumulation. In the STZ model, diminished insulin signaling due to insulin 

deficiency may lead to downregulation of IDE levels, similarly leading to increased 

accumulation of Aβ and elevated AD risk.

Interestingly, treatment of T2D may improve neural function and/or slow AD pathogenesis. 

For example, improved diabetes control is associated with a slowing in cognitive decline 

(48). Moreover, common T2D medications such as rosiglitazone and metformin may 

decrease AD-related cognitive decline and Aβ levels (49, 50). Initial results of a clinical trial 

of intranasal insulin therapy in early AD and MCI patients indicate slowing of cognitive 

decline (51). Studies in animal models are consistent with clinical observations. In 3xTg-AD 

mouse model of AD, pioglitazone improved learning and plasticity and decreased Aβ and 
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tau pathologies (52). Similarly, liraglutide reduced Aβ plaques and glial activation in 

APPswe/PS1dE9 model of AD (53). Still unclear is whether the primary mechanisms of 

reducing AD-related pathologies by these drugs involve glycemic control and decreasing 

insulin resistance or other effects on adipose tissue (54), body weight (55) and levels of 

proinflammatory cytokines (56).

Despite the strong association between hyperinsulinemia, hyperglycemia and AD 

pathogenesis, other compelling findings argue against a primary mechanistic role of 

metabolic factors in AD. For example, diet-induced obesity in 3xTg-AD mice increases Aβ 

burden and impairs behavior, although in female mice this acceleration of AD-like 

pathology occurred in the absence of significant changes in fasting levels of glucose and 

insulin (57). Consistent with these data is the observation that induction of insulin resistance 

and hyperinsulinemia via a mutated insulin receptor failed to significantly accelerate the 

rates of Aβ accumulation and cognitive decline in a transgenic AD mouse model (58). 

Similarly, knockout of insulin receptor substrate 2 in AD transgenic mice predictably yields 

significant metabolic dysfunction but reduces rather than accelerates AD-related pathologies 

(59, 60). Thus, obesity-related factors other than insulin resistance may be central to the 

mechanism by which obesity, metabolic syndrome, and T2D increase AD risk. One such 

factor is inflammation.

Pathways linking T2D and AD: Inflammation

Pro-inflammatory pathways may also contribute to interactions between T2D and AD. It is 

well established that central obesity, metabolic syndrome and diabetes all involve chronic 

systemic inflammation (61). Increased levels of several pro-inflammatory cytokines are 

observed in T2D (62) and several anti-inflammatory drugs have been shown to reduce this 

effect (63). Among persons with metabolic syndrome, those with relatively higher 

inflammation are more likely to develop cognitive impairment than those with low 

inflammation (64).

Obesity causes an increase in inflammatory cytokines not only in adipose tissue (65) but 

also in the nervous system. In animal models, diet-induced obesity induces an increase in 

inflammatory responses in many brain regions, including cerebral cortex (66) and 

hypothalamus (67). Recent studies from our laboratory demonstrate higher levels of the pro-

inflammatory cytokines TNF-α and IL-1β in the cortex of mice maintained on high fat diet 

fed as well as in primary mixed glial cultures generated from these mice. We also show that 

the increase in proinflammatory factors seen both in the central and the peripheral nervous 

system reduces neuronal health (unpublished data).

In AD, inflammatory pathways have been widely hypothesized to directly contribute to 

disease initiation and progression (68). A classic neuropathological characteristic of AD 

brain is the abundant presence of activated astrocytes and microglia (69), the neural cell 

types most responsible for inflammatory responses in brain. Elevated levels of pro-

inflammatory cytokines are observed in AD (70) as well as in transgenic models of AD (71, 

72). Consistent with a primary role of inflammation in AD are the results of recent genome-

wide association studies in which several genes linked with AD function in innate immunity 
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(73). Unclear is whether the same genetic polymorphisms contribute to T2D. Although the 

literature remains undecided, there is evidence from observational studies that use of non-

steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk for developing AD (74). 

Given the role established pro-inflammatory profiles of obesity, metabolic syndrome, and 

T2D and the presumed role of these pathways in AD pathogenesis, inflammation is likely a 

key mechanism contributing to the interactions across the diseases.

Pathways linking T2D and AD: Other factors

Among the other possible mechanisms that contribute to the relationship between T2D and 

AD are those involving vascular risk factors, lipoprotein receptors, and oxidative stress. 

