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Here we describe KODAMA (knowledge discovery by accuracy
maximization), an unsupervised and semisupervised learning algo-
rithm that performs feature extraction from noisy and high-dimen-
sional data. Unlike other data mining methods, the peculiarity of
KODAMA is that it is driven by an integrated procedure of cross-
validation of the results. The discovery of a local manifold’s to-
pology is led by a classifier through a Monte Carlo procedure of
maximization of cross-validated predictive accuracy. Briefly, our
approach differs from previous methods in that it has an inte-
grated procedure of validation of the results. In this way, the
method ensures the highest robustness of the obtained solution.
This robustness is demonstrated on experimental datasets of gene
expression and metabolomics, where KODAMA compares favor-
ably with other existing feature extraction methods. KODAMA is
then applied to an astronomical dataset, revealing unexpected
features. Interesting and not easily predictable features are also
found in the analysis of the State of the Union speeches by Amer-
ican presidents: KODAMA reveals an abrupt linguistic transition
sharply separating all post-Reagan from all pre-Reagan speeches.
The transition occurs during Reagan’s presidency and not from
its beginning.

dissimilarity matrix | mapping | multivariate statistics | clustering |
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The last few decades have witnessed an explosion of data in
almost all fields, from biology and the health sciences to

economics and finance, to the extent that the bottleneck in re-
search has shifted from data generation to data analysis (1).
As a result, there is an increasing need of unsupervised

approaches to data mining especially, those geared toward the
discovery of patterns in the data for exploratory tasks using
clustering and feature extraction methods (2). A problem related
to almost all such algorithms is that they do not provide esti-
mates of the significance of the results returned (3). Therefore,
the use of data mining methods is an intrinsically risky activity
that can easily lead to the discovery of meaningless patterns. The
reliability of a clustering solution can be verified a posteriori by
evaluating the predictive accuracy of a supervised classifier by
repeatedly leaving out one or a few randomly selected samples
as a “test set,” whereas the remaining data objects are used as
a “training set” (cross-validation) (4–6).
With this in mind we have devised an unsupervised feature

extraction method, which we named KODAMA (knowledge
discovery by accuracy maximization). KODAMA essentially
integrates a validation procedure of the results in the method
itself. The core idea is to derive an unsupervised measure of
dissimilarity in multivariate data between pairs of samples by
using, somewhat counter-intuitively, a supervised classifier fol-
lowed by a cross-validation step.
An unsupervised classification with high cross-validated ac-

curacy is more likely to contain meaningful information about
the structure of data. However, inside a dataset, more than one
possible classification may exhibit high cross-validation accuracy.
For this reason, in KODAMA the identification of the best
classifications is performed through a Monte Carlo (MC) pro-
cedure, in such a way as to maximize the cross-validated accuracy
by randomly remodeling the classification itself. The cross-vali-
dated accuracy can be calculated using any supervised classifier.

KODAMA can use several supervised classifiers such as k-nearest
neighbors (kNN) (7), support vector machine (SVM) (8), and a
combination of principal component analysis (PCA) and canon-
ical analysis (CA) with kNN (PCA-CA-kNN) (9).
A large number of unsupervised feature extraction techniques

have been designed, like KODAMA, to preserve the local
structure of data. To better assess KODAMA’s performance
against this metric, we compared KODAMA with several of
these other unsupervised techniques: diffusion maps (DM) (10),
isometric feature mapping (ISOMAP) (11), PCA (12), locally
linear embedding (LLE) (13), random forest (RF) (14), Sam-
mon’s nonlinear mapping (SAMMON) (15), stochastic proximity
embedding (SPE) (16), and t-distributed stochastic neighbor
embedding (t-SNE) (17). Despite the strong record of these
methods, they are often not very successful when applied to noisy
and/or high-dimensional data. Conversely, KODAMA demon-
strates a high level of performance as an unsupervised method
on datasets with these characteristics, ranging from simulated to
a broad spectrum of scientific data. Finally, the greater flexibility
of KODAMA is also apparent in a semisupervised context.

