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Abstract: Acute circulatory disorders are commonly associated with 
systemic inflammatory response (SIRS) and sepsis. During sepsis, 
microcirculatory perfusion is compromised leading to tissue hypoperfusion 
and potentially to multiple organ dysfunction. In the present study, acute 
lung injury (ALI), one of the major causes leading to SIRS and sepsis, was 
experimentally induced in six female pigs. To investigate the progress of 
body temperature distribution, measurements with a long-wave infrared 
camera were carried out. Temperature centralization was evidenced during 
ALI owing to impairments of peripheral perfusion. In addition, statistical 
analysis demonstrated strong correlations between (a) standard deviation of 
the skin temperature distribution (SD) and shock index (SI) (p<0.0005), (b) 
SD and mean arterial pressure (MAP) (p<0.0005), (c) ΔT/Δx and SI 
(p<0.0005), as well as between (d) ΔT/Δx and MAP (p<0.0005). For 
clarification purposes, ΔT/Δx is a parameter implemented to quantify the 
spatial temperature gradient. This pioneering study created promising 
results. It demonstrated the capacity of infrared thermography as well as of 
the indexes, SD and ΔT/Δx, to detect impairments in both circulation and 
tissue perfusion. 
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1. Introduction 

Acute circulatory disorders belong to the major causes of death. In critical care medicine, this 
complication often takes its course starting with systemic inflammatory response syndrome 
(SIRS) or sepsis. 

Sepsis is a severe disease characterized by the presence of both infection and SIRS. It 
might develop into severe sepsis or septic shock. While the former corresponds to an 
aggravated sepsis by acute organ dysfunction, the latter corresponds to a severe sepsis plus 
hypotension, which is not reversed with fluid resuscitation [1–3]. Although there are several 
diseases leading to SIRS and sepsis, acute lung injury (ALI) and pulmonary infection are still 
considered the major causes of them [4]. Besides, several pathophysiological similarities and 
links have been stated by diverse studies [5]. 

Severe sepsis and septic shock are the main factors of morbidity and mortality in both, 
intensive care units (ICUs) [6–8], and neonatal intensive care units (NICUs) [9]. According to 
the literature, this pathology presents a wide range of incidence and, consecutively, a great 
impact concerning healthcare resources and expenditure [10,11]. In the United States, 
751,000 cases of severe sepsis are considered to occur annually with a mortality that reaches 
28.6% [11–13]. This astonishing number corresponds to a national estimation of the year 
1995 presented by Angus and co-authors (2001) [13]. Moreover, a study carried out by Lawn 
and associates [14] indicated severe infections (including sepsis/pneumonia, tetanus, and 
diarrhea) as the second major cause of death in neonates (0-27 days). According to this 
publication, of 3.072 million deaths in 2010, approximately 27% were attributed to these 
complications, i.e. to severe infections [14,15]. 

Cavazzoni et al. [16] affirm that during sepsis, cardiovascular changes arise. This 
phenomenon may lead to tissue hypoperfusion, a determining factor in the development of 
multiple organ dysfunction [16–18]. Thus, to improve the outcome of the patients through 
appropriate clinical interventions (e.g. antibiotic therapy and organ support) an early 
diagnosis must be performed [1,19,20]. In an outstanding publication, Kumar et al. [21] 
evidenced an increase of 7.6% in mortality rate for every hour by which antimicrobials were 
tardily administered. However, early identification and application of appropriate therapy is a 
constant challenge for clinicians, since signs and symptoms of sepsis are nonspecific [21]. 

In 1980 Love [22] claimed that thermal emission of a living body is associated with its so 
called metabolic heat, which is, in turn, proportional to regional perfusion. Therefore, body 
temperature is a vital physiological parameter which supports defining health and disease, so 
that, knowledge of the skin’s temperature progress and its distribution might be highly 
important in case of illness. This parameter can give information about the degree and 
severity of an attack as well as indicate the progress of a disease (e.g., relapses and 
ameliorations) and therapeutic efficiency [23,24]. 

