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Abstract

Soil organic carbon (SOC) plays an important role in improving soil properties and the C global cycle. Limited attention,
though, has been given to assessing the spatial patterns and stocks of SOC in desert ecosystems. In this study, we
quantitatively evaluated the spatial variability of SOC and its influencing factors and estimated SOC storage in a region
(40 km2) of the Gobi desert. SOC exhibited a log-normal depth distribution with means of 1.6, 1.5, 1.4, and 1.4 g kg21 for the
0–10, 10–20, 20–30, and 30–40 cm layers, respectively, and was moderately variable according to the coefficients of
variation (37–42%). Variability of SOC increased as the sampling area expanded and could be well parameterized as a power
function of the sampling area. Significant correlations were detected between SOC and soil physical properties, i.e. stone,
sand, silt, and clay contents and soil bulk density. The relatively coarse fractions, i.e. sand, silt, and stone contents, had the
largest effects on SOC variability. Experimental semivariograms of SOC were best fitted by exponential models. Nugget-to-
sill ratios indicated a strong spatial dependence for SOC concentrations at all depths in the study area. The surface layer (0–
10 cm) had the largest spatial dependency compared with the other layers. The mapping revealed a decreasing trend of
SOC concentrations from south to north across this region of the Gobi desert, with higher levels close to an oasis and lower
levels surrounded by mountains and near the desert. SOC density to depths of 20 and 40 cm for this 40 km2 area was
estimated at 0.42 and 0.68 kg C m22, respectively. This study provides an important contribution to understanding the role
of the Gobi desert in the global carbon cycle.
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Introduction

Soil organic carbon (SOC) has an important influence on the

physical, chemical, and biological properties of soil and is critical

for improving soil fertility and quality, increasing the water

holding capacity of soil, reducing soil erosion, and enhancing crop

productivity [1,2]. With climate change and environmental issues

dominating global concerns, SOC has received increasing

attention worldwide because of its important role in the global C

cycle and its potential feedback on the global warming [3–6]. As

one of the largest and most dynamic component in the global C

cycle, the SOC stock is at least two times the amount of C stored in

the vegetation and atmosphere [7]. Thus, a small loss of SOC pool

due to changes in fertilization, cropping system, farming practices,

and soil erosion could significantly increase the atmospheric CO2

[8–11]. On the other hand, soils can increase the existing SOC

pool by sequestration of C from the atmosphere [12–15], the

processes of which are an active area of study. Reliable assessment

of the spatial patterns and stocks of SOC at one timeline as a

baseline is essential for understanding the potential of soils to

sequester C, for quantifying the SOC sink or source capacity of

soils in changing environments, and for developing the strategies

necessary to mitigate the effects of global warming [16,17].

In recent years, extensive work has been conducted toward

estimating the SOC stocks and distribution patterns at the global,

continental, country, and regional scales [11,18–24]. For example,

the global SOC stock has been estimated to be about 2400 Pg C in

the top 2 m [4]. However, these estimations are highly uncertain

because of the gaps in spatial coverage for many regions that

causes difficulties to develop a harmonized SOC baseline [22–24].

In addition, the selection of the type of SOC database, the land use

and/or soil map, the mapping resolution, reference depth, bulk

density or other information can also have a great effect on the

final SOC stock estimation [25]. Similarly, due to inconsistent

estimation methods and limited data, the SOC stock estimations in

China are also uncertain and has varied greatly, from 50 to180 Pg,

and SOC density from 54.6 to 190.5 t C/ha [22]. The accuracy of

these large-scale SOC stock estimations largely depends on the

data availability from site-based or small-scale measurements

[6,24]. To reduce the uncertainty of SOC stocks estimation and

better understand the role of SOC in the global C cycle, reliable

baseline datasets providing information on SOC stocks in all types

of sites and ecosystems are necessary.

Desertification is one of the most severe types of land

degradation in arid and semiarid areas of the world [26]. Due

to the harsh natural conditions and the fragile ecological

environment, desert ecosystems are more sensitive to climate

change, leading to the emission of CO2 to the atmosphere and a

reduction in the pool of SOC [27,28]. In contrast, it is possible to

increase SOC concentrations in desert soils through the adoption
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of restorative measures such as the establishment of plants

[14,29,30] and the prohibition of grazing [31]. [32] indicated

that the control of desertification could globally sequester 0.9–

1.9 Pg C yr21 over a period of 25–50 years.

China is also seriously threatened by desertification [33,34].

[27] estimated that desertified land in China potentially covers

158 Mha, comprising 81 Mha of slight, 61 Mha of moderate, and

35 Mha of severe desertification. The widely distributed deserti-

fied lands in China thus likely have a considerable effect on the

regional terrestrial C balance and the feedbacks that affect climate

change [35]. Although some studies have been conducted on

assessment of SOC concentrations/stocks in desert area, many

questions still remain open. So far, most studies on SOC stock

estimates from desert ecosystems have been carried out in sandy

desert [36–39], and only few from the Gobi desert are available

[40]. Due to the difficulties and associated costs of soil sampling,

most studies estimating SOC stocks rely on information taken

from a relatively small number of representative sampling points

or profiles [41]. This decreases the estimation accuracy of SOC

stocks in desert ecosystems and limits our capability to evaluate the

C budget, to assess its contribution to the increasing global

concentrations of CO2, and to propose measures to increase the

sequestration of organic C in soils. Therefore, to better understand

the SOC pool in desert environments, it is necessary to conduct

more intensive site and local scale estimates of the variance in

SOC, and the possible spatial controls on this variance structure.

