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We show that a Fourier-based sequence distance function is able
to identify structural homologs of target sequences with high
accuracy. It is shown that Fourier distances correlate very strongly
with independently determined structural distances between
molecules, a property of the method that is not attainable using
conventional representations. It is further shown that the ability
of the Fourier approach to identify protein folds is statistically far
in excess of random expectation. It is then shown that, in actual
searches for structural homologs of selected target sequences, the
Fourier approach gives excellent results. On the basis of these
results, we suggest that the global information detected by the
Fourier representation is an essential feature of structure encoding
in protein sequences and a key to structural homology detection.

sequence homology | Fourier analysis

Establishment of the folded structure of a protein from its
amino acid sequence is one of the central problems in current

molecular biophysics, and a question of the greatest practical
interest in all areas of biological research. The most reliable
method for predicting the structure of a protein from its se-
quence remains homology modeling (1, 2). In this approach (3),
the structure of a target sequence is modeled, based on the
known structures of proteins whose sequences are defined as
similar to it by predefined criteria. Although this method has led
to many encouraging successes, homology modeling cannot be
regarded as a solved problem. This can be appreciated by noting
the following two persistent difficulties with present approaches:

i) Any reasonably large group of sequences known to fold to
a specified architecture will contain pairs of sequences that
are not related by any known criterion. This observation is so
well known (4) that it has been dignified with a name (5): the
“remote homolog problem.” As a result of this fact, many
appropriate homologs for a given homology target will be re-
jected incorrectly.

ii) There exist sequences (6) in which the mutation of a single
site leads to a complete change in the fold of the protein.
These “conformational switches” have also been well studied.
All current sequence comparison methods predict that these
sequence pairs should have essentially identical structures. As
a result, incorrect homologs can be selected for modeling.

Essentially, all current methods for sequence comparison,
which provide the framework in which these difficulties arise, are
based on alignment techniques. Alignment rests on a number of
assumptions whose effects have not been rigorously examined.
We briefly list some of these:

• An implicit assumption that structural similarity between mole-
cules is a result of evolutionary relationships, rather than purely
physical mechanisms;

• A dependence on completely arbitrary penalty functions to
account for misregistration (in the form of insertions and dele-
tions) of sequences;

• Neglect of the possibility that fold encoding may occur in ways
that cannot be detected by local, residue-by-residue comparison;

• Comparison of sequences using parameters that, at best, rep-
resent amino acid physical properties only indirectly;

• A reliance, in developing advanced approaches, on self-refer-
ential methods, in which new sequence comparison algorithms
are built on the results of previous alignments, and which there-
fore incorporate previous assumptions in a nonlinear manner;

• An additional reliance, in constructing more sophisticated
alignment procedures, on multiple sequence alignment, which
is an NP-hard problem (7) and cannot be solved exactly.

It should be further noted that it is not known whether an
exclusive reliance on alignment-based sequence comparison
methods biases the classes of homologs which can be detec-
ted. In essence, no controlled studies of this question have
been carried out.
To circumvent these assumptions, and make such controls

feasible, we have developed an alternate approach (8–13) to the
representation and comparison of sequences, based on Fourier
analysis. In the present work, we address the initial step in ho-
mology modeling, the detection of structural homologs of a tar-
get sequence of interest. A Fourier-based sequence–sequence
distance function is introduced, and its performance compared
with that of an independently constructed structure–structure
distance function applied to the same set of proteins. We dem-
onstrate the following points:

• The distances between molecules in the sequence and struc-
ture spaces exhibit very high correlation. To the best of our
knowledge, parallel distance functions have not been previ-
ously developed, nor has such a correlation been attempted.

Significance

A Fourier-based sequence distance function for proteins is
presented, which exhibits high accuracy in structural homol-
ogy searches. The significance of this work lies in the fact that
there has been no independent method available until now
with which to compare homologies generated by sequence
alignment. The method avoids the limitations of alignment
and has the potential to uncover new classes of homologs and
to give significant insight into the organization of the protein
universe. Because it is very rapid and able to compare arbitrarily
large groups of sequences simultaneously and exactly, it also
has great promise as a general tool in biomedical research.