Body temperature is extremely dependent on the heat-exchange processes between skin, 
inner tissues, and vasculature, as well as on air-tissue interface, metabolic activity and 
sympathetic and parasympathetic activity. For this reason, its distribution may provide 
evidence of the centralization’s progress, which means restriction of blood flow to vital 
organs (e.g., the brain, heart, lung, kidneys, spleen, and liver) at the expense of peripheral 
organs (e.g. skin and gut) [25,26]. 
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Medical infrared thermography is a remote, non-invasive and non-contact monitoring 
technique that permits to investigate the physiological functions associated with skin 
temperature control. Since skin temperature distribution depends on diverse physiologic 
processes (previously referred), infrared thermography (IRT) has become a promising 
imaging technology for medical applications [27–33]. Moreover, it is important to emphasize 
that IRT is a passive method, i.e. just records the radiation naturally emitted from the skin, 
and does not utilize any harmful radiation [27]. 

The current study investigates whether IRT is capable (a) of detecting acute impairments 
of body circulation and perfusion as well as (b) of monitoring the progress of temperature 
centralization in a porcine animal model of ALI. Therefore, the main goal of this paper is to 
analyze the capability of two indexes (standard deviation and ΔT/Δx, a spatial temperature 
gradient) to quantify peripheral temperature gradients and, consecutively, peripheral 
perfusion. 

2. Material and methods 

2.1 Animal trial – experimental protocol 

The current study corresponds to an amendment of the experimental protocol that was 
approved by the governmental institution “Landesamt für Natur, Umwelt und 
Verbraucherschutz NRW” (Germany; 84-02.04.2012.A173). It was performed according to 
the declaration of Helsinki and the guiding principles in the care and use of animals. 

For these supplementary measurements, six of the study pigs, weighing 31.7-39.9 kg 
(approximately 12-14 weeks old) were randomly selected and numbered from 1 to 6. A 
veterinarian confirmed the absence of pre-existing diseases at the beginning of the study. 

The animals were anesthetized, intubated and placed in supine position, as depicted in Fig. 
1. To maintain the anesthesia, infusions of thiopental (7-12 mg kg−1 h−1) and fentanyl (6-10 
µg kg−1 h−1) were continuously administered. Besides that, a 5 ml kg−1 h−1 Ringer solution for 
fluid replacement was continuously administrated and adapted to current needs of the 
animals. For volume balancing, a transurethral bladder catheter was inserted. 

Approximately one hour after initiation of anesthesia and baseline measurements, 
experimental ALI was induced. This was performed by repeated surfactant washout [34]. 
Circa two hours after this step was completed, dependent on the number of repetitions needed 
to induce ALI, the first measurement under ALI, named ALI 1, took place. Controlled 
mechanical ventilation was set by using a variable PEEP, which was adjusted according 
physiological responses, and an inspiration:expiration ratio of 1:1. Subsequently, regular 
acquisition of vital data, blood gas analysis and further measurements were performed as well 
as infrared data recording. 

At the end of the protocol, i.e. twenty-four hours after the measurement point ALI 1, the 
animals were euthanized by applying a deep analog sedation (Fig. 2). 
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Fig. 1. Photography of the experimental setup (1: anesthetized animal; 2: infrared camera; 3: 
laptop; 4: patient monitoring system (Philips IntelliVue MP 70, Philips Medical Systems, 
Eindhoven, Netherlands); 5: Ventilator (Siemens 300A Servo Ventilator, Siemens Healthcare, 
Munich, Germany) and 6: Syringe pumps). 

 

Fig. 2. Chronogram representing all the measurement time points (B: Baseline; PL: Post-
lavage; ALI: acute lung injury). 

2.2 Infrared data acquisition and experimental setup 

Infrared (IR) thermograms were collected in this animal trial by using a long wave infrared 
(LWIR) camera, VarioCAM® hr head (InfraTec GmbH, Dresden, Germany), pre-calibrated, 
with a thermal sensitivity of 0.03 °C at 30 °C (Fig. 3). It detects IR wavelengths in the 
spectral range of 7.5-14 µm and presents a spatial resolution of 384 x 288 pixels. 
Additionally, the current device allows a capturing rate of 50 frames per second (fps) via 
FireWire (IEEE1394). 

For image acquisition, the camera was sat atop a tripod and connected to a standard laptop 
computer via FireWire (IEEE1394) (Fig. 3). Subsequently, the tripod was placed 
approximately 1.5-2 m away from the examination table and its angle regulated 
(approximately 40°) (Fig. 1). Body parts such as head, superior limbs and trunk were 
predefined as a whole region of interest (ROI). Thus, the camera was positioned so that they 
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could be embraced in the thermograms. In addition to that, the position of the tripod and the 
angle of the camera were maintained constant, to avoid differences between thermograms. 