Vascular risk factors include hypertension, cerebrovascular diseases, and 

hypercholesterolemia. Studies have shown that the presence of a combination of these 

vascular factors promote the development of AD and AD-related neuropathology (30, 75). 

Defects in brain vasculature and blood-brain barrier are also seen in AD patients (76) 

suggesting that vascular factors in the nervous system are important in AD pathogenesis. 

Lipoprotein receptors and lipoprotein receptor-related protein-1 (LRP-1) are another set of 

factors involved in metabolic syndrome and AD. Lipoprotein receptors and LRP-1 aid in Aβ 

clearance from liver as well as brain (77, 78). LRP-1 is also involved in intracellular 

cholesterol and fatty acid storage (79) while LRP-6, has been shown to regulate body weight 

and glucose homeostasis (80). Pathways regulating LRP-1 have been shown to improve Aβ-

induced learning and memory impairments in rats (81). Oxidative stress pathways play key 

roles in several pathological disorders including T2D and AD. One such pathway is 

advanced glycation resulting in the production of advanced glycation end products (AGEs) 

(82). In addition to AGEs, the receptor for advanced glycation end products (RAGE) has 

been identified to be a ligand for Aβ fibrils (83, 84) and may be involved in the neurotoxic 

effects of Aβ in neurons and microglia (85, 86). Further, RAGE regulates the accumulation 

and transport of Aβ across the blood-brain barrier (87). RAGE is known to be up-regulated 

in both T2D and AD (85, 88). Hence RAGE acts as a progression factor that exacerbates the 

immune and inflammatory pathways leading to cellular dysfunction (89), which in turn may 

facilitate interactions between T2D and AD.

Modifiers of T2D and AD relationship: Apolipoprotein E

The relationship between T2D and AD appears to be significantly influenced by several 

factors. One modulator is apolipoprotein E (ApoE). The ApoE ε4 allele is the most 

significant genetic risk factor for late-onset AD, the risk of AD increasing with the number 

of ApoE ε4 alleles present (90). ApoE functions in lipid transport and lipoprotein 

metabolism (91) and regulates several important neuronal actions including neuronal repair, 

synaptogenesis, nerve growth, and development (91). The severity of AD pathology is 

influenced by ApoE genotype as indicated by studies showing that the presence of ApoE ε4 

alleles increases both the rate and amount of Aβ deposition (92).

The risk for AD in T2D cases is increased in ApoE ε4 carriers (20, 93). Further, the presence 

of ApoE ε4 in T2D cases with AD is associated with increased neurofibrillary tangles, 

amyloid plaques, and cerebral amyloid angiopathy (94). Recent clinical findings show that 
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persons with ApoE ε4 have higher levels of lipid-depleted Aβ, an effect that is worsened by 

consumption of a high-fat, high glycemic index diet (95). ApoE ε4 carriers also have lower 

levels of insulin degrading enzyme, which may affect both insulin signaling and Aβ 

clearance in T2D and AD cases (96). In AD mice with sucrose-induced insulin resistance, 

ApoE levels are increased 2.5 fold, perhaps contributing to Aβ accumulation and increased 

AD pathology (40). The levels of insulin in cerebrospinal fluid and plasma appear to be 

lower in AD patients with an ApoE ε4 allele compared with patients with no ε4 allele (97). 

Insulin administration has been found to be more effective on aspects of memory and Aβ 

pathology in AD patients who were ApoE ε4 null compared with those who were ApoE ε4 

carriers (98, 99). Taken together these studies suggest that ApoE genotype acts as a positive 

regulator of the T2D/AD relationship.

Modifiers of T2D and AD relationship: Low testosterone

Normal age-related depletion of testosterone in men, commonly referred to as andropause, 

results in a constellation of symptoms that reflect dysfunction and vulnerability to disease in 

androgen-responsive tissues including brain, muscle, bone, and adipose tissues (100). In the 

past several years, research from several groups including ours has identified andropause as 

a significant risk factor for AD (101). Men with low levels of testosterone in either blood 

(102, 103) or brain (104, 105) are at increased risk for developing AD. Importantly, low 

testosterone precedes both the cognitive (106) and neuropathological (104, 105) diagnoses 

of AD, suggesting that it is a contributing factor to rather than a result of the disease.

