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Abstract: We describe a simple but robust algorithm for estimating the
heart rate pulse from video sequences containing human skin in real time.
Based on a model of light interaction with human skin, we define the change
of blood concentration due to arterial pulsation as a pixel quotient in log
space, and successfully use the derived signal for computing the pulse heart
rate. Various experiments with different cameras, different illumination
condition, and different skin locations were conducted to demonstrate
the effectiveness and robustness of the proposed algorithm. Examples
computed with normal illumination show the algorithm is comparable with
pulse oximeter devices both in accuracy and sensitivity.
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1. Introduction

Human heart rate (HR) is an important physiological parameter with numerous applications,
including clinical diagnosis. Contact-based heart rate estimation (e.g. pulse oximeter) is a pop-
ular measurement technique. In this technique, a finger or earlobe probe is used to obtain the
(HR) by measuring changes in skin absorption of light [1]. There are two types of pulse oxime-
ters: the transmitted light oximeter and the reflected oximeter. These are shown in Fig. 1(a) and
1(b), respectively. These two pulse oximeters are theoretically identical: when the light arrives
and penetrates the human skin, the absorption by various tissues is constant and can be treated
as a DC (direct current) component. Meanwhile, the absorption by oxygenated arterial blood is
variable due to arterial pulsation and can be treated as an AC (alternating current) component,
as shown in Fig. 1(c). The HR is then computed given by measuring the frequency information
of the AC component. The technique is simple and robust, and has been used to measure HR
from smartphone cameras [2, 3].

Fig. 1. Two different pulse oximeters and corresponding principles

Non-contact estimation provides a more convenient [4, 5], though often less reliable, way
to estimate HR. In addition, methods for physiological parameter (including HR) estimation
from video have also been proposed [6–9]. Poh et al [7, 8], for example, recently proposed a
video-based method for HR estimation by applying blind source separation (BSS) using the in-
dependent component analysis (ICA) technique. The ICA method, however, is computationally
intensive (relatively speaking), and is at times ambiguous as to the order of the decomposed
channels. In addition to these, certain smart phone applications, such as the ”whats my heart
rate” app [10], have been developed as non-contact pulse oximeter. However, user experience
shows that the best measurements are given near ideal illumination conditions.

Here we describe a new method for HR estimation from non contact video. Unlike earlier
work, our method is based on the same physical principles as the optical oximeter, and thus
obviates the need for the ICA procedure. The result is a simple, computationally efficient, yet
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robust method for non contact HR estimation. We begin by describing a model for pigment
concentration in human skin, followed by the full description of the method. Finally, we de-
scribe the outcome of experiments conducted on real data acquired using a variety of cameras
under different illumination conditions.

2. Methods

2.1. A simplified model for images of human skin

Human skin is generally considered to be composed of three layers [11]: the epidermis (includ-
ing the stratum corneum), the dermis, and subcutaneous fat tissue. Skin color is highly related
to pigmentation. Most importantly, melanin in the epidermis and hemoglobin in the dermis
play dominant roles in light absorption, thus being responsible for variations in skin color. Past
research has shown that skin absorbance can be expressed as a linear combination of melanin
absorbance and hemoglobin absorbance in log space [12–14]. Making use of the Lambert-Beer
law, we define skin absorbance A at wavelength λ as

A(λ ) = vm(λ )cm + vh(λ )ch +A0(λ ) (1)

where m and h represent melanin and hemoglobin respectively, c is the pigment concentration,
v is the product of pigment extinction coefficient (spectral cross-section) and the mean path
length of photons in the skin layer. We note that the equation above is only valid for when
the arterial oxygen saturation is constant, given that hemoglobin can either be oxygenated or
deoxygenated with different absorption spectra. A0 denotes the baseline skin absorbance and
the residual pigment (e.g. β -carotene) contribution. In addition, we note that absorbance can
often be interpreted as:

A =− log(L/E) (2)

where L and E are the power of transmitted light and incident light respectively. Combing
Eqs.(1) and (2), we then obtain:

L = E exp{−(vmcm + vhch +A0)} (3)

We model pixel intensities corresponding to skin image locations as Pi (i=R, G, B) at position
(x, y) as