Author contributions: H.A.S. and S.R. designed research; S.R. performed research; S.R.
analyzed data; and H.A.S. and S.R. wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence may be addressed. E-mail: has5@cornell.edu or srr87@cornell.
edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1403599111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1403599111 PNAS | April 8, 2014 | vol. 111 | no. 14 | 5225–5229

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1403599111&domain=pdf&date_stamp=2014-03-27
mailto:has5@cornell.edu
mailto:srr87@cornell.edu
mailto:srr87@cornell.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1403599111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1403599111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1403599111


• The statistical reliability of the sequence distance function in
homologous fold detection is quantitatively examined and
shown to be very high.

• The method is shown to find exact homologs for sequences
belonging to well-established structure families.

• The sequence–sequence distance function is used to search for
homologs of difficult targets posed in previous critical assess-
ment of protein structure prediction (CASP) exercises. It is
shown that simple selection criteria lead to homolog sets con-
taining structures very similar to those of the targets.

It should be emphasized that the present method is completely
different in both conception and execution from alignment-
based approaches. It is exact, has been statistically verified over
a very large database, and can be applied to the simultaneous
comparison of arbitrarily large ensembles of sequences. It should
therefore be helpful in the detection of structural homologs of
target sequences of interest, as well as in the study of the orga-
nization of protein sequence space.
A brief description of the general approach, and details of the

present work, are given in Methods.

Results
We examine the reliability and utility of the Fourier-based se-
quence distance function, which we denote by Δ, from three
different viewpoints.

Correlation Between Sequence and Structure Differences. We begin
by asking whether there is any correlation between interprotein
distances in the sequence and structure distance spaces. A pos-
itive answer to this question is a sine qua non for the applicability
of a sequence comparison function to homology modeling. We are
not aware of any studies that investigate this point for alignment-
based sequence comparison, or superposition-based structural
comparison methods. Indeed, it is not at all clear how one would
use alignment to meaningfully quantitate the differences between
sequences with no detectable alignment-based similarity, and it is
not possible to carry out structural superposition on structure pairs
with very different sequence lengths. The methods we have de-
veloped make it possible to carry out this investigation on arbi-
trarily different domains in a physically meaningful way.
We calculated the correlation coefficient between the se-

quence-based distance Δ(P,Q) and the structure-based distance
δ(P,Q) for the sequence/structure dataset described in Methods.
A flowchart for this calculation is shown in Fig. 1. We find that
R = 0.8. The two distance functions are indeed highly correlated.
It should be pointed out that this correlation is over an extremely
large number of sequence distance/structure distance pairs—the
12,227 proteins in the dataset give rise to ∼7.5 × 107 independent
measurements. To quantitate the statistical significance of the
correlation coefficient, we calculated a standard score (i.e., a
centered, normalized value, traditionally denoted by z) for the
observed value of R, and find an extremely large value: z ∼ 9,518.
We are therefore able to conclusively reject the null hypothesis
that R = 0. This provides a far more stringent, and statistically
significant, test of the utility of the intersequence distance function
than homology searches involving a limited number of target se-
quences. We shall, nevertheless, examine the results of such
searches, to place the present results in the context of currently
widespread methods. First, however, we examine the statistical
significance of fold detection by Δ from a different perspective.

Statistical Significance of Fold Detection. We ask how many se-
quences with a given degree of fold similarity to the target are found
within a specified neighborhood of each sequence in our dataset.
We use a simple K-nearest-neighbor model and characterize fold
similarity by the degree of identity in CATH (14) indices. We thus
examine the K nearest neighbors (as measured by Δ) of sequence

j, which has CATH indices (Cj,Aj,Tj,Hj), and ask what fraction of
them have index values Cj, (Cj,Aj), (Cj,Aj,Tj), or (Cj,Aj,Tj,Hj). A
match constitutes a correct prediction at the given degree of fold
similarity. We can also calculate exactly the expected values of
these fractions, and the associated SDs, using straightforward
counting arguments from elementary probability. This enables
us to calculate a standard score (z value) for each number of
nearest neighbors, and thus to determine the extent to which Δ
performs better than would be expected on a purely random
basis. Data are shown in Table 1 for nearest-neighbor values of 1,
10, and 20. It will be seen that Δ does very much better than
would be expected on a purely random basis, except at the lowest
degree of fold similarity (the C level) with 10 (z = 1.15) or 20 (z =
0) nearest neighbors. At this low level of similarity, the number
of sequences with each value of the index (C) is so large that, for
any reasonable number of nearest neighbors, we execute an
essentially random selection. However, if we restrict choice by
selecting only a single nearest neighbor, Δ performs much
better than random selection (z = 41.43) even at the C level.
We have established the statistical significance of fold detec-

tion by the intersequence distance function Δ. We now examine
the results of actual homology searches to place the Fourier
method in a somewhat more familiar context.

