
Generating a Dynamic Synthetic Population – Using an
Age-Structured Two-Sex Model for Household Dynamics
Mohammad-Reza Namazi-Rad1,2*, Payam Mokhtarian2, Pascal Perez1

1 SMART Infrastructure Facility, University of Wollongong, New South Wales, Australia, 2 National Institute for Applied Statistics Research Australia, University of

Wollongong, New South Wales, Australia

Abstract

Generating a reliable computer-simulated synthetic population is necessary for knowledge processing and decision-making
analysis in agent-based systems in order to measure, interpret and describe each target area and the human activity
patterns within it. In this paper, both synthetic reconstruction (SR) and combinatorial optimisation (CO) techniques are
discussed for generating a reliable synthetic population for a certain geographic region (in Australia) using aggregated- and
disaggregated-level information available for such an area. A CO algorithm using the quadratic function of population
estimators is presented in this paper in order to generate a synthetic population while considering a two-fold nested
structure for the individuals and households within the target areas. The baseline population in this study is generated from
the confidentialised unit record files (CURFs) and 2006 Australian census tables. The dynamics of the created population is
then projected over five years using a dynamic micro-simulation model for individual- and household-level demographic
transitions. This projection is then compared with the 2011 Australian census. A prediction interval is provided for the
population estimates obtained by the bootstrapping method, by which the variability structure of a predictor can be
replicated in a bootstrap distribution.
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Introduction

Increasingly, planners require sophisticated insights into social

behaviour and the interdependencies characterising urban sys-

tems. There is a growing need for new and evolving tools to assist

research and decision-making. In order to create a realistic

decision-making model, a reliable synthetic population of agents is

required which should be able to reflect the social entities,

individuals and households, with their characteristics and specific

behavioural patterns. It is generally unrealistic to assume that all

required information about the system could be provided by a

single data source. Such a perfect single data source able to

provide complete knowledge about agents’ behaviour and their

environment does not exist in practice. This paper presents an

algorithm to generate a dynamic synthetic population for

Wollongong, a region in the south Sydney Metropolitan area,

from the multiple data sources.

The two main components in the population synthesizer are

initialization and evolution. Initialization involves simulating the

baseline area-specific population of individuals and households

using sample-based unit-level data so that the simulated popula-

tion meets aggregate-level information from the census. The result

is a collection of simulated individuals grouped into five categories

of households and associated with specific geographic locations.

Data aggregation performed by initialization is uses a combina-

torial optimisation (CO) method. Due to the individual-centered

nature of the modelling framework, our implementation of CO is

slightly different from traditional approaches described in the

literature. In this paper, the influence of such modifications is

investigated. After the baseline population is generated, we use a

dynamic micro-simulation model for individual- and household-

level demographic transitions over five years and provide a

bootstrapping prediction interval given a significant level for

uncertainty measurement. Our main objective remains to calibrate

our algorithm against data from the 2006 Australian census, apply

the five-year dynamic model and to validate the simulated

population of 2011 against data from the 2011 Australian census.

The purpose of the reliable dynamic synthetic population is to

create a valid representation of the population spatially distributed

while addressing the daily population transitions. In this paper, we

discuss standard approaches for generating a synthetic population.

The relevant literature is reviewed in Section 2. Initialization of a

synthetic population is discussed in Section 3. Population of

households and individuals in 2006 living in Wollongong is

generated using available information from the 2006 Australian

census. An age-structured two-sex dynamic model is then

presented considering the hierarchy within the population in

Section 4. A five-year population dynamics within the target area

is generated in this study and the simulated synthetic population in

2011 is validated against the 2011 Australian census (see Section

5). Discussion is provided in Section 6.

Population Synthesis Methods

The synthetic reconstruction (SR) and hill climbing (HC)

techniques are discussed in this section as two standard approaches
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for generating a synthetic population. The objective of the SR

approach is to use a deterministic algorithm for reconstructing the

population while the HC approach follows a stochastic data-driven

procedure. In this section, these two approaches are compared and

the advantages of the HC approach, the one which has been used

in the current study, are highlighted.

The SR Approach
Using the SR technique is a traditional way of generating a

synthetic population based on both disaggregated- and aggregat-

ed-level data. This method first uses disaggregated-level data

(which is usually sample data,) while assuming that it is a fully

representative sample of the target population. This is generally

referred to as the seed data. Then, in order to generate the synthetic

population, individuals with the required socio-demographics are

populated within each specific area using a weighting technique so

that the marginal distribution follows the aggregated-level

information coming from one source covering the complete

population (which is usually census data). One way to do this is to

use the deterministic re-weighting algorithm (e.g. [1][2]) to allocate

a certain weight to each unit record within the disaggregated-level

data and consider the weights as a distribution of probabilities

derived from the available aggregated-level data. Each attribute

for the population units is treated separately and sampling from

marginal distributions is conducted to select the number of units

equal to the number of area-specific population totals. In practice,

however, a perfect matching between all area-specific synthetic

totals and the sample totals under the assumption that all of the

areas are relatively homogeneous is unrealistic. An alternative way

is to conduct a Monte Carlo sampling from the disaggregated-data

based on the underlying conditional probabilities calculated as

discussed by [3], rather than being deterministically re-weighted

from the disaggregated-data. This is a stochastic approach as the

conditional probabilities are readjusted in an iterative Monte

Carlo sampling until a close match with the constraining tables or

marginal distributions is achieved [4].

When the number of attributes required in the synthetic

population increases, these approaches do not perform efficiently.

In such cases, a popular approach is to estimate a joint distribution

based on both disaggregated- and aggregated-level data. Then, the

units are selected from the disaggregated-level data (which is

usually a representative sample of the target population,)

considering the joint probabilities estimated in the previous step.

This technique is called the iterative proportional fitting (IPF)

procedure and was first introduced by [5] who developed it for a

non-geographical context. Relevant studies (e.g. [6], [7]) note that

producing reliable multi-dimensional contingency tables for the

IPF procedure needs a very representative sample. The theoretical

underpinning of IPF procedure, as embedded in spatial interaction

modelling was presented by [8]. The performance of the IPF

procedure in generating disaggregated spatial data from aggre-

gated data was evaluated by [9]. The research study by [10] was

amongst the first attempts to use the IPF for activity-based

transportation models.