Pi(x,y) = k
∫

L(x,y,λ )Si(λ )dλ (4)

where Si is the spectral response function for the camera sensor, and k is a constant for the gain
of the camera. Treating the sensor response function Si as a delta function [13, 15] (assuming
that the side lobes can be neglected) and substituting Eq.(3) into Eq.(4), then taking logarithm
in both sides yields (x and y are omitted) we have:

logPR =−{vm(R)cm + vh(R)ch +A0(R)}+ logkE(R)
logPG =−{vm(G)cm + vh(G)ch +A0(G)}+ logkE(G)

logPB =−{vm(B)cm + vh(B)ch +A0(B)}+ logkE(B).
(5)

2.2. Heart rate computation from skin pixels

We define Q as the pixel channel quotient in log space computed as the subtraction between
any two equations in Eq.(5):

Q = log
PR

PG
=−(∆vmcm +∆vhch)+ log

E(R)
E(G)

(6)
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where ∆vm = vm(R)−vm(G), ∆vh = vh(R)−vh(G), while ∆A0 is eliminated due to close base-
line skin absorption at different wavelengths. We note that our selection of the red channel is
due to the fact that it implicitly represent blood concentration, while the green channel was
chose because it reportedly contains the strings plethysmographic signal among all three chan-
nels [16] . Ignoring effects of motion, and assuming that the skin region is not exposed to UV
radiation for a long time, it is reasonable to assume that melanin concentration in skin locations
of the images should be constant throughout the time series. Defining ∆Q as the subtraction
between consecutive frames we have

∆Qt(x,y) = Qt+1(x,y)−Qt (x,y) =−∆vh∆ch(x,y)+∆ log
E(R,x,y)
E(G,x,y)

(7)

where t denotes the frame number. Since hemoglobin concentration is related to blood concen-
tration, ∆ch contains information related to blood concentration, whose frequency, by definition,
is the pulse HR. Recalling our discussion on how optical oximeter works above, the first item
∆vh∆ch can be interpreted as the AC component while the term ∆log can be interpreted to be
the DC component if the illumination is kept constant. Rewriting Eq.(7) we then have:

∆ch(x,y) = [∆Q(x,y)−a]/b (8)

where a = ∆ log E(R,x,y)
E(G,x,y) , b = −∆vh. The term a tends to be approximately constant if the in-

cident illumination is constant. The same goes for b according to the definition of vh. Given a
video sequence consisting of z frames, the time series signal y(t) for estimating the HR at each
image location is given by:

y(t) = [∆Q1,∆Q2, ...,∆Qz−1] = [log
P̄2

R P̄1
G

P̄2
GP̄1

R
, log

P̄3
R P̄2

G

P̄3
GP̄2

R
, ..., log

P̄z
RP̄z−1

G

P̄z
GP̄z−1

R
] (9)

The superscript of each Pi term denotes frame number t. The estimated HR is then given by the
dominant frequency of y(t) computed by identifying the most prominent peak of the discrete
Fourier transform (DFT) technique. In the experiments we demonstrate in the next section,
the average of all pixels in a selected ROI is used at every frame for computing each term
∆Qk. Finally, to eliminate potential noise and increase the robustness of the algorithm, y(t) is
pre-processed with a bandpass filter (128- point Hamming window, 0.6-3 Hz) prior to DFT
computation.

3. Results

3.1. Data acquisition

Several experiments were performed in order to show the advantages of proposed approach.
Video sequences acquired from different subjects, body locations, as well as different cameras
are used. In total, we have tested the algorithm with three different cameras:

• Nikon CoolPix L610, recording in 24 bit color at 30 frames per second with resolution
of 1280 × 720.

• Smartphone: Huawei U8652. An AndroidTM 2.3 powered device was used to record in
24-bit color at 15 fps with resolution of 800×480. The files were further compressed in
mp4 format.

• Smartphone: IPhone4 equipped with a mobile dermatoscope [17]. The dermatoscope al-
lowed videos to be taken with 20X magnification. In additions, specular reflection is
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minimized using polarization technology. The videos were recorded in 24-bit color at 30
fps with resolution of 1280×720, and saved in MOV format.

In addition, we have utilized a commercially available finger pulse oximeter (SM-110 by
Santamedical [18]) .