Gansu province is one of the main desertified areas induced by

wind and one of the source regions of sandstorms in northern

China. In this paper, a typical fenced region of the Gobi desert was

chosen as a study case. The objectives of this study were: (1) to

estimate SOC concentrations and determine the spatial distribu-

tion of SOC, (2) to analyse the relationships between SOC

concentrations and environmental factors, and (3) to estimate

SOC density and storage in the study area.

Materials and Methods

Ethics statement
The study area belong to Linze Inland River Basin Research

Station (39u219 N and 100u079E,1389 m), a department of the

Cold and Arid Regions Environmental and Engineering Research

Institute, Chinese Academy of Sciences. The study was approved

by the Cold and Arid Regions Environmental and Engineering

Research Institute, Chinese Academy of Sciences.

Study area
The study area, occupying approximately 40 km2

(5 km68 km), is located in the Gobi desert in the middle of

Gansu province (the central reaches of the Heihe River Basin) of

Northwestern China, between latitudes 39u249 and 39u289N and

longitudes 100u089 and 100u119E (Fig. 1a,b). The region is a

relatively flat alluvial plain (elevation ranging from 1390 to

1470 m) bordered by a young oasis to the southwest, the remnants

of the Qilian Mountains to the north, and an extension of the

Badain Jaran Desert to the southeast (Fig. 1c). The area is

characterized by low and seasonal variability in rainfall and is

classified as a typical temperate desert. The mean annual

precipitation and air temperature are 117 mm and 7.6uC,

respectively. Rainfall in brief summer showers contributes 65%

of the annual total precipitation. The mean annual pan-

evaporation is approximately 2390 mm, twenty times greater

than the annual precipitation. The average annual wind speed is

3.2 m s21, with the resultant wind coming from the northwest,

and the dominant windy days and wind storms occur between

March and May [42]. The zonal soil is classified as gray-brown

desert soil, derived from gravelly diluvial-alluvial materials of the

denuded monadnock [43]. Stones are present in a significant

proportion of the surface and sub-soil horizons. The aboveground

plant cover is discontinuous and can be described as patches of

sub-shrubs surrounded by bare areas. The study area has been

fenced and is protected from grazing for the purpose of

revegetation and reclamation. The dominant plant species are

Nitraria sphaerocarpa Maxim. and Reaumuria soongorica (Pall.) Maxim.,

and the accompanying plant species are mainly Kalidium gracile

Fenzl., Allium mongolicum Rgl., Bassia dasyphylla (Fisch. and Mey.)

Kuntze. and Halogeton arachnoideus Moq.

Soil sampling and laboratory analysis
Soil samples were collected from a total of 187 locations on a

regular grid of 500 m6500 m throughout the study area from

August to September in 2011. A portable GPS receiver (Garmin

GPSmap 62 s) was used to locate the sampling site, as displayed in

Figure 1c. At each location, soil was collected from four depths (0–

10, 10–20, 20–30, and 30–40 cm) at five randomly selected

sampling points within a radius of approximately 20 cm. The five

sub-samples were then combined to produce one representative

sample. In total, 748 soil samples were collected. The samples

were all air dried, weighed, and sieved to 2 mm to separate the

coarse (.2 mm) and fine (,2 mm) fractions. The former was

reweighed to determine the stone content. The latter was

separated into two parts: one was subject to further particle-size

analyses by laser diffraction using a Mastersizer 2000 (Malvern

Instruments, Malvern, England), and the other was ground to pass

through a 0.25-mm mesh for SOC concentration analysis. The

SOC concentration (g kg21) was measured using the potassium

dichromate-wet combustion method [44]. Undisturbed soil

samples cores (100 cm3) were also collected for determining soil

bulk density (BD) in each layer. To reduce the influences of stones

on BD measurement, we averaged five replicate measurements for

each location and layer.

Re-sampling method
Estimating SOC variability at different scales is important for

effective soil survey sampling design and SOC change prediction

[2]. In this study, to detect the change tendency of SOC variability

with the size of the sampling area, a series of sampling point

allocations with different areas were done through re-sampling

using all sampling points (n = 187) in the study area (5 km68 km)

[45,46]. For convenience, the west-east and south-north distances

of the re-sampling area were set integral multiples of 1 km to

generate five re-sampling options for the west-east distance and

eight options for the south-north distance. The random combina-

tion of these two sets of options thus produced 40 potential re-

sampling methods. Some of these methods, though, were the same

within the study area (e.g., the re-sampling methods of

2 km66 km, 3 km64 km, and 4 km63 km yielded the same

area), so finally a total of 24 kinds of re-sampling areas were

obtained (Table 1). SOC variability at a certain area was

computed by averaging the CV values of all the possible re-

sampling scenarios with the same area.

Calculation of SOC density and stock
The SOC density of a single layer was estimated based on Eq.

(1):

SOCDi~
SOCi|BDi|di| 1{CFi=100ð Þ

100
ð1Þ
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Figure 1. The location of Gansu Province and the Heihe River Basin, China (a), the study site in the Heihe River Basin (b), and the
soil-sampling points in the study area (c).
doi:10.1371/journal.pone.0093584.g001

Table 1. Details of the re-sampling areas and sampling methods.