Methods
KODAMA consists of five steps, as illustrated in SI Appendix, Fig. S1. For
a simple description of the method, we can divide KODAMA into two parts:
(i) the maximization of cross-validated accuracy by an iterative process (steps
I and II), resulting in the construction of a proximity matrix (step III), and (ii)
the definition of a dissimilarity matrix (steps IV and V). The first part entails
the core idea of KODAMA, that is, the partitioning of data guided by the
maximization of the cross-validated accuracy, as shown in Fig. 1A and in the
flowchart in SI Appendix, Fig. S1. At the beginning of this part, a fraction φ
of the total samples (φ = 0.75 as default) are randomly selected from the
original data. The whole iterative process (steps I–III) is repeated M times
(M = 100 as default) to average the effects owing to the randomness of the
iterative procedure. Each time that this part is repeated, a different fraction
of samples is selected. The second part aims at collecting and processing
these results by constructing a dissimilarity matrix to provide a holistic view
of the data while maintaining their intrinsic structure (steps IV and V, Fig. 1 B
and C). Although the method itself is a complex multistep procedure, to
make things easy for the final user the source code of KODAMA written for
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the R statistical environment is freely available from www.kodama-project.
com and a detailed user manual is being made available.

Maximization of Cross-Validated Accuracy (Steps I and II). Taking a dataset
constituted by N′ = φN samples and f variables, step I consists of the as-
signment of each sample to a class defined in the class-indicator vector W =
{w1,w2,. . .,wi,. . .,wN′}, where wi is the class label of the ith sample. If W is not
predefined, each sample is assigned to a different class. Therefore, in step I,
N′ different classes are created. A 10-fold cross-validation procedure is per-
formed on the basis of the classes defined in W. This procedure is performed
using a supervised classifier such as kNN (7), SVM (8), or PCA-CA-kNN (9).
Details on the use of these classifiers are given in SI Appendix. Because in this
first step removal of samples for cross-validation implies removal of their
classes, these samples are forced to join other classes. The global accuracy is
calculated by summing up the number of correctly classified samples and
dividing this number by the total number of samples. The obtained value is
stored in the variable AW. A record of the predicted class labels for each
sample is stored in the vector ZW = {z1,z2,. . .,zi,. . .,zN′}, where zi is the pre-
dicted class label of the ith sample. Obviously, after the first step AW = 0.

In step II, an iterative MC procedure optimizes the vector W by maximizing
AW. At the end of these iterations, a classification with a high value of ac-
curacy is stored in the vector W. This procedure includes the following
points: (i) A new class-indicator vector V = {v1,v2,. . .,vi,. . .,vN′} is created by
randomly swapping some class labels of the misclassified samples with the
predicted class labels stored in ZW. (ii) A 10-fold cross-validation procedure is
performed on the basis of the classes defined in V. The relative accuracy
value is then stored in AV and the predicted class labels are stored in ZV = {z1,
z2,. . .,zi,. . .,zN′}. (iii) If AV is equal to, or higher than, AW, the value of AW is
changed to AV, the vector W is changed to V, and the vector ZW is changed
to ZV.

This iterative procedure leads to a pruning of the classes because, in some
cases, all samples belonging to one class may also be classified as belonging to
a different class, and therefore the swapping of vector V will eliminate one or
more classes (this is what always happens in step I). The loop is repeated until
either AW becomes equal to 100% or the maximum number of iterations T is
reached (the default value is T = 20). Fig. 1A illustrates how the classification
gradually emerges during this iterative procedure. The evolution of the W
and ZW vectors, as well as of AW and AV, is exemplified in SI Appendix, Fig. S2
for 2D data points.

Construction of the Proximity Matrix (Step III). In step III, the classification
obtained from the iterations described in step II is used to generate a prox-
imity matrix P′ = {p′(i,j)} (N′ × N′) from the vectorW, where p′(i,j) = 1 if i and j
are assigned to the same class (i.e., wi = wj), p′(i,j) = 0 otherwise (i.e., wi ≠ wj).

