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Abstract: This paper describes a spatio-temporal registration approach
for speech articulation data obtained from electromagnetic articulogra-
phy (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is
motivated by the potential for combining the complementary advantages
of both types of data. The registration method is validated on EMA and
rtMRI datasets obtained at different times, but using the same stimuli.
The aligned corpus offers the advantages of high temporal resolution
(from EMA) and a complete mid-sagittal view (from rtMRI). The
co-registration also yields optimum placement of EMA sensors as articu-
latory landmarks on the magnetic resonance images, thus providing
richer spatio-temporal information about articulatory dynamics.
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1. Introduction

Speech production studies often require articulatory data. No single modality can pro-
vide direct articulatory data covering all aspects of the production process concur-
rently. Therefore, researchers have been using a variety of techniques, such as x-ray
microbeam,1 ultrasound,2 electromagnetic articulography (EMA),3,4 and magnetic res-
onance imaging (MRI),5,6 to get information about specific relevant aspects of articula-
tion. Each modality offers a different type of articulatory information each with its rel-
ative advantages and disadvantages, e.g., EMA provides flesh-sensor trajectories, while
real-time magnetic resonance imaging (rtMRI) provides image sequences of the full
airway cross section represented by pixel intensity. In particular, the advantages of
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EMA over rtMRI are (1) higher temporal resolution: 100, 200, or 400 Hz for EMA
and, typically in speech production study, 23.18–33.18 frames/s for rtMRI, and (2)
potential for better speech audio recording quality: EMA allows a cleaner speech audio
recording environment, while rtMRI recording generates acoustic noise in the scanner,
thus requiring noise cancellation.7 On the other hand, rtMRI can offer richer spatial
information in terms of imaging in any plane including the full upper airway along the
mid-sagittal plane of the head and neck, compared to tracking just a handful of sensor
locations along the airway afforded by EMA.

While it may be desirable to simultaneously acquire data with multiple modal-
ities, it is not currently feasible due to technological limitations or incompatibility such
as in the case of EMA and rtMRI. One possible way to obtain some of the combined
benefits of EMA and rtMRI is by spatial and temporal alignment of datasets recorded
with the same stimuli, by the same speaker, but at different times. However, differences
in the dimensionality and quality of the measured articulatory and acoustic data across
these two modalities make the alignment problem challenging. We recently proposed a
spatial and temporal alignment method8 where the spatial alignment of EMA data
and rtMRI data was computed by using the estimated palatal trace of EMA and the
standard deviation image of rtMRI, and the temporal alignment was computed using
the Joint Acoustic-Articulatory based Temporal Alignment (JAATA) algorithm,8

which performs both temporal alignment and selection of EMA-like features from
rtMRI data, thereby overcoming the dimensionality mismatch between the two
modalities.

The goal of this paper is two-fold. The first is to experimentally validate the
effectiveness of the temporal alignment method proposed by Kim et al. (2013) on
larger datasets. The second is to illustrate the utility of the aligned corpus for speech
production studies, offered by the temporally and spatially richer articulatory informa-
tion in the aligned corpus than by either modality individually. We illustrate the
advantage of the aligned corpora over only EMA data (Sec. 4.1) through measurement
of velic and pharyngeal constriction degree, and the advantage over rtMRI data
(Sec. 4.2) through anatomical landmark tracking in the up-sampled magnetic reso-
nance (MR) images.

2. Co-registration techniques

In the co-registration of EMA and rtMRI, both spatial and temporal alignments are
important to obtain a correspondence between different degrees of spatio-temporal dy-
namics captured by these data modalities. Spatial alignment is achieved by requiring
the best alignment between the estimated palate trace of EMA data and the estimated
upper vocal airway surface in MR images by means of a linear transformation com-
posed of translations and rotation. The optimum values of translations and rotation
are obtained by means of a grid search. The scaling factor is known, since the spatial
resolution of MR images is specified, e.g., as 2.9 mm� 2.9 mm per pixel, during
rtMRI data collection. The temporal alignment uses acoustic features computed from
the speech signal acquired in MRI and EMA recordings. To compensate for the rela-
tively poorer audio quality in MRI recording a specialized algorithm (JAATA)8 is
used for temporal alignment which utilizes articulatory features in addition to acoustic
features during alignment. While the derivatives of raw EMA sensor values are used
as articulatory features for EMA data, similar flesh-point features are found from the
raw MRI video and used as articulatory features in order to achieve optimum align-
ment. Let XM,f and XE,f be the acoustic feature sequence matrices of MRI audio and
EMA audio, respectively, of the fth sentence among F sentences in total. Let YM,f be
the articulatory feature sequence matrices of MR images of the fth sentence. Also, let
WM,f and WE,f be the time alignment paths of MRI data and EMA data, respectively,
for fth sentence. Then, the optimum alignment is obtained by minimizing the follow-
ing objective function:
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sq,M is the masking matrix, whose non-zero elements select a sub-matrix (articulatory
features) for qth EMA sensor trajectory among Q trajectories in total, from the MR
images. A is the number of pixels in the selected articulatory features. zq

E;f is the qth
EMA trajectory of the fth sentence. k is the weighting factor on the acoustic features
for the temporal alignment. JAATA uses an iterative approach involving automatic
extraction of EMA-like features and DTW (Dynamic Time Warping) to obtain best
temporal alignment between MRI and EMA recordings. The co-registration software
package which contains the MATLAB codes for the spatio-temporal alignment techniques
and the subsets of data for demonstration is freely available in Ref. 9.

