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Abstract: Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal de-
mentia (FTD), a predominantly behavioral disease, and amyotrophic lateral sclerosis (ALS), a disease of motor 
neurons. The primary objectives of this review are to highlight the clinical heterogeneity associated with C9ORF72 
pathogenic expansion and identify potential molecular mechanisms underlying selective vulnerability of distinct 
neural populations. The proposed mechanisms by which C9ORF72 expansion causes behavioral and motor neuron 
disease highlight the emerging role of impaired RNA and protein homeostasis in a spectrum of neurodegeneration 
and strengthen the biological connection between FTD and ALS.
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Introduction

A GGGGCC hexanucleotide repeat expansion 
intronic to chromosome 9 open reading frame 
72 (C9ORF72) was identified in 2011 [1, 2] as 
the most common genetic cause of amyo-
trophic lateral sclerosis (ALS, or Lou Gehrig’s 
disease) and frontotemporal dementia (FTD) 
with or without concomitant motor neuron dis-
ease (MND). The literature on C9ORF72 has 
expanded greatly in the ensuing two years, 
leading to characterization of the frequency of 
pathogenic expansion carriers (C9+) in diverse 
populations and to putative molecular mecha-
nisms underlying the pathogenicity of such 
expansions. 

In addition to two forms of TDP-43 pathology 
(harmonized [3] Type A and B), C9+ is also char-
acterized by Ub+/p62+/TDP-43- inclusions, 
most notably in cerebellum, thalamus and hip-
pocampus; the latter pathology is unique to 
C9+ and, in some cases, this may be the only 
form of pathology [4-8]. These pathological 
findings are broadly mirrored by neuroimaging 
findings describing diffuse cortical and subcor-

tical atrophy in all lobes of the brain, with cere-
bellar and thalamic atrophy emerging as distin-
guishing features of C9+ when compared to 
sporadic disease in FTD/FTD-MND (reviewed in 
[9]) and ALS [10, 11]. One notable observation 
has been the diversity of phenotype associated 
with C9+ patients [12], which will be highlighted 
below. The clinical heterogeneity associated 
with C9ORF72 expansion is predicted to be a 
reflection of the well-established structural and 
pathological heterogeneity [13]. Identifying the 
molecular mechanisms responsible for the 
apparent morphological and pathological diver-
sity will be critical for making predictions about 
clinical outcomes in carriers of this shared 
genetic risk factor.

Clinical features of C9ORF72 expansion-medi-
ated disease

Motor features

Pathologic expansion of C9ORF72 is the most 
common genetic cause of ALS, estimated at 
around 34% of familial and 6% of sporadic ALS 
cases [13]. C9+ ALS patients may demonstrate 
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more bulbar onset of symptoms (reviewed in 
[13, 14]). MND occurs concomitantly in about 
30% of C9+ FTD [13]. C9+ may be a rare cause 
of other motor neuron disorders as well. One 
study investigating a large Dutch cohort found 
N=4 individuals with progressive muscular 
atrophy and N=1 patient with primary lateral 
sclerosis with expanded repeats [15] highlight-
ing the variability of upper and/or lower motor 
neuron involvement associated with C9ORF72 
expansion.

Some C9+ patients also show Parkinsonism, 
with or without MND. Parkinsonism symptom-
atology usually appears after onset of FTD or 
ALS findings, and is likely explained by neurode-
generation of the substantia nigra in many C9+ 
cases [16]. Hexanucleotide expansion of 
C9ORF72 has also been associated with a 
handful of cases with clinical diagnoses of idio-
pathic Parkinson’s disease (PD) [17-19]. 
Intermediate repeat length has also been sug-
gested as a risk factor for sporadic PD in two 
studies surveying large numbers of patients: 
for >20-30+ repeats in N=889 Caucasian PD 
or essential tremor plus Parkinsonism patients, 
and for ≥7 repeats in N=911 Han Chinese PD 
patients [20, 21]. Further investigations in 
diverse populations are required to confirm 
these findings.

Isolated cases of progressive supranuclear 
palsy, corticobasal, and olivopontocerebellar 
degeneration syndromes have also been 
reported, further expanding the spectrum of 
phenotypes associated with C9+ [19, 22]. 
Whether these rare cases are associated with 
C9+ pathology specifically in the basal ganglia, 
brainstem, and cerebellum remain to be 
determined. 