Using the IPF procedure, only one level of hierarchy can be

accounted for. For example, a synthetic population is generally

required for different spatial micro-simulation purposes both at the

individual- and household-level for which the IPF procedure is not

an applicable method. In order to overcome this problem, [11]

proposed a technique similar to the IPF procedure for generating

the households while simultaneously improving the individual-

level distributions. Another method, proposed by [12], was based

on using the relation matrices to convert the distributions in order

to convert the individual-level distributions to household-level

distributions so that the marginal distributions could be controlled

at both levels. Iterative proportional updating (IPU) procedure was

then proposed by [13] to overcome this challenge. IPU is a

practical heuristic approach which simultaneously controls the

multiple hierarchy levels while adjusting the weights so that the

distribution of individuals and households match as closely as

possible [14], [15]. IPU adjusts the household weights based on

the individual weights obtained from the IPF procedure by

creating a new column for each combination [13]. This way, both

individual and household levels converge, simultaneously. How-

ever, because IPU generates a new column for each element of the

combination, it increases dramatically the memory requirements

to run the model.

More recently, a research team from the Transportation

Research Group at FUNDP-Namur (Belgium) facing heteroge-

neous information and levels of aggregation across different

surveys decided to ‘construct individuals and households by

drawing their characteristics or members at random within the

relevant distribution at the most disaggregate level available, while

maintaining known correlations as well as possible’ [16]. They

proposed an algorithm consisting of 3 steps:

N A pool of available individuals is generated for a given area,

namely the individuals‘ attribute joint-distribution denoted by

Ind;

N The households’ joint-distribution is estimated and stored in

the contingency table Hh;

N The synthetic households are constructed by randomly

drawing individuals from the individual’s pool Ind, while

preserving the distribution computed in the second step. Once

a household has been built, it is added to the synthetic

population.

Hill Climbing (HC) Approach
Another family of synthetic population synthesizers is based on

the HC approach. In computer science, HC is a relatively simple

mathematical optimisation technique that covers a range of

heuristics based on a random search. Considering many possible

solutions for an optimisation problem, the HC technique starts

with a random (potentially poor) solution and it generates an

iterative process for maximizing an objective function, each time

improving the result and finding a better solution. The HC

algorithm terminates when the improvements in the iterative

search process are negligible, which means a global optimum (or a

hilltop) is reached with a negligible error [17]. The HC technique

can be used for generating a synthetic population when populating

a certain area with the units randomly picked from the seed data.

If the simulated univariate distributions do not match the real

area-specific marginal distributions, a certain number of simulated

units will be selected and swapped with new units (from the seed

data) so that the resulting population will be closer to the real one.

This procedure will be repeated and the goodness-of-fit at each

relocation step will be recorded as a measurement for possible

improvement. The key aim is to reach a global optimum but

sometimes the algorithm can be trapped in a local optimum or

replacement can lead to deterioration. If we will be trapped in a

local optimum or the deterioration will exceed a certain threshold,

random restart hill climbing and simulated annealing are suggested to

allow the algorithm to randomly restart at a more distant point,

while keeping track of the global performance. This swap will help

to avoid producing a poorer performance repeatedly [18]–[21].

An application of HC was designed by [22] based on the

Combinatorial Optimisation (CO) method. This approach was

Dynamic Synthetic Population
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first presented by [19], and it involves an iterative process. In order

to generate the population for a certain area using the CO

technique, a group of individuals is randomly picked from a

disaggregate data set (e.g. a survey over a sample of the population

over the target area) so that it matches the population size of the

small area. The observed sample is then statistically compared

with a pre-defined set of demographic characteristics of the target

area. If the goodness of fit is not satisfactory, a record (either a

household or an individual) in the observed sample is swapped

randomly with one from the pool (i.e. the sample data). The

statistical comparison is then carried out for the new observed

sample. If this process enhances the overall performance of our

desired combination, the replacement is made. This process is

repeated with the aim of gradually improving the goodness of fit

and is stopped when a desired accuracy in the comparison of

statistics is met (which means that further improvements to the

selected combination is negligible or impossible). Given the search

space (the survey data), the final synthetic population from this

approach is generally the best achievable at a given time, rather

than a guaranteed optimal solution [21].

The first synthetic population generator adopting this approach

was developed by the group led by Williamson [19]–[21]. Another

major research effort to build a synthetic population using this

approach was carried out at the National Centre for Social and

Economic Modelling (NATSEM) based at the University of

Canberra, Australia [23]–[25]. In this paper, an extended version

of the combinatorial optimisation technique is used for generating

a reliable synthetic population for the target geographic areas

using available aggregated- and disaggregated-level information.

The baseline population in this paper will be generated from the

Confidentialised Unit Record Files (CURFs) and Australian census

data. Then, this population needs to evolve over a simulated five-

year period.

Synthetic Baseline Population of the Wollongong
Area

Generally, a perfect single data source which can provide

complete knowledge about the population units does not exist.

Therefore, researchers usually use multiple data sources to

generate a more reliable and believable synthetic population.

Typically, sample data is used to match the distribution of

households and individuals and the census-based marginal

distributions are considered in building the area-specific popula-

tion. As an example, [13] used a sample-based IPU approach to

generate the synthetic population of small geographies

(blockgroups) in the Maricopa County of Arizona in the United

States. Sample-free SR approach was used by [26] to generate a

synthetic population of two municipalities in the Auvergne region

in France. This approach was used by [15] to generate a synthetic

population of Belgium at the municipality level. The aforemen-

tioned sample-free and sample-based approaches are compared by

[27]. Assuming they had a population with complete data

available about individuals and households, [27] compared a

sample-free SR approach with a sample-based SR approach. They

concluded that the selected sample-free SR method performed

better for producing the population estimates because results using

this method were globally closer to the real population values.

While the level of uncertainty in the estimations and level of

sensitivity of the algorithm to the number of variables of interest

and their joint distributions are not discussed in this study, the

conclusion may also apply for the IPU method in certain

applications, especially where the access to a representative sample

is very limited.

It should be noted that the sample-free methods (like what

presented by [15],) must deal with the inconsistencies between

margins extracted from the different cross-tabulations available.

This takes time and energy to set the multidimensional weights for

the population characteristics. In the sample-based method, these

weights are calculated based on the sample data. In order to

generate a realistic population for our target areas, a 1% Basic

Census Sample File (CSF) available at CURFs is used as the seed

data. This dataset contains the unit records of a 1 in 100 sample of

occupied private dwellings along with the occupants of those

dwellings (who spent the census night within Australia,) and a 1 in

100 sample of people from non-private dwellings along with the

associated dwelling. It will be noted that CURFs contain the most

detailed information available from the ABS. CURF microdata

access is priced in accordance with the ABS Pricing Policy and

Commonwealth Cost Recovery Guidelines available at the ABS

website. Here, we use a CO technique for generating the baseline

population of the target areas and apply an age-structured two-sex

model for generating the population dynamics over a five-year

period. Given a significant level for uncertainty measurement, we

can then provide a bootstrapping prediction interval. As the

uncertainty measurements depend on the variation originating

from the seed data, having a representative sample is crucial to this

study.