In order to evaluate the evolution of skin temperature distribution, measurements with this 
IR camera were performed. They were carried out (1) at the beginning of the animal trial 
(baseline measurement - B), (2) after ALI was induced (post-lavage - PL), (3) at measuring 
point ALI 1, and subsequently, (4) at two-hourly intervals (ALI 3 to 25) (Fig. 2). For 
subsequent analysis of skin temperature distribution only one representative frame for each 
measurement time point was used. 

 

Fig. 3. Schematic of the experimental setup used in the animal trial. 

2.3 Vital data acquisition 

In addition to temperature monitoring, assessment of vital parameters such as heart rate (HR), 
blood pressure (systolic, mean and diastolic blood pressure), and saturation of peripheral 
oxygen (SpO2) was performed. For this purpose, a patient monitoring system (Philips 
IntelliVue MP 70, Philips Medical Systems, Eindhoven, Netherlands) was used (Fig. 1). 
Furthermore, blood samples were collected and arterial blood gas analysis (BGA) (ABL 510, 
Radiometer, Copenhagen, Denmark) carried out to determine the amount of oxygen and 
carbon dioxide dissolved in arterial blood (PaO2 and PaCO2) as well as the current pH. 

2.4 Thermal images processing 

Besides the anesthetized animals, appearance of other objects (e.g. monitoring devices, 
operating table, and blankets) in the thermograms was in some cases unavoidable. Therefore, 
image segmentation was necessary. For this reason, the method developed by Nobuyuki Otsu 
[35] called a clustering-based method, which permits to adaptively determine an optimal 
intensity threshold (in this case an optimal temperature threshold), was adopted [31]. It 
considers that an image is composed of two classes of pixels - foreground and background. 
Hence, using discriminant analysis, the algorithm estimates an optimal threshold value (T*) 
separating those classes by minimizing the within-class variance - 2

wcvσ , or equivalently, by 

maximizing the between-class variance - 2
bcvσ : 

 }{* 2

0
arg max ( ) .bcv

T L
T Tσ

≤ ≤
=  (1) 
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The between-class variance is given by 

 2 2 2( ) ( ) ( ),bcv wcvT T Tσ σ σ= −  (2) 

where 2σ  represents the total variance and T a threshold value. The within-class variance 

corresponds, on the other hand, to the weighted sum of the variances of each cluster [ 2
Bσ : 

variance of the pixels in the background; 2
Fσ : variance of the pixels in the foreground] as 

defined by: 

 2 2 2( ) ( ) ( ) ( ) ( ),wcv B B F FT T T T Tσ ω σ ω σ= +  (3) 

where the probabilities of the two classes - background and foreground - are 

 
1

0
( ) ( ),

T

B i
T p iω −

=
=  (4) 

 
1

( ) ( ).
L

F i T
T p iω −

=
=  (5) 

It is valuable to note, that in our notation the temperature ranges from 0 to L-1, where L 
represents a distinct temperature. The probability of occurrence of temperature i is 
formulated, in turn, as 

 ( ) ( ) / .p i n i N=  (6) 

In this equation, n(i) corresponds to the number of pixels with temperature i and N represents 
the total number of pixels in a certain image. 

The between-class variance equation [Eq. (1)] previously introduced can be further 
computed as 

 [ ] [ ]2 22 ( ) ( ) ( ) ( ) ( ) ,bcv B B F FT T T T Tσ ω μ μ ω μ μ= − + −  (7) 

where the mean temperature values of the entire image [Eq. (8)] as well as of both classes 
[(Eq. (9) and Eq. (10)] are defined as: 

 
1

0
( ) ( ),

L

i
T ip iμ −

=
=  (8) 

 
1

0
( ) ( ) ( ),

T

B Bi
T ip i Tμ ω−

=
=  (9) 

 
1

( ) ( ) ( ).
L

F Fi T
T ip i Tμ ω−

=
=  (10) 

In order to fill the holes (defined as set of background pixels that does not contact with the 
background) in the binary image, preprocessing was required. After segmentation, several 
small regions, which did not correspond to foreground, but to the background, were not 
efficiently extracted, since their temperature is higher than the adaptively estimated threshold. 
Therefore, it was considered that only the biggest region corresponds to the ROI. The 
preprocessing algorithms previously described were implemented in MATLAB (MATLAB 
2013a, The MathWorks Inc., Natick, MA). 