Regions expressing the C9ORF72 mouse ortho-
log (discussed in more detail in the next sec-
tion) include the striatum (a component of the 
basal ganglia), brainstem, and cerebellum [23]. 
Neuroimaging and pathological studies show 
that the cerebellum, which plays a critical role 
in motor control, is particularly affected in C9+ 
disease. The thalamus—which appears unique-
ly involved in C9+ compared to sporadic dis-
ease—participates in both the direct and indi-
rect pathways linking the striatum and motor 
cortex, resulting in motor stimulation and inhi-
bition, respectively [24]. Thus, pathological 
changes in cerebellum and thalamus have the 

potential to affect multiple aspects of motor 
control, which could lead to less common motor 
syndromes.

Behavioral features

Behaviorally, C9ORF72 expansion is most com-
monly associated with a clinical syndrome of 
behavioral variant (bv)FTD, characterized by 
deficits in social behavior and executive func-
tion. Less common diagnoses include primary 
progressive aphasia (PPA), predominant 
amnestic, and psychiatric clinical syndromes. 
Some individuals also show deficits in visuo-
spatial function (reviewed in [25]). In addition, 
cognitive and behavioral impairments appear 
to be more common in ALS patients with C9+ 
versus sporadic ALS [11]. Some cases of bvFTD 
associated with C9+ have remarkably slow pro-
gression and little to no visible neuroanatomi-
cal involvement [16, 26-28]. In addition to lack 
of frank brain atrophy, self-awareness of dis-
ease remains relatively intact, and patients are 
sometimes able to make behavioral modifica-
tions to compensate for the deficits imparted 
by disease [26]. This insight is in contrast to the 
majority of bvFTD patients, where there is 
marked lack of awareness into social and emo-
tional deficits [29]. 

In the context of these broader clinical syn-
dromes, specific psychiatric symptoms may fur-
ther differentiate C9+ patients from other 
patients with sporadic or genetic forms of FTD. 
In particular, psychotic features may be 
enriched in C9ORF72 expansion carriers, with 
delusions and hallucinations more common in 
C9+ versus matched sporadic cases [30, 31]. 
In one Swedish C9+ kindred, psychotic symp-
toms and somatic complaints were observed in 
the majority of affected individuals [32]. Anxiety 
and depressive symptoms [8] are also observed 
in C9+. These symptoms may relate to findings 
that C9ORF72 expansion is associated with 
unique pathology in critical regions of the limbic 
system such as the thalamus and hippocam-
pus [4-8]. Similarly, in Alzheimer’s disease (AD), 
degeneration of the hippocampus may allow 
‘release’ of its regulation of the amygdala, 
resulting in higher levels of anxiety and emo-
tional contagion [33]. In addition, degeneration 
of the cerebellum could result in ‘disconnec-
tion’ of the emotion-regulating portions of this 
brain region from the cortex [34]. 

Occasionally, C9+ patients present clinically 
with an AD-like dementia; in a recent screen of 
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FTD genes in early-onset AD patients, two indi-
viduals were found to harbor C9ORF72 expan-
sions [35]. In these cases, neuroimaging may 
be particularly informative if findings are atypi-
cal of AD but instead show frontotemporal 
involvement [36]. Amnestic presentation may 
be related to the hippocampal sclerosis and/or 
p62+ pathology observed in the hippocampus 
of many C9+ patients [4-8]. In addition, episod-
ic memory deficits in C9+ correlate with atro-
phy in the frontal, temporal and parietal corti-
ces, including the posterior cingulate cortex, 
and are distinct from the regions correlated 
with episodic memory in sporadic bvFTD (i.e., 
medial prefrontal, medial and lateral temporal 
cortices) [37]. Finally, visuospatial deficits are 
in line with observed parietal lobe involvement 
in C9+ (reviewed in [9]). This further highlights 
how anatomic heterogeneity in C9ORF72 
expansion-mediated disease may contribute to 
a diversity of clinical symptoms. The diversity of 
clinical behavioral syndromes associated with 
C9ORF72 expansion strongly suggests the 
presence of pathology in distinct areas of the 
brain across individuals.