From 1984 to 2011 the Australian Bureau of Statistics (ABS)

used the Australian standard geographical classification (ASGC)

for the collection and dissemination of geographically hierarchical

classified statistics. In 2006, the smallest geographic area defined in

the ASGC designed for use in the census of population and

housing is the census collection district (CD) and serves as the basic

building block in the ASGC. From July 2011, the Australian

statistical geography standard (ASGS) has been progressively

replacing the old ASGC. The ASGS was effective from 1 July

2011 as the new geographical framework and was utilised for

release of data from the 2011 census of population and housing

[28]. The smallest geographic area defined in the ASGS is the

Mesh Block. Each Mesh Block has corresponding larger spatial

boundaries of statistical areas level 1 (SA1), statistical area level 2

(SA2), statistical area level 3 (SA3), statistical area level 4 (SA4) and

greater capital city statistical area (GCCSA). Further information

about the transition from ASGC to the ASGS is available at the

ABS website. The proto-population in this study is first generated

based on the 2006 Australian census and therefore the proto-

population is first generated per census district (CD) for the study

area, and per statistical local area (SLA). Note that we can

interconvert between SA1 and CD using the GIS information

provided by ABS. A map of SA1s for the study area and the

surrounding SA2: Wollongong is shown in Figure 1 while the

boundaries of CDs are shown in a different colour. The SA1-

specific total population sizes are also demonstrated in Figure 1.

The proto-population is first generated per Census District (CD)

in the study area and per Statistical Local Area (SLA) for the target

areas. We then need to assign individuals to households in such a

way that we maintain a distribution as close as possible to both the

individual demographics per CD or SLA but also the household

demographics of that area. Since the Australian Census is a

complete enumeration of local residents and visitors on the night

of the census, we can use closed-form solutions to our set of

constraints in order to find the closest match between our proto-

population and the actual population demographics per CD both

at the individual and household levels. Once the baseline

population is generated for different CDs, we interconvert between

SA1 and CD using the GIS information provided by the ABS and

Dynamic Synthetic Population
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generate the SA1-specific population. This enables us to compare

the simulation-based estimation results with the 2011 census data.

Hierarchical Structure for the Synthetic Population
This paper addresses the structural hierarchies in designing a

synthetic population in which household structures and the socio-

demographics of individuals living within the household are

considered. Here, G denotes the total number of geographic areas

in our study and Ng denotes the total number of individuals located

at the gth area while Mg is the total number of households located

at such area. Single-member and multi-member households within

the population are considered, each household with different

socio-demographic characteristics. In order to address the

hierarchies within the population while distinguishing between

this structure and cross-classification, we will refer to it as a two-

fold nested design (see Figure 2). This technique has been used by

researchers such as [29]–[31]. A certain number of characteristics

(denoted by P) are considered in this study to define any specific

individual within the synthetic population. The individuals within

the synthetic population will then form single-member and multi-

member households with certain demographics. This is while a

certain number of characteristics (denoted by Q) is considered for

each household. Given a finite set P of individuals and a finite set Q

of households, the state model here is defined as an onto (surjective)

function from P to Q (f : 1,2, . . . ,Pf g? 1,2, . . . ,Qf g) satisfying

certain additional constraints, where Pj jv Qj j.
In order to generate a realistic population for our target areas,

1% CSF is used as the seed data. The proto-population in our

study consists of individuals defined by their respective age, sex

and household type informed by the 1% CSF based on the 2006

Australian census while considering the area-specific census tables.

The 1% CSF is available at a certain geographical level. The

geographical regions for which the 1% CSF is given for New

South Wales (NSW) and are presented in Figure 3. As can be seen

in Figure 3, the area SA3:Wollongong is located within the

Illawarra region and our study area (SA2:Wollongong) is

highlighted in red on the south-east of SA3:Wollongong. In order

to generate the baseline population, it is assumed that the

population distribution for the target area will be the same as the

population distribution within the Illawarra region. This enables

us to use the 1% CSF and the 2006 census tables in order to

generate the proto-population at individual and household levels

using the combinatorial optimisation method discussed in Section

2.

Using the 1% CSF and the household-specific information

available for the target area, the baseline population is generated.

The result is a collection of simulated individuals grouped into 5

categories of households to be consistent with the Australian

census categorization. Household attributes considered in this

study are (i) couple only, (ii) couple with children, (iii) lone person,

(iv) one parent and (v) other family. The objective of this study is to

generate a synthetic population from the data provided by the

ABS. To be realistic, the baseline population should adequately

match the distribution of individuals and households living in a

given area as per the demographics information provided by the

Australian census. The population involves a merging of individual

and household level datasets. The merged datasets have to be a

valid representation of the original datasets and preserve data

validity.

Combinatorial Optimisation Algorithm
One issue that is relevant to our case but is not addressed in all

aforementioned studies which adopted the SR and CO approach-

es is the constraints of the composition of residents in households

Figure 1. Map of the study area (SA2 Name: Wollongong) and SA1-specific total population in 2011.
doi:10.1371/journal.pone.0094761.g001
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by individual types. The traditional CO and SR approaches can

generate a synthetic population that satisfies the above constraints

if categories of households and individual relationships in the

survey data match with those in the census data. While this may

not often be the case in practice, one can overcome the issue of

category mis-match by re-categorizing households and individual

relationships in the survey data. However, the level of accuracy

loss as a result of such a re-categorizing process is unknown. The

accuracy is also dependent on the size of the survey data, as

mentioned in the previous section. The SR approach also requires

additional cross-tabs, for example the number of people by

relationship category by household category, as it is likely that the

census data does not provide a full joint distribution of all desired

characteristics. A serious problem with generating these cross-tabs

Figure 2. Two-fold nested structure of the individuals and households within the target areas.
doi:10.1371/journal.pone.0094761.g002

Figure 3. NSW map clustered by geographical regions and a selected study area (SA3 Name: Wollongong) (Helensburgh, Thirroul,
Austinmer, Coalcliff, Woonona, Bulli, Russell Vale, Bellambi, Corrimal, Tarrawanna, Balgownie, Fairy Meadow, Figtree, Keiraville, &
Wollongong).
doi:10.1371/journal.pone.0094761.g003
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in our study using the IPF method and/or its variations is data

inconsistency. The Australian Bureau of Statistics (ABS) intro-

duced small random adjustments to tables of census data so they

can be released without breaching confidentiality. Corrections to

these tables may be needed to ensure marginal distributions of the

desired characteristics are consistent before any iterative processes

of proportional fitting are carried out to ensure convergence of

these processes. Also, the resulting cross-tabs may not satisfy the

above constraints of resident composition by individual types.