Search for Structural Homologs of Specified Target Sequences. This
effort was divided into two parts. In the first, a set of 12 sequences
from the dataset were selected at random. The only require-
ments imposed on target selection were that each sequence
should not be the only member of its CATH class, and that a
roughly equal number of representatives should be chosen from
classes C = 1, 2, and 3 (helical, sheet/barrel, and mixed structures).
A 20-nearest-neighbor search was carried out for structural
homologs of each sequence. Structural homologs were identified

Correlation
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Structural
Similarity
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Fig. 1. Schematic of the correlation calculation. Here, “GBM” refers to the
“generalized bond matrix” structural distance function discussed in the text.
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by correspondence of (C,A,T) or (C,A,T,H) index sets between
the target and members of the 20-sequence neighborhood of the
target. [It should be remembered that the H index relates to se-
quence homology properties, so that no more than (C,A,T)-level
identity is necessary to indicate structural homology.]
It can be seen from Table 2 that, for all 12 targets, structural

homologs are found in a 20-sequence neighborhood. In eight
cases, more than one homolog was found. The task that remains
for the modeler is to identify the homologs from among the 20
candidates. This can be expected to be dealt with in the course of
energy-based optimization of the model structure, using the 20
candidates as starting points.
In the second part of the search investigation, five targets

proposed as difficult cases in the CASP8 exercise (15) were
chosen. These molecules now have structures deposited in the
Protein Data Bank, but have not been classified in the CATH
database. To identify structural homologs, therefore, we calcu-
lated the structural distances δ(T,Ni) between the target T and
each of the nearest neighbors Ni (i = 1, 2,. . ., 20). The question of
interest is now whether, within the set of nearest sequence
neighbors, there are any that are also near structural neighbors.
With a view to the practicalities of homology searching, and in
the absence of classification information, we limited the search
for structural homologs in this case to molecules with sequence

length within ±10% of that of the target sequence. The results of
this investigation are shown in Table 3. For each target, the
structural distance of the most similar among the 20 nearest-
sequence neighbors is shown in the last column. The structure
distances are shown as centered, normalized values ζ, defined
explicitly in Eq. 7 below, and the minimum possible value, cor-
responding to identical structures, is −0.778. It can therefore be
seen that, in each case, structurally similar domains were iden-
tified solely on the basis of sequence similarity considerations.
The actual structures of these most-similar domains are shown

in SI Appendix, Fig. S1. It can be seen that in four of the five cases,
the structure is quite similar to that of the CASP target. In one case
(T0457), the most similar sequence neighbor has different topology
from that of the target, although the distance function, unsur-
prisingly, has detected significant local similarities between the two
domains. It should be remembered, in this context, that the CASP
domains, which are difficult targets, may not, in every case, have
structural homologs in our database at all.With respect to T0457, we
find upon further investigation that this is indeed the case.

Discussion and Conclusions
We have demonstrated the ability of Fourier-based intersequence
distance functions to identify structural homologs of target se-
quences. This has been shown in four different ways:

i) It was demonstrated that intersequence distances given by
the Fourier approach are strongly correlated with interstruc-
ture distances for the same proteins, given by an independent
structure comparison algorithm.

ii) It was demonstrated that the ability of the Fourier distance
function to correctly classify sequences far exceeds what
would be expected on a purely random basis.

iii) It was shown that the algorithm identifies structural homo-
logs of identical fold for every member of a test set of targets.

iv) It was shown that the algorithm usually identifies structures
that are quantitatively similar to the structures of CASP chal-
lenge targets, using only sequence information.

These observations suggest very strongly that the global orga-
nization of protein sequences, rather than purely local informa-
tion, is required to encode structure in amino acid sequence. The
Fourier approach is not encumbered by many of the limitations
of alignment-based sequence comparison methods, and therefore
results generated using this approach can be expected to pro-
vide both a useful control on homology results generated from
algorithms in common use, and new insights into the global or-
ganization of the protein universe.