Molecular mechanisms of C9ORF72 disease 

If C9ORF72 expansion is associated with 
altered structural organization of the brain that 
culminates in a wide-spectrum of clinical dis-
ease, what molecular mechanisms might 
explain these changes? The three primary mod-
els accounting for C9ORF72 expansion-mediat-
ed toxicity [38] are: (1) loss of C9ORF72 protein 
function [1, 2]; (2) accumulation of toxic RNA 
foci [39], which sequester RNA-binding proteins 
such as TDP-43, FUS, hnRNP A3 [40], and Pur 
α [41] and result in dysregulation of RNA splic-
ing, trafficking and translation; (3) novel dipep-
tide aggregate formation resulting from non-
ATG mediated (RAN) translation of the expanded 
GGGGCC hexanucleotide repeat [42, 43]. 
Additional mechanisms that could modify dis-
ease pathogenesis include differential expan-
sion size of C9ORF72 hexanucleotide repeats 
across different tissues and independent 
genetic modifiers that mediate any of the fac-
tors that lead to neuronal toxicity. Also of note, 
recent evidence suggests that C9+ toxicity may 
not necessarily occur cell-autonomously in neu-
rons; any of the proposed mechanisms of toxic-
ity may in fact occur first in astrocytes and sub-
sequently spread to neurons [44]. Potentially, 
the large degree of clinical heterogeneity 

observed within the C9+ patient population 
could be a result of distinct pathogenic mecha-
nisms (or combinations thereof) occurring in 
different individuals. 

C9ORF72 haploinsufficiency 

Loss of C9ORF72 protein function from reduced 
expression due to pathogenic expansion is one 
proposed mechanism of disease. The expand-
ed copy of C9ORF72 results in reduced gene 
expression due to histone trimethylation, as 
measured in blood [45, 46]. This gene is pre-
dominantly expressed in neural populations 
vulnerable in FTD and ALS. Specifically, the 
mouse ortholog of C9ORF72 is expressed in 
the hippocampus, dentate gyrus, striatum, 
thalamus, brainstem nucleus, cerebellum, 
throughout the cortex, and in the spinal cord, 
as well as several peripheral tissues. In mouse, 
expression appears to be limited primarily to 
gray matter [23]. Recent studies in both C. ele-
gans and zebrafish indicate that loss of 
C9ORF72 function may be associated with 
motor neuron degeneration [47, 48].

The protein product of C9ORF72 is predicted to 
be structurally similar to the Differentially 
Expressed in Normal and Neoplasia (DENN) 
family of guanine nucleotide exchange factors 
that activate Rab-GTPases (Rab-GEFs), which 
are important regulators of membrane traffic 
[49, 50]. The putative yeast ortholog of 
C9ORF72, Lst4p, prevents lysosomal delivery 
of cargo by redirecting endosome-localized pro-
teins to cell surface [51]. If C9ORF72 similarly 
serves to sort endosomal cargo to the plasma 
membrane in neurons, then mutations reduc-
ing its function would be predicted to augment 
lysosomal degradation of particular cargo pro-
teins. Intriguingly, the membrane protein 
TMEM106B, which has recently been shown to 
be a genetic modifier of both progranulin- and 
C9-mediated FTD, appears to influence both 
lysosomal morphology and dendritic trafficking 
of lysosomes within neurons [52, 53]. In addi-
tion, homozygous loss-of-function mutations in 
progranulin result in neuronal ceroid lipofusci-
nosis, a lysosomal storage disorder [54]. 
Dysfunctional degradation within the endo-
lysosomal pathway may thus represent a com-
mon molecular pathology associated with 
altered levels of C9ORF72, progranulin and 
TMEM106B. Consistent with this scenario, 
accumulation of ubiquitinated proteins down-
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stream of impaired lysosomal degradation 
could explain the Ub+/p62+/TDP-43- patholo-
gy that discriminates C9+ from other forms of 
FTD and ALS.

van der Zee and colleagues found decreased 
expression of C9ORF72 with an increased 
number of repeats at intermediate repeat num-
bers [55]. rGGGGCC (but not rCCCCGG) repeats 
form stable, tract length- and RNA concentra-
tion-dependent unimolecular and multimolecu-
lar RNA G-quadruplexes [56, 57], which can 
affect promoter activity, genetic instability, RNA 
splicing, translation and mRNA localization 
within neurites. The dose-dependence of sta-
bility of these structures suggests a mecha-
nism by which increased repeat length would 
be more toxic. These RNA structures are poten-
tially amenable to intervention with small mol-
ecules that break up G-quadruplexes [58-60]. 
This repeat (and how it folds) may serve as a 
mechanism by which splice variation occurs 
(given redistribution of C9ORF72 splice vari-
ants with expansion); ASF/SF2 splicing factor 
can bind to this repeat [57].