Steps I–III are repeated M times, each time by randomly selected different
N′ = φN subsets from the N samples, to generate M different P′ matrices.
Each P′ (N′ × N′) matrix is then padded with zeroes to get a sparse P (N × N)
matrix where the zeroes fill the cells of P corresponding to the unselected
samples at the beginning of step I.

Definition of the Dissimilarity Matrix (Steps IV and V). In step IV the M P
matrices are then averaged to generate the average proximity matrix

PM = {pM(i,j)} (N × N) (Fig. 1B). Each element of PM thus ranges from 0 to 1.
More information on this process is provided in SI Appendix, Fig. S3.

High proximities are typical of intracluster relationships, whereas low
proximities are expected for intercluster relationships. Very low proximities
between samples are ignored by setting pM = 0 for pM < «, where « is
a predefined cutoff. This ensures that occasional proximities between two
otherwise unrelated samples are not taken as meaningful. We set « = 0.05
as a default value. Then the Euclidean distances d(i,j) are calculated in the
f-dimensional space between the N samples. By multiplying 1/pM(i,j) by d(i,j),
a weighted dissimilarity matrix Dw = {dw(i,j)} (N × N) is obtained. For all PM
elements pM(i,j) equaling 1, the corresponding dw(i,j) elements equal the
Euclidean distance. For 0 < pM(i,j) < 1, dw(i,j) represents a distance weighted
by the probability that i and j belong to the same class. If pM(i,j) = 0 then
dK(i,j) = ∞.

In step V, the final KODAMA dissimilarity matrix DK is calculated by ap-
plying Floyd’s algorithm (18) to find the shortest path distances between all
pairs of points (Fig. 1C): For each value of h = 1,2,. . .,N in turn, all entries dK(i,j)
are defined as dK(i,j) = min[dw(i,j), dw(i,h) + dw(h,j)]. The final DK = {dK(i,j)}
contains the shortest path distances between all pairs of points. This is a way
to capture the global topology of the manifold embedded in the data, as
reported in a previous study (11).

Initializing and Constraining. The KODAMA procedure can be started by
different initializations of the vector W. Without any a priori information the
vector W can be initialized, as described above, with each wi being different
from the others (i.e., each sample categorized in a one-element class). Al-
ternatively, the vectorW can be initialized by a clustering procedure, such as
k-means, k-medoids, or hierarchical clustering. Finally, supervised constraints
can be imposed by linking some samples in such a way that if one of them is
changed the linked ones must change in the same way (i.e., they are forced
to belong to the same class). This will produce solutions where linked samples
are forced to have the lowest values in the KODAMA dissimilarity matrix.

Optimization of the Parameters. As described above, KODAMA contains ad-
justable parameters (φ, T, M, and «). These parameters do not show re-
markable effects if changed within reasonable ranges. Their proposed
default values are shown in SI Appendix, Table S1. We describe their opti-
mization as default values in SI Appendix and SI Appendix, Fig. S4.

The result of KODAMA is also affected by the choice of the classification
method to use in the cross-validation procedure. We tested kNN, SVM, and
PCA-CA-kNN, the performance of which has been assessed several times in
the analysis of multivariate data (9, 19, 20), but any other classifier can be
used for the KODAMA analysis. Depending on the structure of the data, one
classifier may perform better than others. After extensive tests, we found
that the analysis of the distribution of proximity values pM(i,j) can be used to
select the best classifier (and its relative parameters). To quantify the in-
formation contained in PM and to assess the significance of the KODAMA
result on a high-dimensional dataset the Shannon entropy (H) (21) can be
used. Details are provided in SI Appendix. The use of H to assess the sig-
nificance of a KODAMA analysis was tested on three-clusters, Swiss-roll, and
two multivariate Gaussian distributions datasets (SI Appendix, Fig. S5). The
results are shown in SI Appendix, Table S2.