We propose a methodology to generate a synthetic population

for small areas in the target region, (CDs,) based on the aggregate

census data of each area and knowing that that disaggregate data

of household and individual records is partly available from the

1% CSF. Attributes of individuals in the synthetic population are

age, gender and household relationship. Attributes of households

are household category, classified by the composition of relation-

ship of residents. The objective is to ensure the final synthetic

population satisfies the demographic statistics not only at

individual level but also at household level, including the

constraints of the composition of residents in households by their

relationships. Because of the random adjustments made to the

ABS tables, the methodology also presents a framework to identify

and remove outliers in these tables before records of individuals

and households are instantiated.

Assuming the population characteristics within the sub-regions

of Illawarra to be distributed homogeneously, we pick a sample

using simple random sampling without replacement, from the seed

data, which is the 1% Basic CSF available for the whole Illawarra

region. Then, we compare the marginal distribution of this sample

with CD-specific information available in the 2006 census tables.

The resulting marginal distribution should match the actual

information available in the 2006 census tables. Using the CO

techniques discussed above, a certain number of population units

are then swapped with population units from the seed data in

order to get closer to the actual marginal distributions. This

process is repeated until an optimum sample is obtained in terms

of quadratic function of the estimators calculated using the

sampled data, which is:

v t̂tk Xð Þ½ �~ tk Xð Þ{E t̂tk Xð Þ½ �f gT
V{1 t̂tk Xð Þ½ � tk Xð Þ{E t̂tk Xð Þ½ �f g,

where t̂tk Xð Þ; k[ 1, . . . ,Kf g is an estimation for kth population

characteristic out of the matrix of sampled units denoted by X.

Here, E t̂tk Xð Þ½ �is the expected value for t̂tk Xð Þ, while V t̂tk Xð Þ½ � is

the variance of t̂tk Xð Þ. Note that in this study, the total number of

different types of individuals and households is to be estimated.

Here, the baseline population is generated for the target areas

based on the 1% CSF generated from the 2006 Australian census

while the marginal distributions provided by the 2006 census (age,

sex and household type) for each CD are considered. The proto-

population consists of individuals defined by their respective age,

sex and the type of household. We then need to assign individuals

to households so as to maintain a distribution as close as possible to

both the individual demographics per CD or SLA and also the

household demographics of that area. The CO approach is used,

but when the marginal distributions for a certain CD given by the

ABS are not reached, some units are randomly swapped with

sample units available from a larger area (such as the SLA). This

iterative process will continue until the goodness-of-fit reaches a

certain point. Then, we allocate each household to a street block in

the target CD.

The sets of ABS data used for this purpose include individual-

related tables (e.g. distribution of age by gender, and the

relationship in household by age and by gender) as well as

household-related tables (e.g. family composition, and family

composition by gender of persons in family). The core of the

algorithm aims at merging individual- and household-level data

sets, which is centered on the correction of any discrepancies in

common attributes among datasets (as random errors are

introduced to values in ABS tables to avoid the release of

confidential data). When the proto-population is allocated to CDs,

we need to generate the dynamics of our population caused by

naturally occurring events such as birth, death, marriage, divorce

and relocation. To do this, it is crucial to develop an age-

structured two-sex population model that explicitly addresses the

issue of matching females and males into couples. This model is

crucial in settings where the traits of children are determined by

the traits of both the mother and father. Age-dependant changes in

socio-demographic situations and social convergences should be

studied in order to generate a more robust synthetic dynamic

model.

Modelling the Population Dynamics & Household
Projections

The early attempts at modeling population dynamics using

mathematical formulas date back to 1662 when John Graunt

presented the first examples of life tables using the parish records

of birth and death in order to describe the demography of London

[32]. The basis for most current modeling of dynamics for different

biological populations is the mathematical model of population

growth discussed by Englishman Thomas R. Malthus (1766–

1834). He tried to model population growth using a fixed

proportion increase over a given period of time regardless of the

initial population size. This model, the Malthusian growth model,

was published in 1798 in the essay entitled ‘An essay on the

principle of population’. Then, Benjamin Gompertz and Pierre

François Verhulst refined and adjusted the Malthusian demo-

graphic model [33]. In the last two decades, microsimulation

models have played an increasingly key role in picturing the

population dynamics (e.g. [34]) and forming government policies

(e.g. [35], [36]) in many countries such as Belgium [37], Norway

[38], Sweden [39], [40], the United States [41]–[43], the United

Kingdom [44], [45], Canada [46], [47], and Australia [23], [48].

Following the scientific literature, in this section we present a

dynamic microsimulation model for individual- and household-

level demographic transitions.

Individual Dynamics
The general method for estimating density-independent popu-

lation growth is to assume that the population grows at the same

rate ‘1+R’ regardless of the population size. Then, the total

population at year t can be mathematically calculated using the

Malthusian population model as below:

P tz1ð Þ~P tð ÞzR|P tð Þ~P tð Þ| 1zRð Þ~P 0ð Þ| 1zRð Þtz1
,

where P(t) and P(t+1) denote the population size during year t and

t+1, respectively and R denotes the population growth rate per

year (the so-called Malthusian parameter [49]). Here, the

population size at the starting year (of a simulation) is assumed

to be known and is denoted by P(0).This model simply shows

exponential growth in the population and is often referred to as

Dynamic Synthetic Population
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‘The exponential law’ in the field of population ecology and is

regarded as the first principle of population dynamics.

Ln P tð Þ
h i

~Ln P 0ð Þ
h i

zt|Ln 1zRð Þ[P tð Þ~P 0ð Þ|ert,

where,

r~Ln 1zRð Þ:

In order to generate a general form of the density-dependent

population growth model, the population growth rate is assumed

to change over the years and is defined as a function of time. Often

the population growth at each year in such models is defined as a

function of population total at that time period [50], [51]. This

model is generally used in cell biology as a negative density-

dependence or density-dependent restriction considering the

population growth to be curtailed by crowding, predators and

competition. A general form of mathematical model based on

biological theory is presented in the literature (e.g. [52], [53]) as

follows:

P tz1ð Þ~P tð Þ| 1z 1{
P tð Þ

L

� �� �
:

where parameter L denotes the carrying capacity of the

environment and represents the maximum individuals in the

system according to the defined conditions. The population

growth will be positive using the above model when P tð Þ
vL, while

the population will decrease when P tð Þ
wL. The population

growth will be equal to zero when P tð Þ~L. These models and

their generalization incorporating age-structures like the one

presented by [54] are restricted to modeling the dynamics of a

homogenously mixing population and do not take into account the

gender-based factors such as mating which are crucial when

studying the life history of a real population [55].