3.2. Estimating the heart rate signal

The time traces y(t) are computed as in Eq.(9). Here we demonstrate its estimation in a
controlled environment where we have used an IPhone4 equipped with a mobile dermato-
scope [17] to acquire high quality data. The dermatoscope allowed videos to be taken with
20X magnification. In addition, specular reflection is minimized using polarization technology.
Because of the polarization technology for avoiding specular reflection, movie sequences taken
with the mobile dermatoscope provide near ideal conditions for the algorithm to be applied.

Fig. 2. Time trace of y(t) during the recorded video. (Left Column) a screenshot with
manually selected ROI shown in red. (Middle Column) Proposed algorithm based heart
rate signal y(t) and corresponding frequency domain. (Right Column) Average intensity
based heart rate signal y(t) and corresponding frequency domain. We note that, for better
understanding the properties of both methods, band pass filtering has not been applied to
these examples. In addition, both methods use signals averaged from the same ROI.
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Table 1. Comparisons of Heart rate estimation algorithms
Algorithm HR Signal Computation STI

[9] [2] Average Intensity Real Time YES
[6] Green Channel Real Time YES

[7] [8] ICA(R,G,B) Requires ICA Not Mentioned

Proposed log P̄i
RP̄i−1

G
P̄i

GP̄i−1
R

Real Time Theoretically Not

STI:Sensitive to Illumination

Fig. 3. HR estimation under normal illumination. Different skin locations with unfixed
distance were recorded while finger optical oximeter is attached to provide real value as
reference. One or two sequential clips were extracted to test the accuracy and sensitivity of
the proposed algorithm.
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Figure 2(A) shows that the time trace signal y(t) reproduces the profile of the arterial pulsa-
tion. The corresponding dominant frequency shown in the Fourier spectrum matches the value
obtained with the pulse oximeter, used to record the HR at the same time, at 1.172×60 = 70.3.
In this case, identical peak (1.172) can be obviously found in frequency domain of both y(t).
However, in Fig. 2(B) and 2(C), which are taken with a Nikon CoolPix L610 (see details in
previous section), an obvious frequency peak can only be found in time-trace of proposed al-
gorithm, which visually shows much reasonable y(t) as well. For comparison purposes, the last
two columns in this figure also compute the time traces utilizing the plethysmographic signal
computed from the green channel of the video sequence, as described in [6], [9]), for example.
As can be seen, this technique can break down when processing data acquired in non ideal
conditions. Table 1 shows a comparison of the capability of the method we propose with other
similar methods in the literature.

3.3. HR estimation under ambient illumination

Twenty one video recordings with duration from 45s to 90s were recorded both indoors and
outdoors under normal ambient illumination to test performance of the proposed algorithm.
The oximeter-based HR measurement was also taken for each instance, at the same time each
video was taken. For videos recorded by a digital camera (examples A-E in Fig. 3), the files
were divided into non overlapping segments: frame 1 to 500 and from frame 500 to 1000 (from
frame 1000 to 1600 in example E). HR was estimated in each of the segments. For videos
recorded by the smart phone (examples F in Fig. 3), only frames 1 to 500 were used due to the
fact these movies were shorter in duration. Experiments show the proposed algorithm works
well both indoors (examples B, C, D, E, F) and outdoors (examples A, G) under normal ambient
illumination. Table 2 contains a summary of the results. We compare our algorithm (Est2 in this
table) to the plethysmographic signal computed from the green channel or average intensity of
the video sequence, as described in [6], [9]) (denoted as Est1 in this table). For each of the
methods the average accuracy between the estimate and the reference measurement, computed
as 1−∑abs(Est−Re f )/Re f

NumO f Examples was computed. We note that, to ensure a fair comparison, all accuracy
results reported on this table were obtained after processing the signals with the same band pass
filtering operation described above. Results yielded 81% accuracy for the currently available
methods, while the proposed algorithm yielded an average accuracy of 98% (p = 0.001). The
data was acquired in varied situations, from a variety of locations including different skin colors,
different skin locations and different recording distance (examples A, D, F, G).
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Table 2. summary of experiments under ambient illumination.