Visualization of the Data. Visualization is an important aspect in the analysis
of high-dimensional data (22). Feature extraction methods such as multidi-
mensional scaling (MDS) can be used to provide a visual representation of
the KODAMA dissimilarity matrix DK by a set of points in a low dimensional
space where the distances between the points are approximately equal to
the dissimilarities. Alternatively, t-SNE or tree preserving embedding (TPE)
(23) can be used on the KODAMA dissimilarity matrix when the intrinsic
dimensionality of the data largely exceeds the embedding dimensionality
used to visualize the data—the so-called crowding problem (17). Other fea-
ture extraction methods applied to KODAMA are described in SI Appendix.

Time Complexity. KODAMA has polynomial complexity, proportional to the
product of the number of cross-validations performed by the time complexity
of the classifier used. A 10-fold cross-validation performed with kNN classifier
has thus a time complexity of O(0.9 × N′2 × f), where N′ is the overall number
of data points (N′ = φN). KODAMA consequently has a time complexity at
most of O(0.9 × M × T × N′2 × f), where M is the number of times that the
maximization of the cross-validated accuracy is repeated, and T is the max-
imum number of MC iterations. Some optimizations can be used to improve
the efficiency of the algorithm, for instance, using KD-Tree (24) to improve
the storage efficiency or approximate nearest neighbor searching (25) to
improve the speed at the cost of slightly lower accuracy. Efficient parallel

Fig. 1. (A) The KODAMA accuracy maximization procedure is illustrated for
2D data points, where kNN (with k = 2) classifier was used. Each point is
colored according to the cluster it belongs to; the circle represents its dis-
tance to the second-nearest neighbor. More details are shown in SI Ap-
pendix, Fig. S2. (B) In the fourth step the matrices are averaged. More details
are shown in SI Appendix, Fig. S3. (C) In the fifth step the shortest path is
calculated.
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formulation of the kNN search problem based on graphics processing units
are proposed (26), observing speed-ups of 50–60 times compared with
central processing unit implementation. Some tests of KODAMA performed
with kNN, SVM, or PCA-CA-kNN are provided in SI Appendix both for syn-
thetic (Tables S3 and S4) and experimental (Table S5) datasets. The running
times are significantly longer than those of other unsupervised methods, but
still acceptable. The performance of KODAMA is relatively insensitive to the
number of variables but decreases substantially with increasing number of
samples, although not as substantially as for other methods.

Results
Comparative Tests of KODAMA on Synthetic Datasets. Manifolds. To
visually and intuitively demonstrate the features of KODAMA,
we tested its performance in representing 2D manifolds em-
bedded in a 3D space. Fig. 2A illustrates three examples. All of
them are intrinsically 2D datasets and can thus be projected onto
a plane. The first is the well-known Swiss-roll, similar to the one
used in ref. 11. The second is a minimal surface example dis-
covered by Baptiste Meusnier in 1776, the so-called helicoid. Its
name derives from its similarity to a helix: For every point on the
helicoid there is a helix contained in the helicoid, which passes
through that point. The third one is a surface (described by
Ulisse Dini in 1866) with constant negative curvature that can
be created by twisting a pseudosphere. H is calculated to test
whether or not KODAMA is able to catch the internal structure
of these highly nonlinear datasets. The calculated H values are
11.39, 10.94, and 10.92 for the Swiss-roll, the helicoid, and Dini’s
surface, respectively. These values can be compared with those
obtained on three sets of 100 random datasets (average H values
of 13.80, 11.68, and 11.65, respectively). Statistically significant
results (P < 0.01) were thus obtained for all three manifolds
tested, demonstrating that the KODAMA proximities contain
structured information (SI Appendix, Table S2).
Among all tested methods, only KODAMA, ISOMAP, and

