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Abstract

Conventional sensitivity encoding (SENSE) reconstruction is based on equations in the complex 

domain. However, for many MRI applications only the magnitude is relevant. If there exists an 

estimate of the underlying phase information, a magnitude-only phase-constrained reconstruction 

can help to improve the conditioning of the SENSE reconstruction problem. Consequently, this 

reduces g-factor-related noise enhancement. In previous attempts at phase-constrained SENSE 

reconstruction, image quality was hampered by strong aliasing artifacts resulting from inadequate 

phase estimates and high sensitivity to phase errors. If a full-resolution phase image is used, a 

significant reduction in aliasing errors and better noise properties compared to SENSE can be 

obtained. An iterative scheme that improves the phase estimate to better approximate the phase is 

presented. The mathematical framework of the new approach is provided together with 

comparisons of conventional SENSE, phase-constrained SENSE, and the new phase-refinement 

method. Both theory and experimental verification demonstrate significantly better noise 

performance at high reduction factors, i.e., close to the theoretical limit. For applications that need 

only magnitude data, an iterative phase-constrained SENSE reconstruction can provide substantial 

SNR improvement over SENSE reconstruction and less artifacts than phase-constrained SENSE.
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The advent of parallel imaging in magnetic resonance imaging (MRI) has opened a door for 

collecting data using less time. Parallel imaging allows applications such as phase contrast 

imaging (1), cine imaging (2), fast spin echo (FSE) (3), and diffusion-weighted imaging 

(DWI) (4,5) to be completed faster to avoid subjecting patients to long scan times and to 

reduce artifacts. It can alternatively improve the temporal resolution by reducing the amount 

of views per segment, as in a cine acquisition (6). Sensitivity encoding (SENSE) (7) is one 

realization of parallel imaging. It can be thought of intuitively as a method of solving the 

inverse imaging problem as an overdetermined system of equations using the coil sensitivity 

profiles as linear weights and an undersampled set of pixels as the measured data. These 
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equations typically operate on complex numbers, and the reconstruction yields an estimate 

of the underlying image in a minimum least-squares sense.

In a larger number of MR applications, only the magnitude of an image is of concern. 

Numerous methods have been developed that improve the signal-to-noise ratio (SNR) or 

reduce the number of phase encodes by exploiting the need for magnitude-only 

reconstruction. Homodyne reconstruction (8) is a method that exploits the inherent 

“realness” of the subject to be imaged, and uses a low-resolution phase estimate to correct 

for phase discrepancies that occur from the acquisition of the k-space data. Projection onto 

convex sets (POCS) (9–11) builds on the homodyne method by iterating on the initial 

reconstruction and filling in the missing k-space samples while concurrently constraining the 

datasets.

Recent works have combined the idea of both parallel imaging and partial Fourier 

techniques. The effects of combining SENSE with partial Fourier techniques that employ the 

POCS and homodyne reconstruction methods have been explored (12). In addition, 

POCSENSE (13), which uses POCS as an alternative method to reconstruct images acquired 

with parallel imaging, has been proposed. POCSENSE has the flexibility to incorporate 

partial Fourier sampling.

Some initial investigations (13–17) have explored the use of phase-constrained 

reconstruction. Here, an estimate of the underlying image phase is used to improve the 

SENSE reconstruction. The number of unknowns in the SENSE system of equations is 

reduced by half, and therefore the overdetermination of the system of equations increases. 

The g-factor intuitively decreases and leads to less g-factor noise amplification.

In general, it can be assumed that the phase of an image varies smoothly in space. Off-

resonance, B1 inhomogeneity, and eddy currents are examples of sources that cause these 

phases. However, certain abrupt phase transitions may occur at air–tissue or lipid–tissue 

interfaces that violate the phase-constraint condition, an observation also known in partial 

Fourier imaging. Similarly, phase-constrained reconstruction suffers from a lack of high-

spatial frequency information regarding the phase in an image, and consequently may suffer 

from residual aliasing in these regions. We introduce a variant of phase-constrained SENSE, 

termed “turboSENSE” (18,19), that aims to 1) recover the high spatial frequencies of the 

phase, 2) eliminate the aliasing artifacts by means of an iterative algorithm, and 3) minimize 

the g-factor-related noise enhancement. Specifically, a method to improve the phase 

estimate that was recently introduced for multicoil Dixon chemical species separation is 

adapted (20). The algorithm assumes that the residual error norm as a function of phase of 

the aliased pixels follows a smooth convex distribution, and follows an iterative conjugate-

gradient method.