Examples Env Dev Loc Frames Est1 Est2 Ref

Fig3A outdoor DC face 1:500 52.7 80.88 88
500:1000 42 84.36 85

Fig3B indoor DC palm 1:500 56.25 77.34 77
500:1000 52.7 77.34 80

Fig3C indoor DC face 1:500 70.3 66.78 66
500:1000 43 63.3 63

Fig3D indoor DC face 1:500 52.7 52.7 52
500:1000 49.2 49.2 49

Fig3E indoor DC arm 1:500 63.3 63.3 63
500:1000 63.3 65 66

Fig3F indoor SP palm 1:500 41.3 67.5 69
Fig3G outdoor DC face 1:500 52.7 73.8 72

8 indoor SP palm 1:500 48.75 57 61

9 outdoor DC face 1:500 49.2 59.76 58
500:1000 70.2 61.5 62

10 indoor SP palm 1:500 67.5 67.5 66

11 indoor DC palm 1:500 91.38 88.74 89
500:1000 91.38 92.34 91

12 indoor SP palm 1:500 67.5 68.34 70
13 indoor SP palm 1:500 54.4 71.7 72
14 indoor SP arm 1:500 71.5 78 75
15 outdoor DC face 1:410 63.3 119 105

16 indoor DC face 1:500 52.7 67.44 68
500:1000 56.25 74.58 75

Env=Environment, Dev=Device, Loc=skin Location. ’DC’ and ’SP’ in device column
represent Digital Camera and Smart Phone respectively. We clarify that these figures are

computed for a single replicate of each movie.

Fig. 4. HR estimation under bad illumination. Examples both under insufficient and over
sufficient illumination are selected. Two sequential clips with 500 frames and 700 frames
are respectively extracted from every video for analysis
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Table 3. summary of experiments under insufficient illumination.

Examples Env Dev Loc Frames Est1 Est2 Ref

Fig4A indoor DC face 1:500 49.21 49.21 50
500:1200 51 51 53

Fig4B indoor DC face 1:500 45.7 64 60
500:1200 56.25 60.3 58

Fig4C outdoor DC face 1:500 50 80.88 80
500:1200 45.7 71 74

4 outdoor DC face 1:500 37 71.1 73
500:1200 60 74.64 76

5 indoor DC face 1:500 49.2 49.2 52
500:1200 50.9 51 57

3.4. HR estimation under insufficient illumination

As our derivation shows, the algorithm is independent of constant illumination (see Eq. 7), and
thus HR estimation under what would normally be considered as insufficient illumination still
may be possible. Figure 4 shows examples of insufficient illumination (example B) and as well
as sufficient illumination (example A and C). The first row in Fig. 4 shows screenshots from
test videos. The second row, as well as the fourth row are signal y(t) and their corresponding
DFTs. The real HR for reference and estimated HR are provided in the third row and the fifth
row. High accuracy can still be obtained even with presence of highlights due to over sufficient
illumination according to examples in Fig. 4. However we note that insufficient illumination
can introduce some ambiguity in frequency estimation (two peaks are visible in the DFT result
of part B). In this case, however, it is easy to disced the right peak given that the second peak
refers to a HR of over 142 beats per minute. However, the proposed algorithm is still capable of
estimating heart rates with accuracy around 96%, which is better than the accuracy of around
80% achieved by the alternative method (P = 0.0175). Table 3 shows the accuracy results under
insufficient illumination. Again, to ensure a fair comparison, all results shown in this table were
computed utilizing the same band pass filtering operation described earlier.

Fig. 5. HR estimation under variable illumination. The video was recorded by smart phone
and contains 653 frames. The real HR is 56 and the estimated is 0.7812×60=46.87
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Fig. 6. HR estimation under variable illumination. The video was recorded by digital cam-
era and contains 1455 frames. The real HR is 55 and the estimated is 0.8203×60=49.2

3.5. HR estimation under variable illumination

The reader will recall that in our derivation we have assumed constant illumination so that the
DC component of the derived signal could be ignored. However, if illumination changes occur
at a much lower frequency than the movie sampling rate, HR estimation using the method
we propose may still be possible. We have designed special experiments to test the algorithm
performance under variable illumination. Videos were recorded in a room with variable ambient
illumination which was manually changed during recording. Obvious intensity changes can be
observed both in frames extracted from videos and uneven signals y(t) in Fig. 5 and Fig. 6. The
estimation accuracy is obviously affected and drops.