One patient has been reported with a homozy-
gous repeat expansion; this individual had an 
early onset of bvFTD but typical clinical and 
pathological presentation within the spectrum 
of C9+ heterozygous disease. The authors of 
this report suggest that this case provides evi-
dence that haploinsufficiency is not the only 
mechanism of C9+ disease as one would 
expect a more severe or different clinical phe-
notype associated with homozygous loss of 
C9ORF72 expression compared to heterozy-
gous loss [61]. Toxic gain of function would be 
in line with an earlier onset but phenotypically 
similar form of C9+ disease, though it is also 
possible that presence of genetic or environ-
mental disease modifiers play a role in this 
individual. 

Sequestration of RNA-binding proteins into 
RNA foci 

Another potential mechanism of toxicity 
involves the GGGGCC expansion itself, whereby 
toxic RNA foci are formed that sequester RNA-
binding proteins and splicing factors such as 
TDP-43 and FUS, the latter of which was identi-
fied in rGGGGCC binding screen [40]. Both 
sense and antisense RNA foci have been identi-
fied via in situ hybridization, where they are 

most abundant in neurons of the frontal cortex, 
and to a lesser extent in astrocytes, microglia 
and oligodendrocytes [62]. Accumulation of 
expanded RNA into toxic foci is a disease mech-
anism implicated in other neurodegenerative 
expansion disorders such as several spinocer-
ebellar ataxias and fragile-X associated with 
tremor/ataxia syndrome (FXTAS) [1]. Screening 
for point mutations in C9ORF72 via sequencing 
of 389 ALS samples did not render any patho-
genic variants, further suggesting that C9ORF- 
72 pathogenesis is caused by a toxic gain of 
function due to RNA foci resulting from the non-
coding expansion [63]. These RNA foci have the 
potential to sequester other RNA-binding pro-
teins, which could result in widespread effects 
on transcriptional regulation and protein 
expression. 

One RNA-binding protein critically linked to C9+ 
disease is TDP-43. As one of the main protein 
aggregates found in C9+ FTD/ALS, TDP-43 is a 
DNA- and RNA-binding protein that cycles 
between the nucleus and cytosol (though it 
localizes primarily to the nucleus) and plays 
numerous roles in RNA metabolism, including 
transcription and regulation of splicing, trans-
port and translation, miRNA processing, and 
stress granule formation (reviewed in [38]). 
Mutations in TARDBP, which encodes TDP-43, 
cause ALS (reviewed in [64]). TDP-43 binds and 
regulates hundreds of RNA targets, including 
an enrichment of genes involved in neuronal 
development and synaptic function [65, 66]. 
TDP-43 is critical for early embryonic develop-
ment of the central nervous system [67, 68] 
and plays an important role in the association 
and size of stress granules, which form tran-
siently in response to cellular stress (e.g., [69]; 
reviewed in [38, 70, 71]). This suggests a pos-
sible mechanism by which early sequestration 
of TDP-43 could cause alterations in multiple 
proteins involved in neuronal development and 
function that could ultimately result in altered 
structural and/or network architecture that is 
vulnerable to diffuse cortical and subcortical 
damage. This would then be exacerbated by 
alterations in the cellular stress response due 
to altered stress granule dynamics. 

Identification of specific RNA-binding proteins 
that bind the C9ORF72 GGGGCC repeat expan-
sion is currently underway. In a recent screen, 
Xu, et al. found that rGGGGCC binds the RNA-
binding protein Pur α, and overexpression of 
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Pur α rescues rGGGGCC-mediated neurode-
generation in Drosophila [41]. Pur α is involved 
in modulation of gene transcription, transla-
tion, controls cell cycle and differentiation and 
is a component of RNA-transport granules [72, 
73]. The putative disease mechanism would 
thus be a loss of function of Pur α due to bind-
ing to rGGGGCC. Of note, Pur α also binds the 
FXTAS GCC repeat [74]. This model of neurode-
generation in Drosophila would thus argue 
against a primary role for loss of C9ORF72 
function in disease pathogenesis.