3. Validation of co-registration techniques

3.1 Datasets and experimental setup

Experiments were performed on the MRI TIMIT data10 and the EMA TIMIT data,
which were collected with the same stimuli and subjects, but at different times. One
subject, a female native speaker of American English, was selected from the database.
Data from this speaker included 460 read English sentences identical to those in
MOCHA TIMIT.11 The MRI TIMIT data comprise rtMRI image sequences of the
mid-sagittal plane of the upper airway and simultaneously recorded speech waveforms
that were subsequently denoised using model-based acoustic noise cancellation.7 The
EMA TIMIT data comprise three-dimensional coordinates of six flesh sensors, moni-
toring the movements of tongue tip, tongue blade, tongue dorsum, upper lip, lower lip,
and lower incisor. Post-processing was performed on the data: Smoothing and interpo-
lation of sensor trajectories and occlusal plane correction, on the EMA TIMIT data
and principal component analysis based noise reduction on the images of the MRI
TIMIT. The EMA sensor trajectories in the x and y axes are used in the experiments
of this paper, because they lie in the mid-sagittal plane. Detailed specifications and
post-processing procedures applied to the MRI TIMIT data and the EMA TIMIT
data are described in our previous papers.7,8,10

Previous work8 demonstrated the performance of JAATA with a small set of
data, i.e., 20 utterance pairs (�40 s for each modality), where an utterance was spoken
in each modality. In the present paper, we examine the performance of JAATA with
substantially more data that includes all English phones with 114 utterance pairs,
excluding initial and final silence of the utterances (�260 s for EMA TIMIT data and
�270 s for MRI TIMIT data). We evaluated temporal alignment performance by
Average Phonetic-boundary Distance (APD). Since APD requires identical parallel
phonetic transcriptions for each utterance pair, some utterances were excluded from
the calculation of APD in the following way. First, we excluded utterance pairs if ei-
ther utterance was found to contain a speaking error (i.e., deletion, addition, and sub-
stitution) through listening. Second, we excluded utterance pairs whose phonetic tran-
scriptions were different from each other. Finally, 114 utterance pairs were chosen
from the whole MRI TIMIT data and EMA TIMIT data. The phonetic transcriptions
were obtained by forced-alignment with the SONIC aligner.12

For acoustic features, we used 13-dimensional Mel-Frequency Cepstral
Coefficients (MFCCs) with 25 msec window and 10 msec shift. For articulatory fea-
tures, we used the derivatives of EMA sensor trajectories and MRI pixel intensities.
APD of DTW with only MFCCs was used as a baseline.
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3.2 Experimental results

We performed temporal alignment by JAATA with area parameter A from 15 to 50,
except prime numbers, and weighting factor k from 0.0001 to 0.5 with an interval of
0.0001. The minimum APD, 4.31 msec, was obtained with A¼ 27 and k¼ 0.0008,
which indicates that both acoustic and articulatory features were used for the best
registration result. Compared to the baseline performance of 4.84 msec, JAATA
reduces APD by 11%, indicating that JAATA is effective for reducing temporal align-
ment error.

We also examined the improvement of temporal alignment by JAATA for
each phone in terms of APD. Figure 1 shows the change of APD for each phone by
JAATA compared to MFCC-only alignment. Note that the phoneme notation in Fig.
1 follows the American English phoneme set used by the SONIC,12 since APD was
computed based on the automatically generated boundaries by using the tool. The
phonemes are sorted in descending order of the amount of reduction in APD value. It
can be seen that JAATA improves temporal alignment in terms of APD for most of
the phonemes.

4. Using co-registered data

The co-registered data can offer spatially or temporally richer articulatory information
than either EMA or rtMRI data by themselves. This section illustrates some ways in
which co-registered data can be used for taking advantage of both EMA and rtMRI
data for speech production research.

4.1 Information from more speech articulators

Articulatory information that is not directly available from EMA sensors, e.g., con-
strictions in the velar and pharyngeal regions, can be measured from MR images in
the co-registered dataset. An example of this can be seen in Fig. 2, which shows three
articulatory time series extracted during articulation of the word “harms.” The velic
and pharyngeal opening parameters were extracted from rtMRI data using Region-Of-
Interest (ROI) analysis.13 Labial opening was extracted from EMA data as the
Euclidean distance between the upper and lower lip sensors in the mid-sagittal plane.
The action of the lips is accurately captured, and the closure of the lips during produc-
tion of /m/ can be clearly seen. Moreover, labial closure is coordinated in time with
the velic opening to produce the nasal sound, with both time series showing a similar
time course. The pronounced pharyngeal constriction is also well captured, during the
production of /A/ and /�/ and preceding the nasal.