Re-sampling area (km2) Sampling method Re-sampling area (km2) Sampling method

1 161* 15 365; 563

2 162; 261 16 268; 464

3 163; 361 18 366

4 164; 461; 262 20 465; 564

5 165; 561 21 367

6 166; 263; 362 24 368; 466

7 167 25 565

8 168; 264; 462 28 467

9 368 30 566

10 265; 562 32 468

12 266; 364; 463 35 567

14 267 40 568

*The digit before the multiplication sign represents the west-east sampling distance (km), and the digit after it represents the south-north sampling distance (km).
doi:10.1371/journal.pone.0093584.t001
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where SOCDi and SOCi are SOC density (kg C m22) and

concentration (g kg21) of the ith layer, BDi is the bulk density of the

ith layer (g cm23), di is the depth of the ith layer (cm), and CFi is the

fraction (%) of coarse fragments .2 mm in the ith layer.

For an individual profile with a depth D (cm), SOC densities

were then calculated by summarising the SOC density of each soil

layer i:

SOCDD~
Xn

i~1

SOCDi ð2Þ

The total SOC storage is calculated as:

SOCstock~
Xm

j~1

Sj|SOCDD,j ð3Þ

where Sj is the total area (m2) of a given land-use type j and

SOCDD,j is the average SOC density of the jth land-use type

(kg m-2).

Statistical analysis
A descriptive statistical analysis was first used to illustrate the

central trend and the overall variation of the variables. This

analysis included descriptions of the minimum, maximum, mean,

median, skewness, Kurtosis, standard deviation (SD), and coeffi-

cients of variation (CVs). A one-sample Kolmogorov-Smirnov (K-

S) test was used to examine the normality of the data, and natural

logarithmic transformations were performed where necessary to

meet the normality requirement of geostatistical analysis. The

means of different layers were compared by a one-way analysis of

variance (ANOVA). Correlation analysis and stepwise linear

regression analysis were performed to understand relationships

between SOC concentrations and the environmental factors. All

statistical analyses used the programme SPSS v. 16.0 (SPSS Inc.,

Chicago, IL, USA).

Geostatistical methods such as semivariogram calculation, cross-

validation, kriging, and mapping have been widely applied in the

study of SOC spatial distribution [47,48]. Semivariograms were

used to determine the degree of spatial dependence. Before

semivariogram calculation, a preliminary semivariogram surface

analysis was performed to detect any zonal effect or trend in

direction [49]. The experimental semivariogram, c hð Þ, is half the

Table 2. Selected soil physical properties at different soil depths.

Variables Statistical parameter Soil depth

0–10 cm 10–20 cm 20–30 cm 30–40 cm

Stones Mean (%) 12.1 a 13.3 ab 15.2 b 69.1 c

CV (%) 100.5 103.4 101.3 24.5

Sand Mean (%) 70.9 a 72.4 a 71.1 a 26.0 a

CV (%) 20.1 19.7 21 22.1

Silt Mean (%) 7.5 a 6.5 a 6.5 a 2.4 a

CV (%) 85.5 97.5 107.5 111.9

Clay Mean (%) 9.5 a 7.8 ab 7.2 b 2.6 b

CV (%) 84.4 102.4 111.3 123

BD Mean (g cm23) 1.4 a 1.4 a 1.4 a 0.5 a

CV (%) 8.8 10.4 9.7 10.1

BD, bulk density; CV, coefficient of variation; Stones, .2 mm; Sand, 2–0.2 mm; Silt, 0.2–0.002 mm; Clay, ,0.002 mm. Mean values followed by the same letter are not
significantly different (a= 0.05) at different soil depths using the LSD method.
doi:10.1371/journal.pone.0093584.t002

Table 3. Summary of statistical parameters for soil organic carbon (SOC) concentrations at different soil depths.

Variables SOC (g kg21)

0–10 cm 10–20 cm 20–30 cm 30–40 cm

Maximum 4.5 3.9 4.3 3.6

Minimum 0.4 0.5 0.5 0.5

Mean 1.6 a 1.5 ab 1.4 b 1.4 b

SD 0.6 0.6 0.6 0.6

CV 36.8 38.5 41.0 42.1

Skewness 1.83 1.26 1.64 1.15

Kurtosis 5.95 2.40 4.66 1.04

P of K-S test 0.001 0.012 0.009 0.006

SD, standard deviation; CV, coefficient of variation. Mean values followed by the same letter are not significantly different (a= 0.05) at different soil depths using the LSD
method.
doi:10.1371/journal.pone.0093584.t003
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expected squared difference between paired data separated by a

distance h and is expressed as:

c hð Þ~ 1

2N hð Þ
XN hð Þ

i~1

Z xið Þ{Z xizhð Þ½ �2 ð4Þ

where Z xizhð Þ and Z xið Þ are observations at positions xizh and

xi, respectively, and N hð Þ denotes the number of data pairs

separated by the lag distance, h. A semivariogram model contains

three important parameters which interpret the spatial structure of

soil properties: nugget (C0), sill (C+C0), and range (A). Nugget

represents the undetectable measurement error, inherent variabil-

ity or the variation within the minimum sampling distance. Sill is

the upper limit of the semivariogram model, representing the total

variation. The separation distance at which the sill is reached is the

range of spatial dependence. Samples separated by distances

smaller than the range are spatially related, whereas samples

separated by larger distances are not spatially related. The nugget

ratio (C0/C0+C) can be regarded as a criterion for classifying the

spatial dependence of soil properties. A variable is considered to

have strong, moderate, or weak spatial dependence if the ratio is

less than 0.25; between 0.25 and 0.75; and over 0.75, respectively

[50].

In this study, all semivariograms were estimated with fixed

distance intervals of 500 m, and the maximum distance was set to

4700 m. Because 4700 m is less than half the maximum distance

between sampling sites, it coincides with the requirement of

geostatistical analysis [51]. A total of nine sets of class intervals

were generated. There are several commonly used semivariogram

models (such as spherical, exponential, Gaussian, and linear

models). The best model was based on two criteria: small residual

sum of squares (RSS) and high coefficient of determination (R2).