It is anticipated that the method can be applied to the many facets of MRI in which only 

magnitude data are needed. In the following sections, the mathematical framework of 

turboSENSE and the corresponding iterative algorithm for improving the phase estimate are 

provided. Our theory was experimentally verified in phantom measurements as well as 

cardiac and brain scans.
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THEORY

Phase-Constrained SENSE Review

In Cartesian SENSE, an undersampled set of k-space data is collected across a multichannel 

receiver set. Specifically, the acquisition can be represented by the following:

[1]

where s is an (NkNc) × 1 vector representing the acquired dataset in k-space for a set of Nc 

coils and Nk k-space samples, C is an NkNc × N2 complex matrix representing the coil 

sensitivities and Fourier kernel for an image of N × N pixels, ε is an (NkNc) × 1 complex 

vector representing independent measurement noise, and ρ represents the unaliased complex 

magnetization for a set of N2 pixels. Equation [1] represents a system of equations with N2 

complex unknowns and NkNc complex equations for a total of 2N2 real unknowns and 

2NkNc real equations. The complex reconstruction can be estimated in a minimum least-

squares sense, i.e., min(||Cρrecon − s||), leading to ρrecon − (CHΨ−1C)−1CHΨ−1s, where Ψ 

represents the noise covariance matrix (7).

Suppose now that only the magnitude is of interest. The magnitude and phase of the 

unaliased magnetization can be expressed by ρ = diag(exp(iϕ))ρmag, where diag(exp(iϕ)) is 

an N2 × N2 diagonal matrix whose diagonal elements represent the phase, and ρmag is an N2 

× 1 vector that represents the magnitude of each voxel. Without loss of generality, ρmag is a 

real quantity. We let ρmag = Re(ρmag). Thus, the SENSE acquisition (Eq. [1]) can now be 

expressed as:

[2a]

Equation [2a] is then split into real and imaginary components:

[2b]

In the phase-constrained formalism, this phase is estimated and can be represented by 

diag(exp(iϕ)) ≈ diag (exp(iϕ̂)). This phase can be estimated by incorporating the phase 

present in the scan used to estimate the coil sensitivities. The coil sensitivities can be 

estimated by many means, such as with a separate calibration scan or the central phase 

encodes of an autocalibrated scan.

With a perfect phase estimate, we arrive at:

[3a]

or
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[3b]

where

Equation [3b] represents the phase-constrained formalism as explained in Ref. 15. With an 

assumption that the real and imaginary parts are linearly independent, the phase-constrained 

formulation is now a system of equations with 2NkNc equations and N2 unknowns. The 

reconstruction, ρpc,recon, can be estimated in a minimum least-squares sense: ρpc,recon = 

(CpcH
Ψpc−1

Cpc)−1CpcH
Ψpc−1

spc. The phase-constrained formalism is based on the idea that 

with an excellent phase estimate, only the real component of the magnetization remains to 

be computed.

Phase Errors

In reality, diag(exp(iϕ̂)) is not a perfect estimate. Figure 1 shows the effect of applying a 

phase-constrained SENSE reconstruction to a water phantom. The phantom data were 

acquired twice. The data from the first scan were used to compute the coil sensitivities for an 

undersampled set of the second scan. The coil sensitivities were calculated by normalizing 

the surface coil images by the square root of the sum-of-squares. An error in the phase 

estimate can arise from phase mismatches between the calibration scan and the 

undersampled acquisition. In addition, although the object itself is smooth, there normally 

exist some transient phases at the boundary between object and background. Figure 1d 

shows the phase difference between the two acquisitions, where phase mismatches and 

transient effects are present. Errors in phase estimates can also arise at boundaries between 

water and fat, where high spatial frequencies are insufficiently sampled by the phase 

estimate.

We model this error by introducing an error term to the phase-constrained formalism:

[4]

Because the phase estimate has errors, the magnitude of the magnetization ρmag will be 

composed of both a real and an imaginary part. In fact,

This term is obtained by inferring from a non-phase-constrained acquisition:

Lew et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2014 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[5]

The error term can be assumed to have a finite mean and variance, . The variance in the 

reconstruction, σ2, is related to the error by:

[6]

for the kth diagonal element (21).  can be used as a measure of the noise 

amplification since it shows on average the increase in the variance.