An established and rapidly growing body of epidemiological and clinical evidence indicates 

strong associations between low testosterone levels in men, T2D, and metabolic syndrome. 

Several studies have found a correlation between low testosterone and insulin resistance in 

men suggesting a role of low testosterone in insulin resistance (107, 108). Longitudinal 

studies have shown that low testosterone precedes metabolic syndrome, appearing 5-10 

years prior to the development of metabolic and cardiovascular symptoms (109, 110). Since 

metabolic syndrome is often a precursor to development of T2D, it is not surprising that men 

with T2D have significantly lower levels of total and free testosterone in comparison to age-

matched, controls with no diabetes (107). Testosterone therapy used for the treatment of 

androgen deficiency reduces features of T2D and metabolic syndrome, including insulin 

resistance, adiposity, and total cholesterol (111, 112) while improving glycemic control 

(113). On the other hand, the use of androgen deprivation therapy for treatment of prostate 

cancer indicates that testosterone depletion can increase the incidence and prevalence of 

T2D (114, 115) and metabolic syndrome (116). Further, androgen deprivation therapy has 

been found to lower insulin sensitivity and glycemic control, and increase insulin and 

cholesterol levels (117). Thus, available evidence indicates that T2D lowers testosterone 

levels in men and, conversely, that low testosterone increases indices of T2D.

Interestingly, there is compelling evidence of a significant relationship between androgens 

and ApoE genotype. In humans, circulating levels of testosterone are lower in men with at 

least one ApoE ε4 allele (118). In animal studies, Raber and colleagues have shown that 

androgens antagonize behavioral deficits in ApoE ε4 mice (119). Depletion of endogenous 

testosterone following castration in ApoE ε4 mice results in behavioral impairments in some 
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but not all tasks (120). Similarly, inhibition of AR function by pharmacological and genetic 

approaches results in behavioral impairments in ApoE ε4 mice but not ApoE ε3 mice (119, 

121). Further, lower levels of AR have been observed in both male and female ApoE ε4 

mice, although it is unclear if ApoE ε4 is directly affecting AR levels or otherwise 

interfering with androgen binding to AR (119). Thus, ApoE ε4 genotype is associated with 

both lower testosterone levels and attenuation of neural androgen actions, effects that are 

predicted to magnify interactions effects of low testosterone, T2D and AD.

Conclusion

In summary, an extensive set of findings from epidemiological, clinical, and animal models 

have identified a complex set of interactions wherein T2D and its precursor conditions 

obesity and metabolic syndrome exert deleterious effects on the brain. The primary negative 

outcomes of these metabolic disorders are cognitive decline and increased risk for dementias 

of the vascular and Alzheimer’s types. Although cognitive decline is a component of all 

dementias, we suggest that the neural outcomes of T2D do not reflect a single condition but 

rather are manifestations of a range of pathologies. Numerous mechanisms are hypothesized 

to contribute to observed neuropathologies, including metabolic, inflammatory, vascular, 

and oxidative changes (Fig. 1). The magnitude and perhaps the form of neural injury are 

likely influenced by a set of modifiers. Specifically, we focused on age-related testosterone 

depletion in men and the Apo E ε4 allele as independent and interactive risk factors for AD 

and the promotion of AD pathogenesis by T2D.

The multi-faceted and interactive nature of the associations between T2D and neural 

dysfunction and disease is daunting in its apparent complexity but encouraging in terms of 

potential therapies. In addition to reducing neural damage by conventional T2D-related 

approaches, promising strategies include specific interventions that target implicated 

pathways and modifying factors (Fig. 1). One example is testosterone-based therapy 

including the use of novel selective androgen receptor modulators, which are predicted to 

favorably affect both T2Dand AD-specific pathways as well as their interactions.
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Figure 1. 
Obesity and metabolic syndrome are precursor disorders to type 2 diabetes. All three 

conditions independently and interactively activate a range of metabolic, inflammatory, and 

oxidative changes that contribute to deleterious effects on the brain. The damaging effects of 

metabolic disorders are influenced by several modifying factors, including endocrine 

changes such as low testosterone and genetic factors such as the apolipoprotein E (Apo E) 

ε4 allele. In response to these damaging pathways, the brain exhibits cognitive decline and 

increased risk to Alzheimer’s and vascular dementias.
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