The best-fit parameters were subsequently estimated using

weighted least squares regression method.

After selecting the best-fit semivariogram models, ordinary

kriging was used as an interpolation method to predict values for

SOC concentrations. The prediction was calculated as the linear

sum:

Z� x0ð Þ~
Xn

i~1

liZ xið Þ ð5Þ

where Z� x0ð Þis the value to be predicted at the location x0, Z xið Þ
is the known value at the sampling location xi, n is the number of

locations within the search neighbourhood used for the prediction,

and li is the kriging weight assigned to Z xið Þ.
The predicted map quality of the SOC was tested by cross-

validation with replacement. Three indices were calculated to

assess the effectiveness of kriging: mean error (ME), root mean

square error (RMSE), and root mean square standardised error

(RMSSE) [52].

The geostatistical analysis was performed with GS+ v. 7.0

(Gamma Design Software, Plainwell, Michigan, USA), and

contour maps through ordinary kriging were produced with GIS

software ArcView v. 3.3 and its extension module of Spatial

Analysis v. 2 (ESRI Inc., Redlands, California, USA).

Results and Discussion

Soil physical properties
Due to the lack of mineral weathering and to long-term wind

and water erosion, this natural desert exhibited a high content of

stones, with an average of 27.42% stones in the top 40 cm of soil.

The stone content increased slowly from 12.2% in the 0–10 cm

layer to 15.2% in the 20–30 cm layer, and then abruptly increased

Figure 2. Coefficient of variation of soil organic carbon (SOC) concentrations at different re-sampling areas.
doi:10.1371/journal.pone.0093584.g002
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to 69.1% in the 30–40 cm layer (Table 2). All soil layers, except for

30–40 cm, contained more than 70% sand and much less silt and

clay. Surface layer (0–10 cm) tended to have a higher content of

clay (P,0.01), perhaps due to erosion. Clay contents tend to

increase at shallower depths as the amount of soil erosion increases

[53]. Beyond that, other soil properties (sand, silt, and BD)

remained constant throughout the entire soil profile. Compared

with the lower variability of sand (CVs of 19.6–22.1%), stone (CVs

of 24.5–100.5%), silt (CVs of 85.5–111.9%) and clay (CVs of 84.4–

123.0%) showed moderate or strong variability. The CV of the BD

at each depth was #10.5%, indicating that BD was not very

variable throughout the study area. The CVs indicated that the

variabilities of all constituent contents, except for stone content,

generally increased with soil depth.

SOC concentration and its variability
The calculation of variation function generally should be in

accord with normal distribution, otherwise it may cause the

proportional effect, raising the sill or nugget values [54]. As shown

in Table 3, the raw SOC exhibited a positively skewed distribution

in this study area. Thus, we used the logarithmic transformation to

reduce the data skewness. The Ln-transformed data for all four

layers passed the Kolmogorov-Smirnov test at a significance level

higher than 0.05 (not shown) and consequently could be used in

the analysis of the geostatistical variation function.

SOC concentrations were generally variable, ranging between

0.4–4.5 g kg21, 0.5–3.9 g kg21, 0.5–4.3 g kg21, and 0.5–3.6 g

kg21 for the four descending layers, respectively (Table 3).

According to the soil-nutrient classification standards from the

Table 4. Correlation analysis between soil organic carbon (SOC) concentrations and soil physical properties at different soil
depths.

Variables SOC (g kg21)

0–10 cm 10–20 cm 20–30 cm 30–40 cm

Stones (%) 20.196** 20.201** 20.201** 20.448**

Sand (%) 20.679** 20.605** 20.572** 20.564**

Silt (%) 0.676** 0.606** 0.572** 0.567**

Clay (%) 0.663** 0.593** 0.561** 0.552**

BD (g cm23) 20.413** 20.387** 20.432** 20.398**

BD, bulk density; ** denotes significance of correlation at P,0.01.
doi:10.1371/journal.pone.0093584.t004

Table 5. Stepwise multiple linear regression of soil organic carbon (SOC) concentrations with selected soil variables at different
soil depths.

Soil depth Independent variables Coefficient Explained Variance (%)

0–10 cm Constant 3.589 **

Sand 22.617 ** 39.78

Stones 0.006 ** 7.30

Adjusted R2 0.470

MSE 0.417

10–20 cm Constant 0.989 **

Silt 5.200 ** 31.18

Stones 0.006 ** 6.52

Adjusted R2 0.377

MSE 0.444

20–30 cm Constant 0.950 **

Silt 4.599 ** 27.20

Stones 0.006 ** 6.80

Adjusted R2 0.340

MSE 0.466

30–40 cm Constant 1.613 **

Silt 3.206 ** 24.20

Stones 20.007 ** 10.00

Adjusted R2 0.342

MSE 0.477

MSE, mean squared error; R2, coefficient of determination; ** Denotes significance of correlation at P,0.01.
doi:10.1371/journal.pone.0093584.t005
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Second National Soil Survey in China [55], the SOC level in this

area was very low; only seven of the 748 soil samples were above

the lowest classification standard (3.5 g kg21). The mean were 1.6,

1.5, 1.4, and 1.4 g kg21 for the 0–10, 10–20, 20–30, and 30–

40 cm layers, respectively, and progressively decreased with soil

depth. The surface layer (0–10 cm) had the highest SOC

concentrations, due to inputs of organic material that accumulated

from organic litter and root residues [25,56], and higher soil

aeration enabled higher soil enzyme activities in the surface layer

than in the deeper layers [29]. Some researchers have also

reported that SOC content decreased with depth in other natural

ecosystems [6,10], but this trend is unlikely at sites with substantial

human intervention such as orchards and tree nurseries [6]. In

these sites, the topsoil may not have SOC contents much higher

than the underlying layers, as a result of the management

practices, such as heavy tillage, that could have enhanced SOC

runoff and soil respiration [6].