TurboSENSE

TurboSENSE aims to reduce the reconstruction error by improving the phase estimate. If we 

know the phase mismatch, then we can adjust the phase in Eq. [3] and reestimate the 

reconstruction in the minimum least-squares sense.

To correct for the phase mismatch, we introduce an approach that was previously used to 

estimate field-map inhomogeneity in multipoint Dixon imaging (20). It is based on an 

iterative refinement of the phase estimate so that the norm of the residual error, which we 

call the residual norm, of Eq. [3] becomes a minimum. Figure 1e shows the residual norm as 

a function of ϕ̂ for the simple case of two aliased pixels. We note that the residual norm has 

a local minimum, and the initial phase-constrained SENSE reconstruction is not at the 

minimum. It is hypothesized that the combination of phases ϕ̂ to minimize the residual norm 

will produce a reconstruction that minimizes residual aliasing artifacts. Specifically, we 

define the residual error

[7]

which can be also can be expressed as the first-order differential:

[8]

where Δϕj is the phase error of the jth pixel, and  is the magnitude error. To find the 

derivative in Eq. [8], we return to Eq. [1] and expand the kth k-space sampling point in s:

[9]

Taking the derivative of Eq. [9] with respect to ϕj and , we arrive at:
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[10a]

[10b]

[10c]

[10d]

Equation [10] can be generalized into a matrix equation:

[11]

with the elements as follows:

[12]

The final step is to split the matrix system into real and imaginary components. Equation 

[11] represents a set of linear equations with 2NkNc equations and 2N2 unknowns that can be 

solved in the least-squares sense. The number of unknown phases is reduced by masking out 

pixels of background noise, which may lead to a more well-conditioned solution. This is 

similar to the masking process in conventional SENSE reconstruction (7). The estimated Δφj 

are used to update the phase estimate in the diag(exp(iϕ̂)) matrix in Eq. [3], which is solved 

once again to produce a new image. Specifically, the (n + 1)th iteration of the phase estimate 

is given by:

[13a]

The phase-constrained matrix is then updated:

[13b]

The real magnetization is estimated by least squares:
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[13c]

The residual error is recalculated:

[13d]

The Δφj are again estimated, and the process repeats itself until some convergence is 

reached. Figure 2 shows a flow chart detailing the steps in this reconstruction process.

In the SENSE formalism, block diagonalization along regular Cartesian sampling schemes 

can be used to simplify the encoding matrix and decrease the reconstruction time (7). The 

reconstruction is then done entirely in the image domain. In this work, image-domain 

reconstructions were employed.

g-Factor

The g-factor for the phase-constrained formalism is intuitively expected to be smaller than 

that of SENSE since we are dealing with fewer unknowns and a matrix that is better 

conditioned. We analytically derive the amount of improvement in the g-factor (see 

Appendix). For SENSE, the g-factor is expressed as:

[14]

The g-factor for phase-constrained SENSE is extended into a similar equation:

[15]

We note the connection of the g-factor to the variance of the reconstruction in light of 

modeling errors. We summarize the result from the Appendix. The g-factor of phase-

constrained SENSE and SENSE differ by an additive term:

[16]

where L = (CpcH
Cpc)−1 and M = −Im(C diag(exp(iϕ̂)))H Re(C diag(exp(iϕ̂))) + Re(C 

diag(exp(iϕ̂)))H Im(C diag(exp(iϕ̂))). The additive term can be shown to be positive 

semidefinite, leading to a g-factor for phase-constrained SENSE that is no larger than that of 

conventional SENSE.
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MATERIALS AND METHODS

Simulations

Simulations were performed on a brain phantom that was scanned using an SE sequence (TE 

= 10 ms, TR = 200 ms, resolution = 256 × 256, flip angle = 25°) on a GE Signa CV/I 1.5T 

scanner with an eight-channel head coil (GE Medical Systems, Waukesha, WI, USA). 