LLE had the capacity to compute a 2D neighborhood preserving
embeddings of the data as shown in Fig. 2A and SI Appendix, Fig.
S6. LLE produced an incorrect solution when applied to the
Dini’s surface.
Nonlinear datasets. In a second series of experiments, KODAMA,
LLE, and ISOMAP were applied to spiral datasets with 21 dif-
ferent degrees of noise. For each degree of noise, we created
100 different datasets. To assess the methods’ performance in
achieving a low-dimensional representation from a noisy mani-
fold embedded in high-dimensional space, we calculated the
coefficient of determination, r2, between the first component of
each method and the distribution of each point in the spiral. A
high r2 means that the low-dimensional embedding provides an
accurate description of the original data. LLE and ISOMAP
clearly suffer from problems relative to the “short-circuits” in the
neighborhood graph. Short-circuits can lead to low-dimensional
embeddings that do not preserve a manifold’s true topology (27).
Thus, LLE and ISOMAP performed poorly compared with
KODAMA, as shown in Fig. 2B, whereas the other methods (i.e.,
DM, PCA, RF, SAMMON, SPE, and t-SNE) do not show the
capability to compute a monodimensional neighborhood pre-
serving embeddings of the data. Tests on noisy Swiss-roll and
helicoid datasets were also performed and are described in SI
Appendix, Fig. S7. KODAMA performs better than other meth-
ods on the Swiss-roll dataset, and it is comparable to ISOMAP
on the helicoid dataset.
Gaussian datasets. Most dimensionality reduction methods fail to
preserve clusters (28). In multiclass data, ISOMAP and LLE
cannot lead to successful embedding owing to unconnected
subgraphs. These methods fail if data lie on disconnected mani-
folds. For further comparison, 100 datasets were generated with
three clusters and dimensionalities ranging between 2 and 100.
The number of data points for each cluster ranged between 50
and 200. Each cluster was created from a different multivariate
normal distribution with a different covariance matrix of varia-
bles (29). Each covariance matrix was randomly generated with
values that ranged between 0 and 1. The performance of each

feature extraction method was analyzed by estimating the rela-
tive cluster overlap using the Davies–Bouldin index (DBI) (30), a
function of the ratio of the sum of within-cluster scatter to be-
tween-cluster separation. Small values of DBI correspond to clus-
ters that are compact and whose centers are far away from each
other. The lowest value indicates the best solution. KODAMA
achieved the best results compared with other methods, as
shown in the box-and-whiskers plot in Fig. 2C.
The results of KODAMA, DM, PCA, RF, SAMMON, SPE,

and t-SNE on datasets with different degrees of separation be-
tween clusters are also compared. DBI was used to quantify
the degree of separation between the original clusters, and the

Fig. 2. The problem of nonlinear dimensionality reduction, as illustrated for
3D data sampled from 2D manifolds. The color coding reveals how the data
are embedded in two dimensions. (A) From left to right, columns correspond
to manifold structures, data points distribution, and the KODAMA map,
respectively. KODAMA was performed using kNN as classifier and MDS was
used to visualize the results. (B) Performance of achieving a low-dimensional
representation from a manifold embedded in high-dimensional space as a
function of the noise in the spiral datasets. KODAMA (in blue), ISOMAP (in
yellow), and LLE (in red) were applied to spiral datasets. The coefficient of
determination, r2, was used to evaluate the performance of each method. A
higher r2 means that the low-dimensional embedding provides an accurate
description of the original data. The dashed lines represent the median of r2

obtained with KODAMA, ISOMAP, and LLE from 100 datasets with different
noise values. The solid lines indicate the lower hinge and the upper hinge.
KODAMA was performed using kNN as classifier and MDS to process the
KODAMA dissimilarity matrix. (C) Box-and-whiskers plot of DBI values
obtained from the Gaussian datasets. For each dataset, the classifier of
KODAMA was selected by minimizing the H value.
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performances of the methods were evaluated by the DBI of the
outputs. KODAMA showed the lowest DBI independently of
the DBI (i.e., cluster separation) of the original data. The ob-
tained DBI values for the various methods are reported in SI
Appendix, Fig. S8 as a function of the DBI values of the raw data.
Moreover, we also show the results of KODAMA when applied
to datasets with a continuous distribution of data points (i.e.,
single multivariate Gaussian distribution, test-1 and test-2 in SI
Appendix, Fig. S5). In these tests, KODAMA correctly showed
nonstatistically significant results.
Frequently, missing values occur in real-life experiments.

KODAMA can handle missing data: A detailed procedure is
provided in SI Appendix. SI Appendix, Fig. S9 shows that
KODAMA has intermediate performance, behaving somewhat
less well with respect to ISOMAP, PCA, and RF, comparably
with SAMMON and SPE, and significantly better than LLE,
DM, and t-SNE.