2.5 Statistical analysis 

In order to evaluate the skin temperature distribution, the index ΔT/Δx, which can be 
considered as measure of the spatial temperature profile/gradient, was examined. It 
corresponds to the spatial change in temperature ΔT with distance Δx between the body 
center and the most peripheral collateral point visible in the thermogram. Therefore, just one 
hemisphere was considered. As the central reference point, the hottest point next to the 
coolish sternal region was chosen with the shortest distance to the peripheral point (paw) (Fig. 
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4). It should be noted that similar approaches have already been integrated in image 
processing software. The temperature gradient as well as the standard deviation (SD) of the 
skin temperature distribution were correlated with mean arterial pressure (MAP), shock index 
(SI), PaO2 and PaO2/FiO2 as indications for circulatory impairments and oxygenation, 
respectively. SI, defined as the ratio of heart rate to systolic blood pressure, is a marker of 
shock. According to some research groups, this parameter is an effective marker for the initial 
assessment of sepsis [36,37] and presents a great physiologic significance in acute circulatory 
failure [38]. The parameter PaO2/FiO2, also denominated PF ratio, corresponds to the ratio of 
arterial oxygen concentration to the fraction of inspired oxygen. In Critical Care medicine and 
Anesthesiology, it permits to describe the severity of pulmonary dysfunction. 

Statistical analysis was performed in SPSS version 19.0 (SPSS Inc., IBM Business 
Analytics Software, Armonk, New York, USA). To calculate correlation between variables, 
Pearson’s method was applied. Moreover, normal distribution of data was determined by 
carrying out the Kolmogorov-Smirnov test. Since normal distribution was corroborated, one-
way analysis of variance (ANOVA) was used for the assessment of statistical differences 
between time points. Additionally, histogram analysis was also effectuated. To describe shape 
characteristics of a distribution, skewness and kurtosis were studied. A p-value of <0.05 was 
considered as level of significance. Outliers are marked in boxplots but not removed from 
statistical analysis. 

 

Fig. 4. (a) Thermogram with temperature profile. (b) Graphic representation of the temperature 
profile (Dash-dot line - blue) as well as of the fitting curve (solid line - gray). ΔT/Δx 
correspond to the slope of the fitting curve (ΔT/Δx = 0.1160). 

3. Results 

In the current study, six young female pigs weighing 35.18 ± 3.63 kg (mean ± SD), were 
studied. Owing to consequences of acute respiratory distress syndrome (ARDS) (severe 
circulatory instability with the need of high amounts of catecholamines and severe hypoxia), 
three animals died before the end of the animal trial but all hitherto data were analyzed (one 
pig died at ALI 9 and the remaining two at ALI 17). All results presented below are expressed 
as mean ± SD. 

As previously referred, image pre-processing was required to define the ROI (head, 
superior limbs and trunk). In order to show the performance of the pre-processing algorithm 
as well as to illustrate the development of the skin temperature distribution, six thermograms 
were selected. They correspond to the same animal and represent six different time points 
(baseline, ALI 1, ALI 7, ALI 13, ALI 19, and ALI 25). Figure 5 depicts the original 
thermograms as well as the thermograms after pre-processing. In addition, the same figure 
includes the histograms corresponding to the pre-processed thermal images, which contain the 
ROI (head, superior limbs and trunk). Major characteristics of the acquired thermograms are: 
occurrence of spotty markings after ALI induction, varying mean temperature and distribution 
as well as increasing temperature gradients from the periphery to the center. In order to study 
the distribution shape of the histograms, both kurtosis and skewness were investigated (Fig. 
6). 
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Figure 7 represents, in turn, the relationship between SI, MAP, SD and ΔT/Δx over the 
fifteen measurement time points. This graphic illustration exhibits a similar tendency between 
SD and ΔT/Δx. Although it is inversely proportional, MAP presents an analogous behavior to 
the previous parameters (SD and ΔT/Δx). Regarding SI, it is important to emphasize that 
there is no significant difference between groups, i.e. between each measurement time point. 
Nevertheless, the course of SI is similar to the one of SD and ΔT/Δx, which is particularly 
noticeable between ALI 11 and ALI 19, so that corresponding correlations are strong (Fig. 7). 