The CVs of SOC concentrations varied from 36.8% to 42.1%,

which are considered as moderate variation [57]. A moderate

variability of SOC has also been reported in other studies at

multiple scales [11,25,41,58]. [11,25,58] reported a decreasing

trend of SOC variability with increasing soil depth. Our study,

however, found the opposite trend. This can probably be

explained by the different land-use types and vegetation charac-

teristics. In their studies, croplands, grasslands, and forestland are

the main land-use types. SOC is thus greatly affected by human

activities, such as grazing and deforestation, and the agricultural

managements of plowing, fertilisation, harvesting, and crop

rotation which can have a greater impact on the surface soil layer

than on the deeper layers [2,6,31,59]. Moreover, the high

vegetation coverage in these land-use types indicates a high

biomass of plant roots and litter, and an active soil microbial and

enzyme activities, which mainly occur in the surface soil layer

[29,56]. By contrast, the natural desert region in our study is rarely

disturbed by human activities and the vegetation growth is limited

by inferior soil and water conditions. The surface layer is more

susceptible to processes, such as sedimentation and erosion, which

can homogenise the distribution of SOC [60]. Therefore, SOC in

the deeper layer tend to have greater spatial variability.

Additionally, the preferential transport of SOC via cracks during

Figure 3. Isotropic semivariograms of soil organic carbon (SOC) concentrations at different soil depths.
doi:10.1371/journal.pone.0093584.g003

Table 6. Parameters of the semivariogram models estimated for soil organic carbon (SOC) concentrations at different soil depths.

Soil depth Model Nugget C0 Still (C0+C) C0/(C0+C) Range (m) R2

0–10 cm exponential 0.0019 0.1048 0.018 1347 0.884

10–20 cm exponential 0.0069 0.1288 0.054 1251 0.770

20–30 cm exponential 0.0047 0.1324 0.035 1047 0.681

30–40 cm exponential 0.0069 0.1458 0.047 1254 0.724

R2, coefficient of determination.
doi:10.1371/journal.pone.0093584.t006

Soil Organic Carbon Variability in Gobi Desert
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Figure 4. Distribution of soil organic carbon (SOC) concentrations across the study area.
doi:10.1371/journal.pone.0093584.g004
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dry periods could further increase the heterogeneity of SOC in the

deeper soil horizons [10].

Response of SOC variability to the expansion of area
Fig. 2 demonstrated that CV of SOC concentration increased

with the expansion of area and could be well parameterized as a

power function of the sampling area for all the four soil layers. The

factors influencing SOC concentration variability are scale

dependent. For example, parent material, precipitation and

geological history are of major importance to affect SOC at large

scales. However, microtopography (such as the run-off gullies) and

vegetation may be the dominant factors of SOC variability at

small scales [61]. As sampling area increases, the origin of SOC

variations above may get increasingly complex and heterogeneous,

contributing to greater variability [2]. Moreover, the value of the

fractal power parameter in the surface layer (0.0789) was much

larger than that in the other three layers (0.0392–0.0620),

indicating SOC concentration variability in the surface layer was

more sensitive to the expansion of area. If increasing the same

area, the SOC variability will increase more in the surface layer

than that in the deeper layers.

The function between CV of SOC concentration and sampling

area can also be used to estimate the variability of SOC

concentration at a desired area and, consequently, the number

of required samples (NRS). In order to obtain the mean value of

SOC concentration with an accuracy level of D, at a confidence

level of 1-a, the sample size should reach the requirement of

NSR = l2
a(CV%=D)2(la is the value of the Student’s t-distribution

at the confidence level of 1-a) [48]. Take the surface layer (0–

10 cm) for example, NRS is found to be equal to 110, 227 and 326

for an area of 1, 100 and 1000 km2, respectively, by assuming an

accuracy level of 5% and a confidence level of 95%.

Pearson correlation and stepwise linear regression
analyses

Under the extremely arid climate, the vegetational cover in this

region of the Gobi desert is very low, and the chemical and biotic

influences on soil development are relatively minor. Climate, soil

type, and terrain can be disregarded as variables considering the

small size and flatness of the study area. The physical properties of

the soil were thus most likely responsible for the SOC variability in

our study area.

Table 4 shows the correlation analyses between the soil physical

properties and SOC concentrations. The four soil layers had

similar patterns. SOC concentrations were positively correlated

with both silt and clay contents and were negatively correlated

with stone and sand contents and BD. The positive effects of clay

and silt contents on SOC concentrations are likely due to the

ability of clay and silt particles to adsorb organic matter. Finer

particles are better than larger particles in protecting bound

organic matter for longer times [62]. Moreover, the distribution of

soil particle size and BD can indirectly impact SOC dynamics by

affecting the physical structure, drainage, and aeration of soils

[63].