Table 1. The statistical significance of fold detection by Δ

Degree Observed fraction Predicted fraction* SD z

NN = 1
CATH 0.287 0.0051 0.00067 420.75
CAT 0.294 0.03 0.0015 176.0
CA 0.35 0.117 0.0029 80.34
C 0.569 0.395 0.0042 41.43

NN = 10
CATH 0.469 0.047 0.002 211.0
CAT 0.538 0.2 0.005 67.6
CA 0.783 0.625 0.009 17.56
C 0.982 0.967 0.013 1.15

NN = 20
CATH 0.535 0.089 0.003 148.67
CAT 0.617 0.289 0.0068 48.24
CA 0.886 0.789 0.019 7.46
C 0.998 0.998 0.019 0.0

NN is the number of nearest neighbors used in the K-nearest-neighbors
test. Degree denotes the degree of fold similarity. “Fraction” denotes the
fraction of correct matches in the NN-nearest-neighbor group (see text).
*The fraction that would be expected on a purely random basis.

Table 2. Structural homolog search results for classified sequences

Target no. PDB code C A T H No. of CATH matches* No. of CAT matches*

1 16pk001 3 40 50 1,260 2 4
2 1a04A01 3 40 50 2,300 0 1
3 1a0hA01 2 40 20 10 1 1
4 1a17000 1 25 40 10 0 2
5 1a2yB00 2 60 40 10 18 18
6 1a4pA00 1 10 238 10 2 2
7 1a6zA01 3 30 500 10 1 1
8 1a78A00 2 60 120 200 3 3
9 1aoy000 1 10 10 10 1 1
10 1b9oA00 1 10 530 10 3 3
11 1pu3A00 3 10 130 10 2 2
12 1a2wA00 3 10 130 10 5 5

The columns labeled C, A, T, and H give the indices of the targets in the CATH database (see text).
*The number of CATH or CAT matches out of 20 nearest neighbors.
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Methods
The Fourier method differs from currently prevalent alignment-based
algorithms in two fundamental ways. These points have been discussed in
detail previously (8, 9), and we briefly summarize here:

i) The 20 naturally occurring amino acids are represented by numerical
parameters derived, by factor analysis, from their physical properties
(16, 17). Ten property factors have been shown (16) to account for essen-
tially all of the variance of the physical properties, and it is therefore
possible to represent each amino acid as a 10-vector, and an N-residue
sequence as a set of 10 numerical chains of length N (8, 9). The property
factors are complete and orthonormal, by construction, and therefore
sequences are represented numerically by parameters that, in addition
to being physically based, are both exhaustive and nonredundant.

ii) The resulting numerically encoded sequences are Fourier transformed.
The result of this operation is a set of Fourier coefficients, indexed by
two parameters—the wave number k and a property factor index l, which
indicates which of the 10 property factor strings gives rise to the coeffi-
cient. Each individual coefficient is global in character, because it con-
tains information from the entire sequence. The Fourier coefficients,
like the property factors, are complete and orthonormal by construc-
tion and, taken together, provide a complete numerical representa-
tion of the protein sequence. Note that, in k-space, chain length has
been removed as a variable, and therefore chains of different lengths
can be compared rigorously; the Fourier coefficients describe properties
of the chains which scale with length. It has been shown (9) that the
average and variance properties of the Fourier coefficients can be cal-
culated analytically, so that the statistical significance of the magnitude
of a given coefficient can be determined exactly.

The Sequence Distance Function. In very recent work (13), we have demon-
strated that architectural families are distinguished from one another by
Fourier coefficients at a very limited set of low-k wave numbers. The only
values of k at which there are statistically significant differences between
sets of sequences with different folds are 0 ≤ k ≤ 6.

This observation is central to the present work, because it provides a basis
for the construction of the intersequence distance function. As in previous
work (9), we define a standard score for the Fourier coefficient [denoted in
this case by Zk

(l)] for property l, at wave number k, as follows:

ZðlÞ
k =

cðlÞk − ÆcðlÞk æN
σ
�
cðlÞk

� , [1]

where c is the unnormalized sine or cosine Fourier coefficient, the angle
brackets denote an average over all permutations of the original N-residue
wild-type sequence, and σ is the associated SD. This normalization removes any
dependence on sequence composition alone and creates a function that explicitly
reflects the influence of the specific linear arrangement of amino acids along the
sequence. We then define a k-dependent distance between any two sequences
P and Q, Δk(P,Q), and the total distance between the sequences as follows:

ΔðP,QÞ=
"X6

k=0

Δ2
kðP,QÞ

#1=2

: [2]

The exact definition of Δk(P,Q), which depends on all 10 property factors, is
given in SI Appendix. The distance function is a simple Cartesian metric

in the space of centered, normalized Fourier coefficients Zk
(l) (Eq. 1), but

different combinations of sine and cosine coefficients are used at dif-
ferent k values, reflecting statistically significant differences found pre-
viously (13).