3.6. Statistical analysis

We use Bland Altman plots [19] to graphically evaluate the performance of proposed algo-
rithm. The differences between estimated and reference data were plotted against the averages
of both measures. The mean d̄ and standard deviation Sd of the differences and 95% confidence
intervals (d̄ ± 1.96Sd) were calculated to show the agreement of two measures. 34 pairs of
measurements from 21 videos with various illuminations are plotted in Fig. 7. For the proposed
algorithm, almost all the data stays in the range of 95% agreement overlap with much smaller
standard deviation, despite differences in the imaging device, video format, resolution and envi-
ronment. In addition, the correlation coefficient of proposed algorithm is 0.9744, which shows
high agreement between estimation and reference. While using the current alternative intensity-
based method the correlation coefficient of two measures is only 0.2986.

Fig. 7. Bland-Altman plots (x-axis:average heat rate by estimation value and reference
value. y-axis: difference of estimation value and reference value) is used to demonstrate
the agreement between estimation and reference data. (Left)Plots of proposed algorithm.
(Right)Plots of intensity based algorithms.
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3.7. Effect of ROI selection

In addition to the experiments testing how well the algorithm works under different illumination
conditions, we have also conducted experiments to study how well the method can perform
under changes in the initially selected ROIs. Results are shown in Fig. 8. Three different ROIs
(with some amount of overlap) were selected to independently calculate the heart rate and high
agreement can be observed in dominant frequency. The same observation was made for several
of the videos shown here (data not shown for brevity).

4. Discussion

We have described a new algorithm for HR estimation from common place video devices by
utilizing the assumption that skin color is mainly a function of the concentration of melanin and
hemoglobin, which account for the absorption of light in skin. Hemoglobin exists in blood and
its amount is also a function of the heart beat. We utilized this concept to build a mathematical
representation of HR signals while treating hemoglobin absorption as an AC component and the
remaining parts (including melanin and baseline absorption) as a DC component. The approach
was shown to compare favorably with currently existing alternatives.

Fig. 8. Testing consistency of the proposed algorithm. Three different ROIs were selected
as inputs to separately estimate the heart rate. The results of three FFTs are exactly identical
with accuracy 97%(reference:58, estimation:0.9375×60=56.25)

In examining equation (6), the reader will note that it results from the subtraction of the red
and green components of equation (5). While intuitively one may expect that this subtraction
can be detrimental to the frequency estimation process if these are in phase. We have also
attempted to utilize the individual green or red channels (without subtraction) for this frequency
estimation problem (data not shown for brevity). In our experience, however, the subtraction
(log ratio) yields a more robust method. More theoretical justification for this often observed
improved performance can be found in [20], for example.
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In our method, the user is required to keep still during the recording. Slight motion has neg-
ligible impact on HR estimation, whereas considerable motion can lead to inaccurate results. In
this paper, we have not studied the effects of motion explicitly, as the issue has been addressed
in [7]. In addition, we note that motion tracking methods are available to mitigate such effects.

Finally, we also show an example when the method can fail to estimate HR properly. Figure
9 shows such an example. We hypothesize that the reason for the failure in this case is the fact
that the selected skin regions contains several confounding factors, including highlight as well
as facial hair. Finally, the skin pigmentation of the subject may also have contributed to the
failure of the method.

Fig. 9. Failure example. The skin regions are dominated by noise (strong highlight, hair
and beards).

5. Summary and conclusion

In this paper, a robust and efficient algorithm is proposed to estimate HR from video se-
quences. Inspired by the principles of an optical oximeter, the heart rate is computed from
the AC component of a pre-processed signal which contains information regarding the absorp-
tion of hemoglboin in blood. At present, the method is semi automated. It can be rendered fully
automatic by combining it with already existing facial tracking algorithms, for example. The
method is also efficient, with real time computation possible. In this paper we have sought to
quantify its robustness with respect to several illumination conditions. In summary, the method
was found to produce results in high agreement with that of a commercially available optical
pulse oximeter.
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