 

Fig. 5. Original thermograms at six differing points of time [(a) Baseline, (d) ALI 1, (g) ALI 7, 
(j) ALI 13, (m) ALI 19, (p) ALI 25]. Thermograms representing ROIs after pre-processing [(b) 
Baseline, (e) ALI 1, (h) ALI 7, (k) ALI 13, (n) ALI 19, (q) ALI 25]. Histograms representing 
the relative skin temperature distribution of the ROIs (head, superior limbs and trunk) [(c) 
Baseline, (f) ALI 1, (i) ALI 7, (l) ALI 13, (o) ALI 19, (r) ALI 25]. Regarding the white frames 
(e, n, q), they identify regions that were not properly extracted. The blue frame (q) defines a 
region that was wrongly considered as background. 
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Fig. 6. Boxplots describing the course of (a) Skewness and (b) Kurtosis over the measurement 
points. The outliers are identified with the number of the corresponding animal (“o” and “*” 
stand for mild (between 1.5 and 3x interquartile range) and extreme (>3x interquartile range) 
outliers, respectively). 

 

Fig. 7. Boxplots describing the course of (a) Shock index (SI), (b) mean arterial pressure 
(MAP), (c) standard deviation (SD) and (d) ΔT/Δx over the fifteen measurement points [B 
(baseline), PL (post-lavage), ALI 1, ALI 3, ALI 5, ALI 7, ALI 9, ALI 11, ALI 13, ALI 15, ALI 
17, ALI 19, ALI 21, ALI 23 and ALI 25]. Difference between groups are significant for ΔT/Δx 
(p<0.0005) and SD (p<0.0005). The outliers are identified with the number of the 
corresponding animal (“o” and “*” stand for mild (between 1.5 and 3x interquartile range) and 
extreme (>3x interquartile range) outliers, respectively). 

With the purpose of illustrating the progress of pulmonary dysfunction and oxygen levels 
in blood, two further variables, PaO2 and PF ratio, were analyzed (Fig. 8). 
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Fig. 8. Boxplots describing the course of (a) PF ratio and (b) PaO2 over the fifteen 
measurement points. Difference between groups are significant for PaO2 (p=0.006) and PF 
ratio (p=0.002). The outliers are identified with the number of the corresponding animal (“o” 
and “*” stand for mild (between 1.5 and 3x interquartile range) and extreme (>3x interquartile 
range) outliers, respectively). 

Regarding statistical analysis, the one-way ANOVA indicated significant differences for 
four parameters, SD [F(14,53) = 7.385, p<0.0005], ΔT/Δx [F(14,53) = 3.687, p<0.0005], PaO2 
[F(14,53) = 2.622, p = 0.006], PF ratio [F(14,53) = 2.925, p = 0.002]. In contrast, there were 
no statistically significant differences for MAP [F(14,53) = 1.560, p = 0.122] and SI [F(14,53) 
= 1.031, p = 0.438]. 

A Pearson product-moment correlation was used to determine the relationship between 
variables, which were in each case normally distributed. Correlation coefficients and levels of 
significance are described in Table 1. Among others, this method demonstrated strong 
significant correlations between the two proposed parameters (SD and ΔT/Δx) and SI and 
MAP. 

Table 1. Pearson product moment correlations between SD, ΔT/Δx, SI and SI, MAP, PaO2 
and PF ratio 

 Standard Deviation ΔT/Δx Shock Index 

SI 
Pearson Correlation 0.593§,* 0.561§,* - 

p-value <0.0005 <0.0005 - 

MAP 
Pearson Correlation −0.587§,* −0.534§,* −0.519§,* 
p-value <0.0005 <0.0005 <0.0005 

PaO2 
Pearson Correlation −0.344§,** −0.334§,** −0.326§,** 
p-value 0.004 0.005 0. 007 

PF ratio 
Pearson Correlation −0.315§,** −0.319§,** −0.326§,** 
p-value 0.009 0.008 0. 007 

§ Correlation is significant at the 0.01 level (two-tailed).
* Strong correlation [0.40 < |r| < 0.70] - According to Weinberg et al. [39]. 
** Moderate Correlation [0.30 < |r| < 0.39] - According to Weinberg et al. [39].