Comparative Tests of KODAMA on Experimental Datasets. Lymphoma
dataset. KODAMA was tested on an experimental dataset (31)
that is a popular benchmark for statistical analysis programs.
This dataset consists of gene expression profiles of the three
most prevalent adult lymphoid malignancies: diffuse large B-cell
lymphoma (DLBCL), follicular lymphoma (FL), and B-cell
chronic lymphocytic leukemia (B-CLL). The source study pro-
duced gene expression data for f = 4,682 genes in n = 62 mRNA
samples: 42 samples of DLBCL, 9 samples of FL, and 11 samples
of B-CLL. In the present work, it is assumed that the lymphoma
data are unsupervised (i.e., the number of classes and the class of
each sample are not given a priori). We imputed missing values
and standardized the data as described in ref. 32.
KODAMA performed with kNN identified three classes. A

separation between DLBCL and FL/B-CLL is clearly apparent in
the first two components, whereas FL and B-CLL can be dis-
tinguished in the third component. From this unsupervised
KODAMA analysis, we may conclude that the lymphoma data
consist primarily of two classes (DLBCL and FL/B-CLL) and
that FL and B-CLL are secondary classes, confirming the results
obtained in a previous study (5). KODAMA performed with
SVM shows a clear separation of the three different malignan-
cies, as does LLE and at variance with PCA and ISOMAP (Fig.
3A). The other methods are shown in SI Appendix, Fig. S10. The
DBIs are reported in Fig. 4 and in SI Appendix, Table S6.
Whereas KODAMA with either kNN or SVM achieved statis-
tically significant results (P < 0.01) and comparable values of H
(respectively 8.05 and 8.09), KODAMA with PCA-CA-kNN
showed a higher and not statistically significant H value of 8.25
(P = 0.35), compared with an averaged H of 8.26 obtained on 100
random datasets. In terms of accuracy with respect to the bi-
ological classification, LLE and KODAMA with SVM yield no
misclassifications, and KODAMA with kNN yields one mis-
classified sample. PCA, ISOMAP, and the other methods tested
(SI Appendix, Fig. S10) perform less well.
Metabolomic dataset. The global analysis of metabolites in bi-
ological fluids, tissues, or related biological samples is a promis-
ing area of research, owing to its potential relevance for human
health. To examine KODAMA in this context, we address the
task of clustering a dataset of NMR spectra of urines (9). The
data belong to a cohort of 22 healthy donors (11 male and 11
female) where each provided about 40 urine samples over the
time course of approximately 2 mo, for a total of n = 873 samples
and f = 416 variables (9). KODAMA was performed with kNN,
SVM, and PCA-CA-kNN. Moreover, KODAMA was initialized
with different class-indicator vectors W. We obtained the lowest
value of H in KODAMA with PCA-CA-kNN and W initialized
by k-means. KODAMA was then compared with classical and
state-of-the-art methods. Comparisons between KODAMA,
PCA, ISOMAP, and LLE are shown in Fig. 3B and the solutions
of the other methods are shown in SI Appendix, Fig. S10. The
results are summarized in SI Appendix, Table S6. Moreover, a
comparison of the different visualization methods is shown in

SI Appendix, Fig. S11. Clearly, KODAMA performs better than
all other methods also in this case.
The ability of feature extraction methods to highlight local

structures permits their use for clustering purposes. When we
applied k-medoids (with k = 22) to the KODAMA dissimilarity
matrix DK, we obtained only 10.7% of misclusterized samples
in the urine dataset. The performances of the different un-
supervised clustering methods were compared with the adjusted
Rand index (ARI) (SI Appendix) (33), a function that measures
similarity between two classifications. ARI spans from −1 to 1;
perfect agreement is scored 1, whereas 0 corresponds to a ran-
dom partition. Negative values indicate less agreement than
expected by chance. In all cases the presence of 22 clusters was
imposed. The ARI value for KODAMA was 0.769. The other
methods tested (34–39) (SI Appendix) provided ARI values
ranging from 0.439 to 0.212 (SI Appendix, Table S7).
We also applied KODAMA in a semisupervised context, by