The stepwise linear regression analysis was further performed to

delineate the effect of different factors on SOC and to find the best

predictive variables for SOC. A summary of these linear models is

shown in Table 5. For the surface layer (0–10 cm), the regression

model explained 47.0% of the overall SOC variability in which

most of the variability was attributable to sand (39.7%) and stone

contents (7.3%). For the other three layers, however, silt and stone

contents together accounted for approximately 35% of the total

variance of SOC concentrations. These results indicated that the

relatively coarse fractions (stones, sand, and silt) were more

important for the explanation of variability in SOC concentrations

in this study area

Semivariogram and parameters
Spatial structure was not significantly associated with direction

in the study area. Only isotropic semivariograms were thus plotted

for SOC concentrations by using the model best fitted by the least

squares regression method. Exponential models were theoretically

optimal for all four soil layers.

The semivariogram models and best-fitted model parameters of

SOC concentration at different soil depths are given in Fig. 3 and

Table 6. The semivariogram of the SOC concentrations indicated

a slightly smaller nugget effect (C0) in the surface soil layer (0–

10 cm) than in the other three layers, implying that the deeper soil

layers had higher undetectable experimental error, short-range

variability, and random and inherent variability of SOC

concentration than the surface soil layer [3]. The sill values,

representing total variation, showed an increasing trend from the

surface soil layer to the deepest layer, which further validated the

results obtained by conventional statistical methods. The nugget

ratio (C0/C0+C) ranged from 0.018 to 0.054, indicating a strong

spatial dependence for SOC concentrations for all four soil layers

in our study [50]. Strong spatial dependency of soil properties can

usually be attributed to intrinsic factors. In this natural desert,

fenced enclosures for natural restoration have been implemented

for many years and are rarely disturbed by human activities and

grazing, so we suggest that the variability of SOC concentrations

in this region may be highly dependent on the mineralogical

composition of the parental material and on the weathering

processes that have led to its formation [64–66].

The range also changed significantly with soil depth, which is

likely due to the control of the distribution pattern of SOC by

different soil processes. The range for the 0–10 cm layer was the

largest, indicating a larger spatial autocorrelation in the surface

soil layer than in the deeper soil layers. The surface soil layer is

most sensitive to erosion, which could homogenise the distribution

of SOC and increase the spatial autocorrelation distance [60]. [67]

Table 7. Verification of interpolation reliability for soil organic carbon (SOC) concentrations at different soil depths.

Soil depth ME RMSE RMSSE

0–10 cm 20.00821 0.535 1.105

10–20 cm 20.00083 0.544 1.056

20–30 cm 0.00173 0.504 1.017

30–40 cm 20.00143 0.570 1.104

ME, mean error; RMSE, root mean square error; RMSSE, root mean square standardized error.
doi:10.1371/journal.pone.0093584.t007
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also showed that wind erosion significantly changed the spatial

distribution patterns of SOC over two or three windy seasons.

With the increasing of soil depth, the influence of erosion on SOC

distribution was weakened, and the SOC tended to be much more

independent and was characterized by a stochastic pattern. As

shown in Table 6, the range decreased from 1347 to 1047 m from

0–10 cm to 20–30 cm. The range in the 30–40 cm layer,

however, increased slightly, reflecting the influence of parental

materials on the spatial structure of SOC in deeper layers. In

deeper soil layers, the SOC was probably inherited from the soil

parent materials because the soils are young with little weathering

or anthropogenic impacts [65]. Since the parental materials are

distributed quite uniformly across the study area [66], it leads to a

better distribution of spatial continuity. Because the range was

larger than our sampling interval (500 m), our sampling system

was sufficiently robust to detect spatial relationships on the scale of

the landscape.

Kriging of spatial variation of SOC concentrations
The semivariogram models were used as input to ordinary

kriging, and the resulting distribution maps are shown in Fig. 4.

The interpolation cross-validation was carried out to test the

effectiveness of the prediction maps, and the associated prediction

errors for each map are shown in Table 7. ME determined the

degree of bias in the estimates and should be close to zero. RMSE

quantified the average differences between prediction and

observation and should be as small as possible. If the model

accurately described the data, RMSSE should be close to unity.

Based on the above criteria, the predicted maps of SOC

concentration for the study area were reliable.

The character of SOC distribution is clearly similar for each

layer, and the entire study area is characterised by low

concentrations of SOC and high variation. SOC concentrations

generally decreased gradually from south to north. The southwest

part of the study area, close to the oasis, tended to have higher

concentrations of SOC. The shelter belts in front of the oasis

functioned as natural barriers to reduce wind velocity and

intercept the fine material, which tends to be rich in SOC [68].

The increased fine fractions also improved the soil properties,

encouraging the colonisation of some annuals, e.g. B. dasyphylla

and H. arachnoideus. Their rapid growth and death provided an

important influx of SOC. In contrast, relatively low concentrations

of SOC were mainly distributed in the north and the southwest.

The northern part of the site was surrounded by mountains and

was characterised by coarse soils and little vegetations, facilitating

the drifting of fine particles and a noticeable decline in SOC. On

the other hand, the southwestern region was linked with the

Badain Juran desert and the longtime encroachment of drifted

sand from the desert produced a more sandy texture in this area.