4. Discussion 

The present study aims to evaluate whether IRT is capable of remotely monitoring 
disturbances in circulation and perfusion. For this purpose, six pigs with experimentally 
induced ALI were analyzed. As referred, ALI is a very common disease in critical care and is 
one of the leading causes of SIRS and sepsis. 

Image processing of the thermograms was imperative in order to remove the background. 
The performance and quality of background extraction was assessed visually. Therefore, 
according to our pre-established criteria, a satisfying background extraction must accurately 
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define the desired ROI, i.e. the upper body of the animals (head, superior limbs and trunk). 
The adaptive threshold method developed by Otsu [35] has demonstrated a good performance 
as illustrated by the examples in Fig. 5. Despite of good performance, some small regions 
were not properly extracted. This may be due to contrast/temperature similarity between the 
object (anesthetized animal) and the background. Figure 5 depicts a few examples marked 
with white frames. As referred, after segmentation, several regions were erroneously 
considered as foreground. Hence, it was assumed that just the biggest region corresponds to 
the ROI. Due to this assumption the region corresponding to the animal’s paw, marked with a 
blue frame in Fig. 5(q), was removed. Despite the satisfying results achieved, in subsequent 
studies performance of several segmentation algorithms should be examined due to their high 
dependency on the clinical application. 

The same figure (Fig. 5) displays the development of the skin temperature distribution. 
Firstly, at the baseline, the body temperature is uniformly distributed. However, thereafter it 
tends to centralize (the temperature profile is composed by a wide range of temperatures, 
decreasing from the center to the periphery) due to peripheral hypoperfusion, which results 
from the further progress of the disease’s severity. The six histograms together with the SDs 
and ΔT/Δx (Fig. 7(c) and 7(d)) allow to sustain the previous affirmations. 

Moreover, differences of shape of the probability distributions between baseline and ALI 
are evidenced. At baseline, the histograms tend to present both a higher negative asymmetry 
(left-skewed distribution - extreme scores are on the higher end of the histogram) and a higher 
kurtosis distribution (sharper and longer peak). A sharper and longer peak means that the 
distribution is more clustered around the mean, thus, it will have a relatively smaller SD. In 
other words, the percentage of pixels around the mean temperature is higher, which leads to a 
more homogeneously distributed body temperature. On the other hand, during ALI the 
histograms present smaller negative asymmetries (the histograms tend to become more 
symmetrical) as well as lower kurtosis distributions (Fig. 5 and Fig. 6). A lower peak means 
that the distribution is less clustered around the mean, which signifies higher standard 
deviations and, consecutively, a heterogeneously distributed body temperature (e.g. due to 
temperature centralization). 

As previously highlighted, SI, which is a good measure of hemodynamic in-/stability, 
presents a high significance in acute circulatory failure. Due to its clinical relevancy, possible 
correlations between SI and SD as well as SI and ΔT/Δx were investigated. As alluded, SD 
and ΔT/Δx represent the skin temperature distribution and gradient, respectively. The Pearson 
product-moment correlation have demonstrated a strong correlation between SD and SI as 
well as between ΔT/Δx and SI. Furthermore, the same method evidenced a strong negative 
correlation between both parameters, SD, ΔT/Δx, and MAP. As widely known, sepsis and 
shock are characterized by an impaired blood flow to body tissues (hypoperfusion), which 
leads to temperature centralization [40], and commonly include hypotension [16]. Figure 7 
demonstrates that the progress of the disease severity is accompanied by an increase in SD, 
ΔT/Δx and SI and a decrease in MAP. 

In addition, this statistical method pointed out a moderate negative correlation between 
SD, ΔT/Δx, SI and both PaO2 and PF. Besides hypoperfusion, circulatory disorders contribute 
also for tissue hypoxia (insufficient levels of oxygen in blood or tissue; decreased PaO2), since 
there is an inability to meet the oxygen demands of the tissues. A decrease of the PF ratio is 
also expected owing to an increase of the severity of the pulmonary dysfunction (Fig. 8). In 
Fig. 8 an increase of PF ratio after ALI 17 is observed. This indicates an improvement on gas 
exchange mechanisms of the lung. As expected, it is accompanied with decreases in SI, SD 
and ΔT/Δx. 