Comparisons were performed among four reconstruction techniques: 1) SENSE, 2) phase-

constrained SENSE, 3) turboSENSE with iterative phase refinement as described in our 

approach, and 4) turboSENSE with a fully resolved phase. To accomplish the latter 

technique, SENSE reconstruction was performed with a reduction factor of 1. The phase of 

the resulting reconstruction was used to approximate the ideal phase refinement, which was 

then fed into phase-constrained SENSE to reconstruct the data. In this fashion, we can 

surmise a “best-case” reconstruction with turboSENSE.

The fully sampled image was used as the reference. Undersampling was performed by 

removing phase-encode profiles from the full-resolution data. In this manner, comparisons 

will have no variability from interscan differences. To calculate the coil sensitivities, the 

central 48 phase encodes of each surface coil data were first apodized with a Hamming 

window of length 48. A global phase mismatch, such as can be expected from varying eddy 

currents, was then added. The coil sensitivities were then calculated by normalizing the 

surface coil images by the square root of the sum-of-squares. The coil sensitivities contained 

both the coil receiver information and the phase estimate. Measurements were taken from 

the image after pixels below a noise threshold were removed. The resultant image would 

preserve any aliasing artifact in the reconstruction. With the iterative method, we marked 

convergence when the residual error norm (Eq. [7]) had changed less than 1% from the 

previous iteration. The reduction factor refers to the amount of undersampling, and does not 

include the central lines used for coil sensitivity calculation.

In one simulation, reduction factors of 2, 3, 4, 5, 6, and 7 were performed. Gaussian noise at 

a level of 5% of the peak intensity was added to the real and imaginary channels of each 

coil. The g-factor was computed analytically for the image after thresholding (Eqs. [14] and 

[15]). Histograms of the g-factor are plotted for the various reduction factors. In addition, for 

the four reconstruction methods, the root-mean-squared (RMS) value of the difference 

between the reference and reconstructed magnitudes was also calculated. This was 

normalized by the mean of the reference magnitude image. The RMS is an indicator of the 

artifact power in the reconstructions.

In a second simulation, Gaussian noise at various levels from 1% to 13% was added to the 

real and imaginary channels of each coil. Reduction factors of 4 and 6 were performed. 

RMS differences between the reference image and each of the four reconstructed images 

were calculated to gauge the accuracy of the reconstructions.

In Vivo Applications

Images of human volunteers were acquired using GE Signa CV/I and TwinSpeed 1.5T 

scanners. The institutional review board approved the protocol, and informed consent was 

obtained prior to the scan. Undersampling was performed on fully sampled datasets in order 
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to obtain comparable image quality for assessment. As in the simulations, the four 

reconstruction techniques were performed. In addition, SENSE with Tikhonov 

regularization was used as another comparison. The regularization parameter was chosen to 

be optimal in the L-curve sense and is based on the Twomey method proposed by Lin et al. 

(23,24) to trade off the dependence on the reference scan and the aliased images.

Balanced steady-state free precession (bSSFP) cine imaging data were acquired on an eight-

channel cardiac phased-array coil (GE Medical Systems, Waukesha, WI, USA). The scan 

parameters were as follows: acquisition matrix = 256 × 224, flip angle = 20°, bandwidth = 

±31.25 kHz, TR/TE = 4.5 ms/2.4 ms, FOV = 30 cm, and slice thickness = 10 mm. Ten 

views per segment were acquired for 20 cardiac phases, and retrospective cardiac gating was 

applied. The volunteers were instructed to hold their breath at inhalation to mitigate 

respiratory artifacts. The overall scan time took approximately 23 heartbeats. The full 

dataset was undersampled with a reduction factor of 5. As for the calibration, cardiac 

imaging has been shown to benefit from self-calibration techniques (2,22). To simulate self-

calibration, the coil sensitivities were created by taking the central 32 phase encodes of the 

fully-sampled dataset and apodizing them through a Hamming window of length 32. In self-

calibrated parallel imaging (22), the combination of apodization and a high number of 

central phase encodes is useful for minimizing Gibbs ringing artifacts from the central k-

space profiles. The phase was estimated from the central 32 phase encodes.

Also, T2-weighted FSE images of the brain were acquired using an eight-channel head coil. 