The consistency problem in modeling the population dynamics

considering the pair information was noticed by [56] who looked

at the net reproduction rates in France for males and females

separately from 1920–1923. Deterministic and stochastic models

using the pair formation process were then presented by [57] and

[58]. Then, [59]–[63] focused on the difficulty in handling the

genuine sex parameter in population dynamics and the interac-

tions with other population behaviours. The two-sex population

models with vital processes independent of age do not consider the

age structure and this may cause some bias in predicting the

reality. Although this sort of model seems to be well understood by

mathematical demographers, much remains unknown about age

and sex structure models. To deal with such problems, [64]

proposed a model with no age structure and developed a quasi-age

structure model while [65] presented an age-structured two-sex

model in which couples dissolve only through the death of a spouse

and widows never remarry. Many researchers such as [66]–[73]

worked with two-sex population models both with and without age

structure. The impact of demographic ageing within the human

population was evaluated using the modeling techniques proposed

by [55], and [74].

Here, we assume discrete time sections to facilitate the required

calculations. Like [75], we divide each year into H§1 periods of

length h~1=H . It is also assumed that all individuals will die before

reaching w years, so the age set is: A~ 0,1, . . . , w|Hð Þ{1f g.

In the current study we assumeH~1. Assuming the birth rate

and death rate to be known for males and females at different ages,

the population growth from time ‘t’ toward time ‘t+1’ is calculated

using the model presented below:

P tz1ð Þ~P tð Þz
Xw

i~1

F
tð Þ

i |Q F
tð Þ

i

� �h i
z
Xw

j~1

M
tð Þ

j |Q M
tð Þ

j

� �h i
z
Xw

i~1

Xw

j~1

C
tð Þ
i,jð Þ|Q C

tð Þ
i,jð Þ

� �h i
where, the number of males of age j at year ‘t’ is denoted by M

tð Þ
j

while the number females of age i on this year isF
tð Þ

i . Here,

QQ M
tð Þ

j

� �
and QQ F

tð Þ
i

� �
are the population growth rates for the

male and female respectively, of a certain age at year ‘t’. The rate

of population growth for the male or female of a certain age in this

study is equal to the immigration rate minus emigration rate minus

the death rate. The element of natural birth is considered in this

model using the total number of couples with a female individual

of age i and a male of individual of age j denoted by C
tð Þ
i,jð Þ, and the

birth rate considered for these couples is denoted by QQ C
tð Þ
i,jð Þ

� �
.

As discussed, we require some information about the existing

couples within the population at each year. The age-structured

model for presenting the couple population is as follows:

C
tz1ð Þ
iz1,jz1ð Þ~ S

Fð Þ
i |S

Mð Þ
j

h i
| C

tð Þ
i,jð Þzf

tð Þ
i,jð Þ

h in o
{L

tð Þ
i,jð Þ:

where C
tð Þ
i,jð Þ denotes the existing number of couples at time ‘t’ with

females of age i and males of age j, while f
tð Þ
i,jð Þ is the number of new

couples during year ‘t’. Number of divorces at year ‘t’ with females

of age i and males of age j is denoted by L
tð Þ
i,jð Þ. Then, S

Fð Þ
i and

S
Mð Þ

j are the survival rates for females of age i and males of age j,

respectively. The probability of being widowed is considered in

our model as: S
Fð Þ

i ~1{D
Fð Þ

i &S
Mð Þ

j ~1{D
Mð Þ

j .

Note that, D
Fð Þ

i is the death rate for the females of age ‘i’ while

D
Mð Þ

j is the death rate for the males of age ‘j’. Note that, the same

sex- and age-specific death rates are considered for married and

single individuals in this paper. Here, we present two models

which calculate male and female widow/widower population at

time ‘t+1’. The model for the widowed females is as follows:

W F
tz1ð Þ

i

� �
~

S
Fð Þ

i | W F
tð Þ

i

� �
z
X

j

1{S
Mð Þ

j

� �
| C

tð Þ
i,jð Þzf

tð Þ
i,jð Þ

� �h i( )
:

where W F
tð Þ

i

� �
and W F

tz1ð Þ
i

� �
repectively denote the total

number of widows at year ‘t’ and ‘t+1’ while the subscript i shows

the age of the widows. Using the formula presented above, the

total number of widows at year ‘t+1’ is equal to the total widows at

year ‘t’ plus the number of new widows caused by the death of

males in all existing couples. The number of female who may die

during this year is also considered by adding the term S
Fð Þ

i which is

the survival rate for females with of age i. Using the same
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technique, we can define a model for the widowers in year ‘t+1’ as

follows:

W M
tz1ð Þ

j

� �
~

S
Mð Þ

j | W M
tð Þ

j

� �
z
X

i

1{S
Fð Þ

i

� �
| C

tð Þ
i,jð Þzf

tð Þ
i,jð Þ

� �h i( )
:

where W M
tð Þ

j

� �
and W M

tz1ð Þ
j

� �
denote the total number of

widowers at year ‘t’ and ‘t+1’, respectively, while the subscript ‘j’

shows the age of the widowers.

Household Transitions
Projecting the dynamics of family formations and behaviors

(family size, family structure and family life course) across time and

place depends on compositional changes in the population’s socio-

demographic structure. A computer-simulated synthetic popula-

tion for Australia was discussed by [76]. For the evolution of this

population, he used an extended version of the dynamic household

model proposed by [77]. However, they have modeled the

population dynamics for the whole of Australia and they did not

consider the diversity of the population characteristics in smaller

areas. A method presented by [78] generates the initial population

without a sample. The main objective of this research is to present

a more comprehensive model for producing household projections

in the Wollongong area across time, based on the four vital rate

components: fertility, mortality, marriage and divorce. For young

single individuals, we also consider the probability of leaving the

parental home and establishing their independence. We first

generate a synthetic population from the census data provided by

the Australia Bureau of Statistics. Then, we use our model to

project the household structures within the population over time.