SOC density and stocks
SOC density is indispensable for the assessment of SOC stocks

and is the required measurement of account for the Clean

Development Mechanism of the United Nations Framework

Convention on Climate Change [69]. SOC density was 0.22, 0.20,

0.19, and 0.07 kg C m22 for the 0–10, 10–20, 20–30, and 30–

40 cm layers, respectively, and dropped sharply with increasing

depth due to the high stone content. The low value in the 30–

40 cm layer indicates that the SOC density would be even lower

below 40 cm because of the increasing number of stones. We can

thus reasonably conclude that SOC in this region of the Gobi

desert was mainly stored in the upper 30 cm of soil. The overall

SOC stocks in the upper 20 cm was 0.42 kg C m22 and to a depth

of 40 cm 0.68 kg C m22. When compared to the reported values
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for other regions in China [11,25,70,71,72], due to natural

drought, large number of stones, and intense soil erosion, SOC

stocks in the Gobi desert region was very low. However, since the

Gobi desert (568,980 km2) accounts for about 5.9% of China’s

total territory [73] and is sensitive to climate change [17], it is

likely to have a considerable effect on the terrestrial C balance in

China.

Table 8 summarises the results of SOC studies (including SOC

concentrations and densities) in other desert regions in China. The

SOC concentrations and densities in our study area were generally

in the same range as those in other regions, except that SOC

concentrations were a little higher than those in the Erdos and

Aershan regions. Different reference soil depths, different sampling

methods, and the higher patchiness of our study area may account

for our higher SOC concentrations. Even though the soils in our

study area had higher fractions of stones, patches with more fertile

soil still allowed the growth of vegetation, which thus increased the

SOC concentrations. Compared with some of the other regions

mentioned in Table 8, SOC in our study site is less affected by

grazing, which can give rise to a considerable decrease in ground

coverage and primary productivity, and thus accelerate soil

erosion by wind and result in loss of SOC [74]. However, the

improvement of soil quality through the adoption of grazing

prohibition can increase SOC concentrations [36]. Moreover,

higher SOC concentrations in our study site can also be attributed

to the reduced mineralization rate of SOC, because of the lack of

water in this region [66]. Comparisons among the studies listed in

Table 8, however, remain limited due to differences in sampling

methods of SOC measurement and reference soil depths.

Identifying the dynamics of SOC in changing desert environments

is difficult. We should thus develop more site inventories of SOC

in desert environments or use a comparable approach to better

understand the potential changes of SOC in desert environments,

which will lay the groundwork for developing more effective

strategies to combat soil desertification and reduce the risk of

desertification in the future.

Conclusions

We have provided estimates of spatial SOC concentrations and

stocks for this region of the Gobi desert that are more accurate

than previous estimates. Classical statistics indicated that SOC

concentrations decreased with increasing soil depth and were

moderately variable in the study area. The deepest soil layer (30–

40 cm) had the highest amount of variation in SOC concentra-

tions. Significant correlations were detected between SOC and

selected physical properties of the soil, especially the stone, sand,

and silt contents. The composition of the parental material (such as

the distribution of soil particle size) and the weathering (such as

erosion and sedimentation) that led to its formation may be

responsible for the strong spatial dependence of SOC. This

dependence implies that SOC in desert ecosystem is sensitive to

climate change and thus represents an important dynamic pool of

C in the global C cycle. The kriging interpolated maps indicated a

decreasing trend of SOC concentrations from south to north

across the study area, which was apparently related to the location

of the study area. This study contributes to our understanding of

the role of Gobi desert ecosystem in the global C cycle and

incorporation of small-scale spatial variations of SOC into large-

scale spatiotemporal models.
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41. Grüneberg E, Schöning I, Kalko EK, Weisser WW (2010) Regional organic
carbon stock variability: A comparison between depth increments and soil

horizons. Geoderma 155: 426–433.

42. Li QY, He ZB, Zhao WZ, Li QS (2004) Spatial pattern of Nitraria spaerocarpa
population and dynamics in different habitats. Journal of Desert Research 24:

484–488 (in Chinese).
43. FAO/UNESCO (1988) ‘Soil map of the world, revised legend.’ (FAO/

UNESCO: Rome)
44. Nelson DW, Sommers LE (Eds.) (1982) Total carbon, organic carbon and

organic matter. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil

591 Analysis. Part 2. Agronomy Monograph, 2nded. ASA and SSSA, Madison,
WI. pp 534–580.

45. Hu W, Shao MA, Wang QJ (2005) Scale-dependency of spatial variability of soil
moisture on a degraded slope-land on the Loss Plateau. Transactions of the

CSAE 21: 11–16 (in Chinese).

46. Zhang FS, Liu ZX, Zhang Y, Miao YG, Qu W, et al. (2009) Scaling effect on
spatial variability of soil organic matter in crop land. Journal of the Graduate

School of the Chinese Academy of Sciences 26: 350–356 (in Chinese).
47. Bond-Lamberty B, Brown KM, Goranson C, Gower ST (2006) Spatial

dynamics of soil moisture and temperature in a black spruce boreal

chronosequence. Canadian Journal of Forest Research-Revue Canadienne De
Recherche Forestiere 36: 2794–2802.

48. Loescher HW, Ayres E, Duffy P, Luo H, Brunke M (2014) Spatial variation in
soil properties among North American ecosystems and guidelines for sampling

designs. Plos one 9: e83216.
49. Trangmar BB, Yost RS, Uehara G (1985) Application of geostatistics to spatial

studies of soil properties. Advances in agronomy 38: 45–94.

50. Cambardella C, Moorman T, Parkin T, Karlen D, Novak J, et al. (1994) Field-
scale variability of soil properties in central Iowa soils. Soil Science Society of

America Journal 58: 1501–1511.
51. Wei JB, Xiao DN, Zhang XY, Li XZ, Li XY (2006) Spatial variability of soil

organic carbon in relation to environmental factors of a typical small watershed

in the black soil region, northeast China. Environmental Monitoring and
Assessment 121: 597–613.