The acquisition parameters were as follows: acquisition matrix = 256 × 256, bandwidth = 

±15.63 kHz, TR/TE = 5000/85 ms, flip angle = 90°, FOV = 28 cm, slice thickness = 3 mm, 

18 slices, gap = 1.5 mm. The data were subsampled with a reduction factor of 7. The scan 

time was 2 min 45 s. A separate FSE scan was used for the calibration. It had a scan time of 

45 s, 128 × 128 acquisition matrix, ±62.5 kHz bandwidth, and TR/TE = 4000/60 ms. The 

coil sensitivities were created by taking the central 48 phase encodes and apodizing them 

with a Hamming window of length 48. The phase was estimated from the central 48 phase 

encodes.

With the FSE images, the convergence behavior of turboSENSE with iterative phase 

refinement was investigated. The phase refinement process was iterated 100 times. The 

RMS error was calculated as function of the iteration number. The fractional change in the 

residual norm from the previous iteration was calculated. The accumulated time to perform 

the reconstruction was also tracked. Our reconstruction was implemented with Matlab 

software (Mathworks, Natick, MA, USA).

RESULTS

Simulations

Figure 3 shows the results for the simulation with a varying reduction factor R. The g-factor 

histograms (Fig. 3a–f) among phase-constrained SENSE, turboSENSE with the fully-

resolved phase, and turboSENSE with iterated refinement show similar bin distributions. 

The effects of different phase estimates do not vary substantially with the g-factor 

distributions. We will refer to these techniques in this discussion as magnitude-only 

Lew et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2014 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



techniques. Relative to SENSE, the g-factor histograms of the magnitude-only techniques 

show benefits.

Further examination of the RMS plot (Fig. 3g) and images (Fig. 4), however, shows 

marginal improvement in image quality at R < 5. At R < 5, the g-factor histograms for both 

SENSE and the magnitude-only techniques have peaks at a g-factor value less than 2. The 

noise enhancement is small. At higher reduction factors, the conditioning for SENSE 

becomes increasingly ill conditioned, and the g-factor grows quickly. In contrast, the g-

factor for the magnitude-only techniques grows but at a far lesser rate. The RMS plot (Fig. 

3g) also shows that at R > 4 these differences between SENSE and turboSENSE become 

substantial. This can be also seen in the underlying reconstructions for these acceleration 

factors (Fig. 4). Of note, the phase-constrained SENSE reconstruction exhibits strong 

residual aliasing due to the mismatched phase. The RMS for turboSENSE with iterated 

refinement closely matches that of the fully-resolved phase until R > 5. TurboSENSE with 

the fully-resolved phase exhibits the best reconstruction of all the techniques.

The second set of simulations is shown in Fig. 5. The RMS values show increasing values as 

more noise is added. It is observed that because of the poorer conditioning of the SENSE 

reconstruction matrix at high reduction factors, SENSE reconstructions show more noise 

enhancement than turboSENSE reconstructions, leading to higher deviation. TurboSENSE 

with iterated refinement is close to turboSENSE with the fully-resolved phase at low noise 

levels, and it gradually deviates more at higher noise. Phase-constrained SENSE has a high 

RMS overall, and it is consistently higher than that of turboSENSE. Residual aliasing is a 

dominant factor, even when large amounts of noise are added. TurboSENSE with iterated 

refinement provides diminishing returns for higher noise. For R = 6, the RMS value actually 

surpasses phase-constrained SENSE.

In Vivo Applications

Images from one application to cine imaging are shown in Fig. 6. The SENSE 

reconstruction suffers from strong g-factor noise from ill-conditioned matrices. With 

Tikhonov regularization, the reconstruction removes much of the noise. The phase-

constrained SENSE reconstruction presents strong residual aliasing, particularly of the chest 

wall. High fluctuations of the phase due to fat in the chest wall have caused artifacts at the 

left ventricular wall. The turboSENSE images do not suffer from such residual aliasing and 

have reduced noise amplification. TurboSENSE with iterative refinement approaches that of 

the fully-resolved phase. The turboSENSE images also generally have lower background 

noise compared to the SENSE images, an indication of higher SNR.