The Structure Distance Function. To establish the reliability of the sequence
distance function Δ, we must define a parallel, independent distance
function that measures the degree of structural similarity between proteins
without reference to sequence. We devised such a function in previous
work (18, 19) and applied it to the quantitative classification of known
protein structures. This approach, the generalized bond matrix (GBM)
method, describes a structure in terms of a set of matrices of bond lengths,
bond angles, and bond dihedral angles. The method can be applied to any
appropriately defined representation of the chain, but here we use the
nearest-neighbor virtual bond (Cα) backbone. The size of each matrix is
determined by a preselected fragment length. The representation is
therefore sensitive to local structural characteristics. At the same time,
the complete distribution of these matrices (which describe the over-
lapping fragments that make up a structure) is a global characteristic of
the structure and can be used as a fingerprint. A distance function is
then defined, which acts on two fingerprints to quantitate the degree of
similarity between the associated structures. Because the fingerprints are
normalized by sequence length, it is possible to meaningfully compare the
structures of proteins of different size. This approach was independently
shown (20) to perform comparably to trusted, “gold standard” superpo-
sition-based structure comparison algorithms (21, 22), while being com-
putationally far less intensive. Unlike those methods, the GBM method is
suitable for the rapid, simultaneous pairwise comparison of very large sets
of structures.

We use here a low-resolution (LRGBM) version of the algorithm, which was
demonstrated (19) to give results very similar to the full-resolution com-
parison method, and which is even more rapid in execution. In the LRGBM
formulation, the structure of a protein is represented in a four-dimensional
space by integrating over the populations of predefined regions of the high-
resolution GBM fingerprint, which are denoted as AR, ER, E0, and EL (defined
in ref. 19). We computed these coordinates for the members of a very large
dataset of proteins of known structure (described below). A principal com-
ponent analysis shows that, in this representation, the space of structures is
actually three-dimensional, and the coordinates of a structure are given by
the following:

w1 =−0:522  pðELÞ− 0:522  pðE0Þ− 0:298  pðERÞ+ 0:605  pðARÞ [3]

w2 =−0:068  pðELÞ− 0:354  pðE0Þ− 0:928  pðERÞ+ 0:093  pðARÞ [4]

w3 =−0:776  pðELÞ+0:602  pðE0Þ+ 0:179  pðERÞ+ 0:062  pðARÞ, [5]

where p(X) is the fractional occupation of region X. The distance δ(P,Q)
between proteins P and Q in structure space is again taken to be a simple
Cartesian metric, given by the following:

δðP,QÞ=
"X3

m=1

ðwmðPÞ−wmðQÞÞ2
#1=2

: [6]

This distance can also be given in the form of a standard score which, for
clarity, we denote in this case as ζ(P,Q), defined by the following:

ζðP,QÞ= ðδðP,QÞ− ÆδðP,QÞæÞ
σðδÞ : [7]

The Database. For the work described herein, we use a protein dataset that is
based on the CATH sequence/structure database. The hierarchical organi-
zation of this database (in which proteins are classified by class, architecture,
topology, and homology) is ideal for the present study. We use a set of 12,227
domains drawn from the CathDomainSeqs.S60.ATOM.v.3.2.0 dataset (www.
cathdb.info). The sequences in this set have no more than 60% sequence
identity. To the best of our knowledge, this is one of the largest datasets
ever used in studies of this type.
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Table 3. Results of structural homology search for CASP8
targets

Target ID PDB code Domain
Sequence
limits

Minimum
structure
distance, ζ

T0389 2vsw D1 1–134 −0.645
T0425 3czx D1 1–179 −0.638
T0433 3d7l D1 1–199 −0.588
T0457 3dev D1 1–194 −0.711
T0507 3do8 D1 1–124 −0.687
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