Unexpectedly, one of the animals (animal number 4) suffered from an arterial peripheral 
thrombosis at t = ALI 3. This phenomenon has led to a worsening of its clinical situation. 
Between ALI 3 and ALI 11 vital parameters such as HR, MAP, PaO2 and PF ratio deviated 
from the other animals. Even the measures of the new parameters, SD and ΔT/Δx, turned out 
to be outliers (Fig. 7). 
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According to the one-way ANOVA, there was statistically significant difference between 
measurement time points for SD, ΔT/Δx, PaO2 and PF ratio. Regarding SI and MAP, no 
significant differences were denoted. The previous factors support the hypothesis that SD and 
ΔT/Δx might be capable of better representing the course of the disease’s severity (Fig. 7). 

In the present study, the parameters SD and ΔT/Δx were compared with the wide-known 
SI. Whereas SI, SI x age, systolic blood pressure and heart rate are relatively easy to assess 
and in particular determinable in our study, other measures need more invasive equipping 
such as central venous catheter, arterial catheter or even a pulmonary artery catheter. Hence, 
more sophisticated parameters like stroke volume variation, intrathoracic blood volume index 
or cardiac index are not available in our trial just as in most patients in intensive care. 
Besides, even invasively derived parameters such as mentioned before, do not carry a 
guarantee to adequately monitor course of severity of circulation disorders. The 
appropriateness is rather dependent on the root case for the circulatory disorder, e.g. 
hemorrhagic shock, cardiogenic shock, toxic shock or even sepsis. 

Although the encouraging results, the study has a few limitations that need to be 
addressed. First, no control group was considered. Even though, a uniform temperature 
distribution with moderate variance would be expected throughout the animal trial since an 
adapted and balanced volume restitution was performed. Nevertheless, for further studies a 
control group should be considered. Second, no comparative method or technique was used to 
validate our results, since there is no gold standard available measuring similar properties. 
Third, it must be taken into account that there are large inter-individual varieties concerning 
the course of the disease. Since this a common problem in biomedical studies, the only way to 
overcome this challenge is to examine larger study populations. Fourth, regarding body 
surface temperature measurements, there are certainly differences between pigs and human 
patients (e.g. due to skin thickness and body fat). Unfortunately, no studies analyzing 
temperature distribution in pigs could be found in literature. Fifth, for IRT based circulation 
monitoring exposure of a large portion of the body is required. But, on the one hand, for 
diverse clinical applications such as examining regional perfusion it is not necessary to 
include the whole body but only some body parts. On the other hand, for other clinical 
applications requiring whole body examination, time limited uncovering of the patient (e.g. 
for 5 minutes) would also be practicable. 

Another point to be addressed is the geometric arrangement of the IR camera. Ideally, it 
should be perpendicular to the body plane - ceiling-mounted. Since this project was a pilot 
study and several medical needs must to be considered [(1) the equipment must not prevent 
the anesthetist to perform its countless tasks according to the study protocol; (2) the need for 
several medical devices and equipment], a compromise had to be found for the location of 
this setup. 

5. Conclusions 

The current study demonstrated the capability of infrared thermography for monitoring 
circulation and perfusion in a porcine animal model. By developing adequate indexes, the 
course and severity of disease could be quantified. As expected, experimental ALI induced 
increases in both ΔT/Δx and SD, which is caused by temperature centralization and a risen 
heterogeneity in body temperature distribution In addition, significant correlations were 
shown between the latter indexes and the clinically established shock index. 

Based on this pilot study, further trials should be carried out in order to prove these results 
and to establish new clinical fields of application, such as early detection and monitoring of 
sepsis and the efficacy of therapeutic procedures. The aim should be to receive medical 
implications within a time frame of several minutes to generate highest possible clinical 
benefits. In our opinion this is a challenging but realistic goal requiring both, modified 
technical and organizational concepts. After proving possible applications for IRT, the next 
step should be integration of this technique into clinical algorithms. After all, novel 
techniques for the assessment of regional perfusion, micro- and macrocirculatory 
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hemodynamics, such as infrared thermography, might be promising alternatives to enhance 
and optimize diagnostics and treatments in critical care medicine. 
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