Similarly, the T2-weighted FSE scans (Fig. 7) show a noticeable improvement with 

turboSENSE. The SENSE reconstruction shows more noise than turboSENSE. The 

reconstruction produced by phase-constrained SENSE is highly distorted by the phase 

mismatch. TurboSENSE recovers from this phase mismatch. It is comparable in image 

quality to SENSE with Tikhonov regularization. Due to the high reduction factor, residual 

aliasing is evident in both the regularized and turboSENSE images. The turboSENSE 

images have some higher edge enhancement at the cost of more salt-and-pepper noise 

relative to the regularized SENSE images.
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Iterative phase refinement shows no substantial change in image quality approximately 

around iteration number 60 (Fig. 8). The fractional change in the residual error norm and the 

RMS error both reflect this trend. The turboSENSE algorithm takes about 800 s (13.3 min) 

in total to reconstruct the image for 60 iterations. Our implementation of the SENSE 

algorithm takes 10 s on average. We note that our implementations are not optimized to 

minimize reconstruction time.

DISCUSSION

The general results show that a “perfect” recovery of the spatial frequencies of the phase can 

lead to superior reconstructions, as is evident in the images reconstructed by turboSENSE 

with fully-resolved phase. Since the fully-resolved phase was obtained from a fully-sampled 

set, this ideal cannot be accomplished in actuality. The iterated phase-refinement approach 

attempts to recover the spatial frequencies from a limited dataset.

Iterative refinement in turboSENSE reduces aliasing at the possible cost of noise 

amplification. The in vivo images show that residual aliasing due to phase at high spatial 

frequencies has been removed to a large extent. However, the iterative nature of the phase 

refinement uses the acquired noisy dataset to improve the phase and consequently adds noise 

during the process of updating the phase to the coil sensitivity matrix. The noise simulations 

(Fig. 5) show a relatively constant difference between turboSENSE with iterative phase 

refinement and the fully-resolved phase at up to 9% of added noise. Above 9%, the 

difference grows as the effectiveness of the iterative refinement diminishes. In addition, at 

higher reduction factors, the conditioning of the phase refinement matrix, ΔC (Eq. [12]), will 

also affect the accuracy of the phase refinement. Our approach may lose some of the SNR 

relative to conventional phase-constrained SENSE, as is evident in the in vivo images. The 

iterative technique may be considered a compromise between the strong residual artifacts of 

phase-constrained SENSE and the high noise enhancement of conventional SENSE. 

Suppressing residual artifacts may be paramount at the cost of some SNR with respect to a 

particular patient, where, for example in Fig. 6, accurate delineation of the left ventricle is 

important for measurement of wall thickness. It would be also useful for detecting lesions on 

the edge of visibility, where it is critical to eliminate artifacts and suppress large amounts of 

noise.

TurboSENSE with iterative phase-refinement reconstruction offers a significant 

improvement over SENSE when reduction factors approach the theoretical limit. With the 

eight-channel coil systems used throughout the course of this investigation, reduction factors 

greater than 4 showed an improvement in g-factor noise mitigation. At lower reduction 

factors, the difference between SENSE and the new reconstruction approach was harder to 

distinguish visually, although both theory and measurements documented SNR benefits. It is 

suspected that the symmetrical layout of the coils allows for relatively good conditioning of 

the coil sensitivity matrix. The low g-factor values at reduction factors of 2, 3, and 4 

reaffirm this belief. The depth sensitivity from the lateral coils is not high enough to produce 

good sensitivity at factors higher than 4. Finally, the in vivo examples exhibited image 

quality comparable to that of the phantom images with higher reduction factors, in spite of 

the more realistic coil sensitivities with noisy estimates.
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The diminished impact of phase-constrained SENSE and its turboSENSE offshoot at lower 

reduction factors may also be fundamentally limited by the use of the image phase to 

improve the reconstruction. The general smoothness of the image phase correlates the real 

and imaginary components of the coil sensitivities. The conditioning of the unfolding matrix 

for phase-constrained SENSE relative to conventional SENSE at low reduction factors is 

improved only a little.

It is important to note that the g-factor alone is insufficient to determine the quality of the 

image reconstruction. The integration of phase into the decoding matrix does not appear to 

significantly alter the g-factor among phase-constrained SENSE, turboSENSE with iterated 

refinement, and turboSENSE with the fully-resolved phase, as shown in the histograms, but 

it substantially affects image quality. Specifically, phase-constrained SENSE also has lower 

g-factors than SENSE, but it is clearly limited by the errors in the phase estimate, leading to 

inaccurate rather than imprecise image reconstructions. The simulations furthermore show 

that a phase offset added to the coil sensitivities can cause strong residual aliasing in 

conventional phase-constrained SENSE. Investigating the RMS, difference, or other similar 

scheme will complement and support g-factor calculations. Equation [5] serves as a method 

to measure the effects of both noise and modeling errors on the SENSE reconstruction.