providing the information regarding sample groupings from each

Fig. 3. (A) Lymphoma dataset. Blue circle, DLBCL; yellow square, FL; and
gray diamond, B-CLL. Comparison between KODAMA, PCA, ISOMAP, and
LLE. MDS was used to visualize the results of KODAMA dissimilarity matrix.
The results of the other methods are shown in SI Appendix, Fig. S10. (B)
Metabolomic dataset. Comparison between KODAMA, PCA, ISOMAP, and
LLE. Color coding indicates samples from the same donor. The results of the
other methods are shown in SI Appendix, Fig. S10. PCA-CA-kNN classifier for
KODAMA was selected by minimizing the H value. TPE was used to visualize
the results of KODAMA dissimilarity matrix.
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individual in such a way that the spectra belonging to each in-
dividual were forced to maintain the same classification. No in-
formation about sex was provided. We performed a PCA-CA
analysis as described in ref. 9: The data were projected into their
PCA subspace representing 90.0% of the variance, and the
resulting PCA scores were projected into the 2D CA subspace.
SI Appendix, Fig. S12 shows the result obtained by PCA-CA and
KODAMA. We observed that in terms of showing a clear sex
separation the semisupervised KODAMA performed better
than PCA-CA.

Knowledge Discovery by KODAMA. Early-type galaxies datasets. We
next explored two early-type galaxies (ETGs) datasets, available
from the ATLAS3D project (40). The ATLAS3D project com-
bines a multiwavelength survey of a complete set of n = 260
ETGs. Various parameters are collected, such as the largest
equivalent aperture radius (Rmax), the moment ellipticity mea-
sured within one effective radius Re and one-half effective radius
Re/2 (respectively «e and «e/2), and other photometric and in-
tegral-field spectroscopic parameter (i.e., V/σe, V/σe/2, λRe, and
λRe/2 indexes). A dataset contains the Rmax, «e, V/σe, and λRe
parameters; the other dataset contains Rmax, «e/2, V/σe/2, and
λRe/2. Recent work by Emsellem et al. (41) shows how these
parameters can be used to define a refined and optimized cri-
terion for disentangling the so-called fast rotators (FRs) and
slow rotators (SRs). SI Appendix, Figs. S10 and S13 show the
comparison between KODAMA and other unsupervised feature
extraction methods. In both ETGs datasets, KODAMA achieved
excellent results, comparable only to those of ISOMAP (Fig. 4
and SI Appendix, Table S6). KODAMA correctly highlighted the
differences between FRs and SRs, further suggesting that the
SRs may be part of a larger well-defined cluster, with some
exceptions falling outside the boundaries.

State of the Union dataset. Sparse data, in which each individual
record contains values only for a small fraction of attributes,
present a challenge for data mining methods. An interesting case
study is offered by the annual addresses presented by the pres-
idents of the United States to the Congress (the “State of the
Union” speech), which are available from The American Presi-
dency Project repository. The State of the Union speeches have
been the subject of numerous linguistic analyses (ref. 42 and
references therein). We selected only the spoken, not written,
addresses from 1900 until the sixth address by Barack Obama in
2014. Punctuation characters, numbers, words shorter than three
characters, and stop-words (e.g., “that,” “and,” and “which”)
were removed from the dataset. This resulted in a dataset of n =
86 speeches containing f = 834 different meaningful words each.
Term frequency-inverse document frequency (TF-IDF) (43) was
used to get the feature vectors for the unsupervised analysis. It is
often used as a weighting factor in information retrieval and text
mining. The TF-IDF value increases proportionally to the number
of times a word appears in the document, but is offset by the
frequency of the word in the corpus, which helps to control for
the fact that some words are generally more common than others.
KODAMA was performed with kNN, SVM, and PCA-CA-