52. Marchetti A, Piccini C, Francaviglia R, Mabit L (2012) Spatial distribution of

soil organic matter using geostatistics: A key indicator to assess soil degradation
status in central Italy. Pedosphere 22: 230–242.

53. Arriaga FJ, Lowery B (2005) Spatial distribution of carbon over an eroded

landscape in southwest Wisconsin. Soil and Tillage Research 81: 155–162.
54. Wang SQ, Zhou CH (1999) Estimating soil carbon reservoir of terrestrial

ecosystem in China. Geographical Research 18: 349–356.
55. Office for the Second National Soil Survey of China (1993) Second National Soil

Survey of China. Beijing: China Agricultural Press.

56. Liu ZP, Shao MA, Wang YQ (2012) Large-scale spatial variability and
distribution of soil organic carbon across the entire Loess Plateau, China. Soil

Research 50: 114–124.
57. Lei ZD, Yang SX, Xu ZR. (1985) Research spatial variability of soil properties.

Journal of Hydraulic Engineering 9: 10–21 (in Chinese).
58. Fang X, Xue ZJ, Li BC, An SS (2012) Soil organic carbon distribution in

relation to land use and its storage in a small watershed of the Loess Plateau,

China. Catena, 88: 6–13.
59. Zibilske LM, Bradford JM, Smart JR (2002) Conservation tillage induced

changes in organic carbon, total nitrogen and available phosphorus in a semi-
arid alkaline subtropical soil. Soil and Tillage Research 66: 153–163.

60. Li J, Okin GS, Alvarez L, Epstein H (2008) Effects of wind erosion on the spatial

heterogeneity of soil nutrients in two desert grassland communities. Biogeo-
chemistry 88: 73–88.

61. Wang J, Fu B, Qiu Y, Chen L (2001) Soil nutrients in relation to land use and
landscape position in the semi-arid small catchment on the loess plateau in

China. Journal of Arid Environments 48: 537–550.
62. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil

organic matter: Implications for C-saturation of soils. Plant and Soil 241: 155–

176.
63. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and

organic matter for hydrologic solutions. Soil Science Society of America Journal
70: 1569–1578.

64. Tack FMG, Verloo MG, Vanmechelen L, Van Ranst E (1997) Baseline

concentration levels of trace elements as a function of clay and organic carbon
contents in soils in Flanders (Belgium). Science of the Total Environment 201:

113–123.
65. Zhang XP, Deng W, Yang XM (2002) The background concentrations of 13 soil

trace elements and their relationships to parent materials and vegetation in
Xizang (Tibet), China. Journal of Asian Earth Sciences 21: 167–174.

66. Su YZ, Yang R (2008) Background concentrations of elements in surface soils

and their changes as affected by agriculture use in the desert-oasis ecotone in the
middle of Heihe River Basin, North-west China. Journal of Geochemical

Exploration 98: 57–64.
67. Li J, Okin GS, Alvarez L, Epstein H (2007) Quantitative effects of vegetation

cover on wind erosion and soil nutrient loss in a desert grassland of southern

New Mexico, USA. Biogeochemistry 85: 317–332.
68. Yan H, Wang S, Wang C, Zhang G, Patel N (2005) Losses of soil organic carbon

under wind erosion in China. Global Change Biology 11: 828–840.
69. United Nations Framework Convention on Climate Change (2007) Tool for the

Demonstration and Assessment of Additionality in A/R CDM Project Activities,
Annex 17, CDM Executive Board 35, Bonn, Germany. Available: http://cdm.

unfccc.int/methodologies/ARmethodologies/tools /ar-am-tool-01-v2.pdf

70. Li Z, Jiang X, Pan XZ, Zhao QG (2001) Organic carbon storage in soils of
tropical and subtropical China. Water, Air, and Soil Pollution 129: 45–60.

71. Fan Y, Liu S, Zhang S, Deng L (2006) Background organic carbon storage of
topsoil and whole profile of soils from Tibet District and their spatial

distribution. Acta Ecologica Sinica 20: 2834–2846 (in Chinese).

72. Zhang Y, Zhao YC, Shi XZ, Lu XX, Yu DS, et al. (2008) Variation of soil
organic carbon estimates in mountain regions: a case study form Southwest

China. Geoderma 146: 449–456.
73. Feng YZ, Yang GH (2003) Countermeasures of sustainable development of land

resources in the Northwest region. Gansu Science and Technology Press,

Lanzhou, pp. 102.
74. Pei SF, Fu H, Wan CG (2008) Changes in soil properties and vegetation

following exclosure and grazing in degraded Alxa desert steppe of Inner
Mongolia, China. Agriculture, ecosystems and environment 124: 33–39.

75. Wang Y, Li Y, Ye X, Chu Y, Wang X (2010) Profile storage of organic/
inorganic carbon in soil: From forest to desert. Science of the Total Environment

408: 1925–1931.

76. Yang X, Zhu B, Wang X, Li C, Zhou Z, et al. (2008) Late Quaternary
environmental changes and organic carbon density in the Hunshandake Sandy

Land, eastern Inner Mongolia, China. Global and Planetary Change 61, 70–78.
77. Zuo XA, Zhao XY, Zhao HL, Zhang TH, Guo YR, et al. (2009) Spatial

heterogeneity of soil properties and vegetation-soil relationships following

vegetation restoration of mobile dunes in Horqin Sandy Land, Northern China.
Plant and soil 318, 153–167.

Soil Organic Carbon Variability in Gobi Desert

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e93584

http://cdm.unfccc.int/methodologies/ARmethodologies/tools
http://cdm.unfccc.int/methodologies/ARmethodologies/tools