TurboSENSE with iterative phase refinement exhibits slow convergence behavior, 

especially with high reduction factors. Performing two matrix inversions per phase update is 

costly. Our implementation requires about an 80-fold increase over a SENSE reconstruction. 

The convergence of turboSENSE would benefit from methods such as improving the initial 

estimate or adaptively changing the rate of the phase update.

It was previously shown (15,16) that phase-constrained SENSE techniques can be applied 

with partial-Fourier sampling schemes. The theory of the iterative phase-refinement 

technique was developed in k-space and conceivably can be extended to these sampling 

schemes. As shown with our simulations, turboSENSE can use a phase estimate that was 

estimated at a lower resolution, which makes it compatible with partial-Fourier schemes. In 

addition, imperfect phase estimates in partial-Fourier techniques have been known to 

contribute to ringing in the reconstruction. Iterative phase refinement may help recover some 

of this phase mismatch and diminish the ringing, although this would require further 

investigation. Applying iterative phase refinement from the k-space domain would, however, 

considerably lengthen the reconstruction time.

CONCLUSIONS

TurboSENSE with iterative phase refinement provides a new way to approach the phase-

constrained SENSE problem. The greatest benefits occur at high reduction factors where the 

SENSE matrix is extremely ill conditioned. TurboSENSE can be considered a trade-off of 

the SENSE and phase-constrained SENSE techniques. The iterative technique offers SNR 

improvement over SENSE while reducing residual aliasing compared to phase-constrained 

SENSE.
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APPENDIX

To relate the g-factor of phase-constrained SENSE and SENSE, we reformulate the SENSE 

matrix in a form similar to the phase-constrained SENSE formulation. We examine the 

effects on the g-factor along the way.

Consider the SENSE matrix C with reduction factor r. Let the g-factor be  and p ∈ {1, 

…,r}. Let c be the diagonal of the covariance coil sensitivity matrix (CHC)=1,

[A1]

By definition, .

SENSE can be reexpressed into real and imaginary parts with no loss of generality:

[A2]

The g-factor for D remains the same for both the real and imaginary components of the 

magnetization, and p ∈ {1, …,2r}. In other words,

[A3]

We will use this result later in the Appendix.
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Now, we consider the case in which we right-multiply the SENSE matrix by the phase 

estimate. Let B = CF, where F is an invertible orthogonal diagonal matrix. F can represent 

the phase estimate, diag(exp(iϕ̂)), for example. We derive the g-factor, , by examining the 

diagonal of the covariance coil sensitivity matrix of B:

[A4]

Therefore, the diagonals are the same, and consequently, . So far, as we would 

expect, the reformulation does not change the noise amplification.

We add that splitting B into its real and imaginary components will not change the g-factor. 

This is analogous to the result from Eq. [A2]. Specifically, we define a matrix U:

[A5]

and we have the g-factor of U, . From this result, right-multiplying the SENSE 

matrix by the phase estimate and subsequently splitting the matrix into real and imaginary 

components do not change the noise amplification.

Using the above results, we can finally relate the g-factor of phase-constrained SENSE to 

SENSE. We approach this by deriving the relationship between the diagonal of the 

covariance coil sensitivity matrix of phase-constrained SENSE to that of SENSE. Let

[A6]

Let v be the diagonal of the phase-constrained SENSE matrix:

[A7]

[A8]

where L = (Re(B)HRe(B) + Im(B)HIm(B)) for convenience.

On the other hand, for SENSE,
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[A9]

where M = −Im(B)HRe(B) + Re(B)HIm(B). We observe that M is skew-symmetric. The 

inverse of Eq. [A9] can be rewritten by its Schur decomposition (25):

[A10a]

where (L + ML−1M)−1 is the Schur complement. u can also alternatively be decomposed as:

[A10b]

[A11]

by inspecting the elements of [A10a] and [A10b].