kNN. We found the lowest value of H in KODAMA with kNN.
The first component of MDS applied to the KODAMA dis-
similarity matrix (Fig. 5) shows a single, clear, and abrupt tran-
sition over a period of more than 100 y, which occurred during
the presidency of Ronald Reagan. The pre-Reagan and post-
Reagan speeches are recognized with 100% cross-validated
accuracy using the kNN classifier. Words such as “labor,”
“expenditures,” “employment,” “relations,” “resources,” and
“production” suddenly decrease in frequency, whereas words
such as (parents,” “students,” “pass,” “children,” “Medicare,”
and “reform” suddenly increase in frequency (Fig. 5, Insets). It
can be noted that the third address of G. Bush (January 29, 1991)
is somewhat different from the other Bush’s addresses and marks
a partial reversal to the pre-Reagan style. Interestingly, this
speech was held in the middle of Operation Desert Storm
(January 17, 1991–February 28, 1991) and probably reflects the
emotional atmosphere of the nation.
It is noteworthy that if KODAMA is performed in a semi-

supervised way, by providing information grouping together the
speeches of each president, Reagan seems to represent a “hinge”
between past and present rhetorical modes. The performances of
the other feature extraction methods are lower when compared
on the basis of the pre- and post-Reagan discrimination (SI
Appendix, Table S6). The results of each method are shown in
SI Appendix, Fig. S14. Interestingly, no distinction between
Republicans and Democrats is evident. Although it is widely
accepted that Reagan’s rhetoric was unique and that it influenced

Fig. 4. Bar plot of DBI values obtained with KODAMA, PCA, ISOMAP, and
LLE on the lymphoma, metabolomic, and ETGs datasets.

Fig. 5. First component of MDS applied to the KODAMA dissimilarity matrix obtained from the selected addresses of American presidents, in chronological
order. The Insets show the words that have most significantly decreased (left) or increased (right) their frequencies from before to after Reagan’s presidency,
and the associated Bonferroni corrected P values. kNN classifier for KODAMA was selected by minimizing the H value.
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all subsequent speeches—in the words of Obama, Ronald Rea-
gan “changed the trajectory of America in a way that, you know,
Richard Nixon did not and in a way that Bill Clinton did not”
(44)—our analysis clearly points to a sharp change of Reagan’s
rhetoric during his presidency, and more precisely toward the
end of his first mandate.

Discussion
Some limitations of conventional algorithms, such as PCA (12),
stem from the fact that they use imposed distance measures
defined in a globally linear space or with limited degrees of
freedom. Linear methods are usually not appropriate to mod-
eling curved manifolds, because they focus on preserving the
distances between widely separated data points rather than on
preserving the distances between nearby data points. Nonlinear
dimensionality reduction methods (11, 13) are capable of dis-
covering nonlinear degrees of freedom (11) but are negatively
affected by increasing dimensionality of the embedded manifold
(the so-called curse of dimensionality) (45) and by the problem
of short-circuit edges in the presence of noisy or sparse data (27).
To illustrate another type of drawback, t-SNE reduces the

dimensionality of data in a manner dependent on the local
properties of that data. This makes t-SNE likewise sensitive to
the curse of dimensionality of the data (17). Manifold learners
such as ISOMAP and LLE suffer from precisely the same
problem (17). Even a single short-circuit error (27) can alter
many entries into the neighborhood graph, which in turn can

lead to a drastically different and incorrect low-dimensional
embedding.
We thus propose KODAMA as a method of performing fea-

ture extraction on noisy and high-dimensional data. Thus, we
have demonstrated its performance on real datasets chosen for
their different structures and properties. Our approach differs
from previous methods in that it is based on an integrated pro-
cedure of validation of the results through an embedded MC
procedure that maximizes cross-validated accuracy. Overall,
KODAMA outperformed the existing feature extraction meth-
ods that we tested. KODAMA offers a general framework for
analyzing any kind of complex data in a broad range of sciences.
It also makes it possible to perform analyses in unsupervised or
semisupervised contexts.
Finally, its ability to resolve meaningful clusters within the

data makes the KODAMA dissimilarity matrix useful in con-
junction with classical clustering algorithms (e.g., k-medoids),
because it strongly improves their performances.
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