Fig. 1. APD of each phoneme for MFCC-only alignment and MFCC þ articulatory (Artic) alignment. The
number on top of each bar is the percentage of change from MFCC-based alignment to MFCC þ Artic-based
alignment. Phone list is sorted by the percentage from low to high. “�” indicates that APD decreases by adding
articulatory information.
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4.2 Higher temporal information and tongue landmarks for rtMRI data

Spatio-temporal alignment of rtMRI and EMA can be used for articulatory landmark
tracking in the MR images with improved temporal resolution as a result of co-
registration. Anatomical landmarks are not always conspicuous in MR images (e.g.,
tongue tip) because certain speech articulators, particularly the tongue, change drasti-
cally in shape over time. These shape changes can obscure or make indistinguishable
anatomical landmarks, and can present challenges for landmark tracking in rtMRI.
The spatio-temporal alignment can provide information about which point in each
MR image corresponds to each EMA sensor that was placed at an anatomical land-
mark in the vocal tract. In addition, the alignment map between rtMRI and EMA can
assist in up-sampling rtMRI data by utilizing the higher temporal resolution of EMA
to interpolate between rtMRI frames. The left-most plot in Fig. 3 shows an example
plot of an MR image overlaid with EMA sensors (circles in the plot). Sample MRI

Fig. 2. (Color online) Clean speech waveform (top plot) for the word “harms” and corresponding time series of
velic (the second plot), pharyngeal (the third plot), and labial (bottom plot) opening. The velic and pharyngeal
opening parameters extracted from rtMRI are synchronized with the labial opening parameter extracted from
the EMA by JAATA.

Fig. 3. (Color online) Left: Six EMA sensors (circles) overlaid on the MRI image with estimated vocal tract
boundaries (outer and inner lines in the vocal tract) and grid lines after co-registration. Right: Constriction
degrees of the tongue tip (top plot) and tongue dorsum (bottom plot) extracted from up-sampled rtMRI data
for the sentence “Publicity and notoriety go hand in hand.” The circle for each phone is placed on the trajectory
of the critical articulator of the phone, indicating the frame index for the phone in the registered data.
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videos with up-sampled rtMRI data, vocal tract tissue boundaries, overlaid EMA sen-
sors before and after spatio-temporal alignment can be found at the “Demo video”’
section in Ref. 9. The right-most plot in Fig. 3 illustrates the estimated constriction
degrees of two landmark points (tongue tip and tongue dorsum) extracted from up-
sampled MR images for the sentence “Publicity and notoriety go hand in hand.” The
mean of start and end times of each phone is indicated by a circle, where the phonetic
boundaries were estimated by an adaptive speech-text alignment tool, SailAlign,14 fol-
lowed by manual correction. The constriction degrees from rtMRI were computed by
measuring the Euclidean distance between the upper (outer line in the vocal tract in
the left-most plot in Fig. 3) and the lower (inner line) air-tissue boundary points on the
closest vocal tract grid line to each EMA sensor of the tongue. Note that the tongue
tip sensor is usually placed about 5 mm behind the anatomical tongue tip for minimiz-
ing its interference on its natural movement. For a rough comparison, the tongue tip
constriction degree was measured on the next grid line anterior to the closest grid line
to the superimposed tongue tip sensor position. Air-tissue boundaries were determined
using a MATLAB-based software15 for analyzing rtMRI data. The right-most plot in Fig.
3 suggests that the estimated landmarks in the registered data capture the closure ges-
tures of the tongue tip and the tongue dorsum well.

5. Discussion and future work

Spatially and temporally aligned EMA and rtMRI data can assist speech production
research by combining the advantages of both modalities. On top of the illustrated ben-
efits of each articulatory measurement modality, another possible advantageous combi-
nation would be to substitute the clean speech audio collected in conjunction with
EMA data for the degraded rtMRI audio after temporal alignment. In addition, it may
also be possible to reconstruct the tongue contour (as shown by Qin et al.16) from
EMA sensors by learning the statistical relationships between the EMA sensor positions
and the mid-sagittal contours visible in rtMRI. The aligned data can also be used to
extract articulatory features for subsequent modeling, including for automatic speech
recognition17 and speaker verification18 which use speech production knowledge.

Although the present paper tested our approach with more data, compared to
our previous paper,8 its robustness against additional sources of intra- and inter-speaker
variability needs to be examined. For example, the effects of the variation in speaking
rate and type (e.g., casual vs formal) need to be examined. Another future direction is
to continue improving the proposed alignment techniques. For example, more flexible
specifications (size, shape, numbers) of ROI selection might generate articulatory fea-
tures leading to better alignment. Although the mean pixel intensity of some rectangular
windows in rtMRI images behaves similarly to certain EMA sensors, pixel-wise track-
ing in rtMRI could be even more similar. Finally, our co-registration approach is
potentially applicable for datasets collected by other modalities, e.g., ultrasound.
Selecting a subset of EMA sensors (for alignment) depending on the corresponding
available articulatory information in ultrasound data or proper feature engineering are
needed so that the articulatory features from the two modalities behave similarly.
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