To relate phase-constrained SENSE and SENSE, we compare the block matrices on the 

diagonals of v and u, which are L−1 and L−1 + ((−M)L−1)H(L + ML−1M)−1 (−M)L−1, 

respectively. By inspection, the difference between u and v is the term:

[A12]

We now observe that, by Eq. [A9], up is positive semidefinite. A property of positive 

semidefinite matrices is that the diagonal elements are nonnegative. The Schur complement 

is also positive semidefinite. Equation [A12] is positive semidefinite and its diagonal 

elements are guaranteed to be nonnegative. Thus, the g-factor of SENSE is no smaller than 

that of phase-constrained SENSE.

We can now relate the g-factor of SENSE to the g-factor of phase-constrained SENSE:
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[A13a]

Also,

[A13b]

Thus we have a relationship for the covariance coil-sensitivity matrix, and consequently the 

g-factor between phase-constrained SENSE (Eq. [A13b]) and SENSE (Eq. [A13a]).
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FIG. 1. 
Phase-constrained magnitude-only SENSE reconstruction is very sensitive to phase errors in 

the coil sensitivity maps. a: Reference image of a fully-resolved water phantom. b: Phase-

constrained SENSE reconstruction at R = 2. The sensitivity map was obtained from a 

separate scan with identical parameters. Clearly, a mismatch between the phase of the 

calibration scan and the undersampled scan is seen as residual aliasing at the reconstruction. 

c: TurboSENSE reconstruction with iterative phase refinement. The aliasing has been 

reduced considerably. The black point is a set of two aliased pixels. d: Phase difference 

between the two separate scans, scaled to display from − 0.2 to 0.2 radians. e: A residual 

norm surface as a function of different phases applied to the two aliased pixels. The numbers 

indicate the trajectory taken by the turboSENSE reconstruction during three iterations.
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FIG. 2. 
The steps involved in the turboSENSE process with iterative phase refinement.
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FIG. 3. 
a–f: g-Factor histograms for SENSE (black line), phase-constrained SENSE (red line), 

turboSENSE with the fully-resolved phase (green line), and turboSENSE with iterative 

phase refinement (blue line) for different reduction factors (R = 2–7). The latter three have 

similar histograms and lower g-factors than SENSE. g: RMS measurements as a function of 

reduction factor.
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FIG. 4. 
Images of the phantom simulations: (a) the reference phantom, (b) a phase-constrained 

reconstruction at R = 4, and reconstructions for (c–e) R = 4, (f–h) 5, and (i–k) 6. c–k (left to 

right): SENSE, turboSENSE with iterative phase refinement, and turboSENSE with the 

fully-resolved phase.
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FIG. 5. 
RMS measurements for SENSE, phase-constrained SENSE (“pc SENSE”), turboSENSE 

with the fully-resolved phase (“full phase”), and turboSENSE with iterative phase 

refinement (“iter phase”) as a function of the amount of added Gaussian noise. The amount 

of noise is the percent of the peak. Measurements were performed for (a) R = 4 and (b) R = 

6.
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FIG. 6. 
Comparisons of various reconstructions at R = 5: (a) fully-sampled reference image, (b) 

SENSE, (c) phase-constrained SENSE, (d) turboSENSE with iterative phase refinement, (e) 

turboSENSE with fully-resolved phase, and (f) SENSE with Tikhonov regularization. The 

turboSENSE images have recovered the mismatch phase of the phase-constrained 

reconstructions. The images from peak-systole were shown here. Ringing of the chest walls 

is evident due to insufficient coil-sensitivity resolution.
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FIG. 7. 
Comparisons for R = 7 reconstructions of the T2-weighted FSE images of the brain: (a) 

reference, (b) SENSE, (c) phase-constrained SENSE, (d) turboSENSE with iterative phase 

refinement, (e) turboSENSE with fully-resolved phase, and (f) SENSE with Tikhonov 

regularization. The phase-encoding direction is left to right.
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FIG. 8. 
Behavior of R = 7 reconstructions of the T2-weighted FSE images as a function of iteration 

number. a: RMS error. The RMS error of the SENSE reconstruction is also shown (dashed 

line). b: Fractional change in residual error norm from the previous iteration. c: Cumulative 

reconstruction time. Images are shown at iteration numbers (d) 1, (e) 20, (f) 40, (g) 60, (h) 

80, and (i) 100.
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