The focus of this research is to present a reliable method for

producing household projections over time. While the model

needs to be relatively simple, with modest data requirements and

low computational intensity, it must be able to generate realistic

links between demographic events and changes in household

structures [79]. Here, we present the probability function of

household formation and dissolution. First, we suppose that we

have H Household Types (HHTs). The main goal is to define the

transition function of household types from time t to time t+1.

Here, we assume the main events that determine new household

formations at time t+1 are: i)death, ii)marriage, iii)birth, iv)divorce

and v)leaving the parental home. As we are considering different

structures for the households (depending on the demographic

characteristics defined for the people living in that household) at

time t, we must consider the transitional rates of the five major

events during a time period so as to cover almost every possibility.

The probabilities for occurrence of all possible events considered

in our study are:

N Death rate:D
0

ijkl~ D
M1ð Þ

i ,D
F1ð Þ

j ,D
F2ð Þ

k ,D
M2ð Þ

l

h i
,

N Marriage rate:C
0

ij~ C
1ð Þ

ij ,C
2ð Þ

ij

h i
,

N Birth rate:B
0

ij~ BC
ij

h i
,

N Divorce rate:L
0

ij~ LC
ij

h i
, and

N Leaving the parental home: D
0

kl~ D
Fð Þ

k ,D
Mð Þ

l

h i
.

Here, the death rates for the independent individuals (singles or

couples) and the individuals living with their parents have been

considered separately. Here, D
F1ð Þ

j and D
M1ð Þ

i denote the death

rates for independent female individuals of age j and independent

male individuals of age i, respectively. If there is an existing

dependent individual (child) living in a household, the death rate

for such an individual is considered seaparately. The death rate for

dependent female individuals of age k is denoted byD
F2ð Þ

k while the

death rate for dependant male individuals of age l is denoted by

D
M2ð Þ

l . The vector C
0

ij includes the marriage rates considered in

our study. In our study, matrices are shown in bold. Here, we

consider the rate of first marriages between female individuals of

age i and male individuals of age j (denoted byC
1ð Þ

ij ). When one of

these individuals has been married before, a different notation is

used for the new marriage (denoted by C
2ð Þ

ij ). Here, we assume that

the birth rate for a selected family can be calculated based on the

age of parents. This rate is denoted for a married male and female

of age i and j as BC
ij . The divorce rate for such a couple is LC

ij . For

dependant individuals over 15, we consider the rate of leaving the

parental household using the vectorD
0

kl . Here we assume that the

each household may have one female or male dependant

individual over 15 who may decide to leave their family. This

model can be easily extended to more complicated cases by adding

new elements to the matrices presented above.

In respect to transition of the household type g1 at time t+1

(HHT
tð Þ

ijkl ; g), to the household type g2at time t+1 (HHT
tz1ð Þ

ijkl ; h)

(where g,h[ 1, . . . ,Gf g, and g=h), we can define an m|1

dimension indicator vector denoted by h as the vector of key

components or demographic parameters of the transition function.

Generally, the dimension of this vector is m|1where m is the

number of key components mentioned above, and here m is ten.

Note that, g and h denote two different states of households,

including the ages of their members while indexes i, j, k, and l refer

to the age of male parent (or adult), female parent (or adult),

female children, and male children within the household,

respectively. In a household transition, certain events have

happened. Here, hT
ijkl ; gjh is a vector of 0s and 1s. Where an

event (or a component) affects the household transition, the

associated element in this vector is equal to 1. Otherwise it is equal

to 0. The vector hT
ijkl ; gjh is defined by:

hT
ijkl ; gjh~ I(DT

ijkl

h �
,I CT

ij

� �
,I BT

ij

� �
,I(LT

ij ),I(DT
kl)�gjh,

where

I(aT )~½I(a1), . . . ,I(an)�,

and

I anð Þ~

1 : if rate an is acomponent which

affects the house hold transition,

0 : if rate an is not a component which

affects the hose hold transition:

8>>>>><>>>>>:
Consequently, we define the m|1 probability transition vector

based on the effective components mentioned above, as:

Dynamic Synthetic Population

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94761



pT
ijkl ; gjh~ DT

ijkl ,C
T
ij ,BT

ij ,LT
ij ,DT

kl

h i
gjh
:

Using the above indicator and probability transition vectors and

assuming the independent events, we can obtain the overall

probability of moving HHTtz1
g from HHTt

h, g=h. It is

pijkl ; gjh~det diag hijkl :pijklz 1m{hijkl

� 	� 	
 �
gjh,

where 1m is the m|1vector where all elements are 1. If the

transition HHTtz1
g from HHTt

h, g=h, is not unique and there are

D out of 2m possible cases to make the transition of interest. Using

the inclusion-exclusion principle in the probability addition rule

[80], the overall probability can be written by:

pijkl ; gjh~
XD

d~1

(p
dð Þ

ijkl ; gjh){
X
dvf

(p
dð Þ

ijkl ; gjh):(p
fð Þ

ijkl ; gjh)

z
X

dvf vq

(p
dð Þ

ijkl ; gjh):(p
fð Þ

ijkl ; gjh):(p
qð Þ

ijkl ; gjh){ . . .

z {1ð ÞD{1 P
D

d~1
(p

dð Þ
ijkl ; gjh),

which can be written in closed form as:

pijkl ; gjh~
XD

d~1

{1ð Þd{1
X

5 1, . . . ,Df g
j j~D

pijkl ; gjh
� �

:

Now the overall probability of moving HHTtz1
g from HHTt

g is

given by:

pijkl ; gjg~1{
XG

g~1

g=h

pijkl ; gjh:

Using the above probabilities, we can produce the HHT

transition probability matrix.

Results: Simulating the Dynamic Synthetic
Population of the Wollongong Area

According to the ABS values from the 2006 census for the

population living in private dwellings in the study area (SA2:

Wollongong), there are approximately 25890 individuals and

16870 households. The 2011 Australian census shows that 27076

individuals were living in the study area on the night of the 2011

census. In this paper, an immigrant population is added to the

existing generated population at the end of each simulation step

(i.e. a year). The demographic characteristics of the simulated

immigrant population are assumed to be consistent with the

marginal distribution considered for the demographic character-

istics of the current population in each of the five household

categories.

Generating the Proto-Population
As mentioned in Section 2, the baseline synthetic population in

this paper is generated based on 2006 Australian census data and

should be simulated at the CD levels as the 2006 census data is

available for this level. Then, the concordance between SA1s and

CDs (presented in Figure 1,) is used to allocate the baseline

population to the SA1s. The population dynamics will then be

applied to this population. This way the population estimates in

five years can be compared with the 2011 Australian Census data

which is available at the SA1 level.

Here, we present the relative bias for selected 2006 population

estimates. Relative bias (RB) is a measure in percentage which

magnifies the difference between actual quantity and the estimate.

Suppose a sample X~x1, . . . ,xn is used to estimate a quantity of

interest q and let q̂q~s Xð Þ be a statistic that then estimates the RB

of q̂q using:

RB q̂q
� �

~
q̂q{q

q
|100

If there are p[ 1, . . . ,Pf g unknown parameters q1, . . . ,qP then

to simplifying the overall biasMedian relative bias (MRB) is as

follows:

MRB q1, . . . ,qPð Þ~Median RB q̂q1

� �
, . . . ,RB q̂qp

� �h i

The two graphs presented in Figure 4 demonstrate the RB of

estimated male and female totals in 2006 for all SA1s in our study

area. As shown, the RB presented in Figure 4 is stationary,

randomly distributed around zero. The MRB of the SA1-specific

total male and female estimates in 2006 are respectively equal to

20.44% and 20.25%, respectively. Therefore, we can conclude

that our proto-population is not far from the reality.

The RBs of estimated totals for different households considering

the five categories of HHTs are presented in Figure 5. The results

show that the total households generated within the SA1s are

distributed similarly to the 2006 Census data. As can be seen, the

total SA1-specific single parents are mostly underestimated with

the MBR equal to -0.54%, which is negligible. Note that the SA1-

specific totals are estimated with higher RB for SA1s with smaller

populations.

Population Dynamics in the Study Area
In order to generate the dynamics within the synthetic

population simulated for our target areas, vital statistics of death,

marriage, birth, divorce and leaving the parental home are

required. Unfortunately, these rates are not available to this study

for the target areas (CDs and SLAs). Therefore, the rates available

for the larger areas are used and possible changes in these rates

over time are ignored. The main purpose in this section is to take

the baseline population generated for 2006 (based on the 2006

Australian Census,) and evolve the population over five years. The

results can be compared with available information from the 2011

Australian Census and this can be used to evaluate the simulation

approached proposed in this paper.

The age-specific birth and death rates are available at the state

level in Australia and are used in the current study. These rates for

New South Wales (NSW) are presented in Table 1–2. Age- and

sex-specific marriage and divorce rates in NSW are presented over

time in Figure 6 (source: ABS; 3301.0 BIRTHS, Australia, 2010 &
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ABS; 3302.0 DEATHS Australia, 2010). While the target rates

have been changed from 1996 to 2010 for different age groups, the

changes from 2008 to 2010 are almost negligible.

2011 Population Estimates and Uncertainty
Measurements

In this paper, the baseline population was generated for the

study area using 2006 Australian Census. Then, the area-specific

population attributes were predicted for 2011. Any inference

about uncertainty in prediction is to be based on a complex

procedure for which theoretical results are unavailable or not

Figure 4. Relative bias of SA1-specific total male and female estimates in 2006.
doi:10.1371/journal.pone.0094761.g004

Figure 5. Relative bias of SA1-specific estimates for total number of different households in 2006.
doi:10.1371/journal.pone.0094761.g005
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useful for the sample sizes met in practice. Bootstrap methods

based on resampling techniques can be an alternative for

analytical procedures when the distribution of population

estimates is unknown [81]–[83]. The basic idea of the boot-

strapping method is that, in the absence of any other information

about the distribution, the observed sample contains all the

available information about the underlying distribution, and hence

resampling the sample is the best guide to what can be expected

from resampling from the distribution.

The basic principle underlying the bootstrap method in various

settings is sample set. The bootstrap technique attempts to recreate

the relation between the ‘population’ and the ‘sample’ by

considering the sample as an epitome of the underlying

population. Generally, this reflection can be obtained properly

by resampling from the sample set to generate the ‘bootstrap

sample’, which serves as an analog of the given sample. If the

resampling mechanism is chosen appropriately, then the resample,

together with the available sample, is expected to reflect the

original relation between the population and the sample. The

advantage derived from this exercise is that, in practice, it is

possible to avoid the problem of having to deal with the unknown

population directly, and instead, use the sample and the resamples,

which are either known or have known distributions, to address

questions of statistical inference regarding the unknown popula-

tion quantities. The bootstrap principle is most transparent in the

Figure 6. Two-sex Age-Specific Marriage & Divorce Rates in NSW 1987–2010.
doi:10.1371/journal.pone.0094761.g006

Table 1. Age-specific Birth Rates Per 1000 for in NSW 2010.

Age Females

15–19 15.3

20–24 51.4

25–29 101

30–34 120.4

35–39 63.4

40–44 11.3

45–49 0.6

doi:10.1371/journal.pone.0094761.t001

Table 2. Age-specific Death Rates Per 10000 for in NSW 2010.

Age Gender

Males Females

0–4 years 64.1 63.3

5–14 24.9 16.8

15–24 133.7 43.1

25–34 242.9 122.6

35–44 507.5 268.3

45–54 1093.5 575.5

55–64 2176.8 1445.8

65+ 8960 8008.4

doi:10.1371/journal.pone.0094761.t002
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case where random variables are independent and identically

distributed (iid) [84]–[86].

Suppose that sample X~x1, . . . ,xn is used to estimate a

distribution parameter q andS Xð Þ to denote the estimate of such a

parameter (q̂q~S(X )). For the purpose of statistical inference of q,

we are interested in sampling the distribution of q̂q. This way we

can calculate the accuracy of the estimator obtained or set the

confidence intervals for that. In many applications, however, the

sampling distribution of q̂q is intractable. If the true distribution

F Xð Þ were known, we could draw samples X bð Þ; b~1, . . . ,B
from F Xð Þ and use Monte Carlo methods to estimate the

sampling distribution of the estimate q̂q. Since F Xð Þ is unknown

and we cannot sample from it, the bootstrapping idea suggests

resampling the original sample instead. The distribution from

which the bootstrap samples are drawn is the empirical

distribution. Let sample x1, . . . ,xn of independent real-valued

random variables follow probability distribution function F Xð Þ.
Then,

F̂FA Xð Þ~ 1

n

Xn

i~1

IA Xið Þ; VA(R ,

where A is the sample space, IA :ð Þ is an indicator function with

values 1 and 0, and R is set of real numbers. Then, a bootstrap

estimate of uncertainty (standard error) can be obtained by the

following algorithm:

1. Drawing B independent bootstrap samples with replacement

from set X~x1, . . . ,xn

x
� bð Þ
1 , . . . ,x� bð Þ

n eF̂F ; b~1, . . . ,B;

2. Evaluating the bootstrap replications

q̂q� bð Þ~t X � bð Þ
� �

; b~1, . . . ,B ;

3. Estimating the standard error SE q̂q
� �

by the standard

deviation of the B remplications

SÊEboot q̂q
� �

~
1

B{1

XB

b~1

q̂q� bð Þ{q̂q� :ð Þ
� �( )1=2

’

where

q̂q� :ð Þ~
1

B

XB

b~1

q̂q� bð Þ:

The bootstrap technique enables us to derive estimates of

standard errors and confidence intervals for complex estimators

of complex parameters of the distribution and to assign measures

of accuracy to the sample estimates and in practice the simplicity

of this method is a great advantage. While confidence intervals are

extremely valuable in statistical inference, bootstrap confidence

intervals are asymptotically more accurate than the standard

intervals obtained using sample variance and assumptions of

normality [87]. Recently, bootstrap method is used for measuring

the uncertainty of the micro-simulation and activity-based models

[88]–[90]. Here, the bootstrap confidence intervals are calculated

for the estimated area-specific totals using the dynamic micro-

simulation model for individual- and household-level demographic

transitions. While performing replications of the simulations to

obtain the required uncertainty measurements is computationally

more expensive than the bootstrapping method, bootstrapping is

also an appropriate way to control and check the stability of the

results. Here, we use the bootstrap procedure presented previously

Figure 7. Age-specific population predictions vs the 2011 Australian Census at SA1 level.
doi:10.1371/journal.pone.0094761.g007
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for calculating the uncertainty for the resulting population

estimates based on ‘B = 1000’ independent bootstrap samples out

of the initial population and running the whole micro-simulation

based on each sample, separately.

1. Given an optimized sample set X
tð Þ

opt at time t we draw a simple

random sample with replacement from the set X
tð Þ

opt. This

bootstrap sample is denoted by X
� tð Þ
opt .

2. Using X
� tð Þ
opt we calculate the population characteristics at time

t+1 denoted by t̂tp X
� tz1ð Þ
opt ; h

� �
. For simplicity, we can write this

bootstrap prediction as t̂t
1ð Þ

p Xtz1; h
� 	

where superscript (1)

stands for the first bootstrap replication.

3. We repeat these steps B times to obtain B sets of predictors for

the pth characteristic as follows:

t̂t
Boot

p Xtz1; h
� 	

~ t̂t 1ð Þ
p Xtz1; h
� 	

,̂tt 2ð Þ
p Xtz1; h
� 	

, . . . ,̂tt Bð Þ
p Xtz1; h
� 	h i

:

To obtain the uncertainty measurement for t̂tk X; hð Þ we use a

95% nominal bootstrap confidence interval. This interval is:

CI0:95~ quantile t̂t
Boot

k Xtz1; h
� 	

,prob~0:025
h i

,
�
quantile t̂t

Boot

k Xtz1; h
� 	

,prob~0:975
h i�

Figure 7 demonstrates the number of males and females

predicted for each SA1 within the study area. Note that the graph

illustrates the age-specific population predictions and is generated

so as to so as to be ascending for the area-specific total females.

Figure 8 demonstrates the ascending graphs for the predicted

number of different households in 2011calculated in this study for

SA1s in Wollongong. The red line shows the predicted values

while the black line demonstrates the actual numbers based on the

2011 census data. Although there are some differences between

the estimated and actual numbers (of males, females and different

household types), the actual values fall within the 95% nominal

bootstrap confidence interval calculated for the predicted values

for almost all SA1s.

The aggregated-level information predicted for the whole study

area is compared with the 2011 Australian Census using the

graphs presented in Figure 9. The estimated number of people

within different demographic groups is a reasonable match with

the actual values based on the 2011 census. However, some

estimates such as the number of individuals between the ages of 0–

9 and 70–79 and the number of person-only and parent-only

households have larger errors. This might be due to possible

differences between the state-level vital rates available to this study

for population evolution and the real value of these rates.

Discussion

Families are changing in many ways across time and projecting

the dynamics of family formation behaviours (family size, family

structure and family life course) is useful for planners to come up

with solid decisions for improving the quality of public social

services and urban management. Our aim in this paper was to

study the effect of inter-individual interaction in order to model

individual behaviours while considering available description of

life-course dynamics, realistically [91]–[93]. Household forecasts

such as changes in the number, size and composition of

households, are crucial for planning the housing supply [94]–

[97], household savings and consumption patterns [98]–[102], and

environmental consequences and urban household energy transi-

tion [103]–[112]. A dynamic synthetic population is generated in

this study for a certain region of NSW with given assumptions

considering household transitions and the results are validated

against the 2011 census data. The results show that the synthetic

population generated for 2011 is not far from the real population.

The main purpose in this paper was to generate a reliable

dynamic synthetic population of the study area based on available

data. Evolution discussed in this paper involves the ageing of each

individual and drawing of age-dependent life-event probabilities

(birth, death, marriage, divorce and leaving the parental home).

Unfortunately, these vital rates are not available to this study for

the target areas (CDs and SLAs) and the rates available for the

larger areas are used and possible changes in these rates over time

are ignored. While we expect the algorithm to be sensitive to these

rates in generating the dynamic synthetic population, the results

show that we are not far from the reality. This means that the vital

rates for our study areas are not very different to the larger areas.

The occurrence of the life events influences both individual and

household entities. Evolution uses a discrete event simulation

Figure 8. Household type-specific population predictions vs the 2011 Australian Census at SA1 level (red line: predicted values;
black line: the actual numbers based on the 2011 census data; area in light red: 95% nominal bootstrap confidence interval
calculated for the predicted values).
doi:10.1371/journal.pone.0094761.g008
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model with a time-dependent feedback loop triggering either

probabilistic or incremental changes to individual states. At any

point in time, each individual is characterized by a significant

number of state variables. These state variables describe personal

attributes such as sex and age, relationship to a, i.e. family status

and is based on particular geographic locations. This means that

the current model does not take into account social networks or

the ability for agents to learn from each other. While we recognize

these are major features of real life, corresponding enhancements

to the model will need to be addressed later on in future research

studies. It is also noted that the required rates for the changes

within the population are not available for the target small areas

(CDs and SA1s). Therefore, the rates available for a larger area are

used and possible changes in these rates over time are ignored due

to the limited availability of data.
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