Another screen for rGGGGCC RNA-binding pro-
teins identified hnRNP A3, which forms p62+/
TDP-43- neuronal cytoplasmic and intranuclear 
inclusions in hippocampus, as well as cerebel-
lum in a subset of C9+ [40]. hnRNP A3 cycles 
between the nucleus and cytoplasm and is 
involved in alternative pre-mRNA splicing, 
nuclear import and cytoplasmic trafficking of 
mRNA, as well as mRNA stability, turnover and 
translation [75]. Expressed primarily in the 
nucleus of neurons, it appears to be redistrib-
uted to cytosol in its pathological state, simi-
larly to TDP-43 and FUS [76-79]. The hnRNP A3 
finding was not replicated by Xu, et al. but this 
discrepancy could relate to differences in bind-
ing conditions and protein concentrations [41]. 
Also of note, a screen in Drosophila for FXTAS-
repeat associated changes in miRNA expres-
sion identified miRNA-277; hnRNP A2/B1 can 
directly regulate miRNA-277, which modulates 
CGG repeat-mediated neurodegeneration in 
FXTAS [80]. In iPSCs derived from C9+ ALS 
patients, repeat-containing RNA foci colocal-
ized with hnRNPA1 and Pur α [81].

The ability of RNA foci to sequester RNA-binding 
proteins and thus alter the processing and 
expression of hundreds of distinct genes in a 
stochastic nature [38, 39] could result in mark-
edly diverse forms of disease across different 
individuals. With known genetic modifiers 
(TMEM106B, described in more detail below) 
and variability in the number of hexanucleotide 
repeats it is not surprising that C9ORF72 
expansion results in a diverse set of anatomi-
cal, clinical and pathologic phenotypes. Utilizing 
large datasets to identify patterns of RNA 
expression change across multiple C9+ indi-
viduals with the same clinical syndrome may be 
useful for dissecting the spectrum of changes 
that are most likely to predict a particular set of 
symptomatology. Targeting the cause of the 

expression changes—that is, reducing RNA foci 
formation—may prove beneficial for C9+ carri-
ers with distinct clinical presentations. In sup-
port of this notion, antisense oligonucleotides 
(ASOs) targeting the C9ORF72 transcript sup-
pressed RNA foci formation and reversed gene 
expression changes and aberrant cell excitabil-
ity associated with the pathologic expansion 
[81, 82] suggesting a potential therapeutic 
intervention.

RAN-dependent translation of GGGGCC expan-
sions 

Repeat-associated non-ATG (RAN)-dependent 
translation of dipeptides from both sense and 
anti-sense strands of the expanded hexanucle-
otide repeat in C9ORF72 form insoluble aggre-
gates [42, 43, 83]. RAN translation of the sense 
strand creates poly Gly-Arg (poly-GR), poly Gly-
Pro (poly-GP), and poly Gly-Ala (poly-GA) dipep-
tides which are hydrophobic and aggregation-
prone; anti-sense RAN translation results in 
Pro-Ala, Pro-Gly, and Pro-Arg dipeptides. Using 
an antibody binding the poly-GP dipeptides, 
Ash, et al. showed variability in pathological 
location [42]. Highest presence included hippo-
campal regions, motor cortex, temporal and 
frontal cortices, amygdala, anterior and lateral 
thalamus, and Purkinje cells of the cerebellum. 
RAN-translated dipeptides have been shown to 
colocalize with p62+ inclusions [42, 43] in 
granule cells of the cerebellum, cells in the den-
tate gyrus, and the CA4 of the hippocampus 
[84].

The presence of inclusion bodies of these 
dipeptides does not appear to correlate with 
clinical severity or neurodegeneration (whereas 
TDP-43 pathology does), and has been sug-
gested by some to be a protective response to 
coping with large numbers of dipeptides rather 
than a driving force of neurodegenerative pro-
cesses [85]. This evidence, however, does not 
preclude the possibility that soluble forms of 
the dipeptides, or variation in the distribution of 
the different types of dipeptides across brain 
tissue, could contribute to the clinical and/or 
pathological manifestations of C9+ disease. 

Formation of RAN-translated dipeptides can 
also be partially ameliorated with ASOs in 
mouse models [86] and iPSC-differentiated 
neurons [82], however, ASO intervention in C9+ 
iPSCs appears to ameliorate gene expression 
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and cellular deficits despite continued pres-
ence of RAN translated dipeptides [82], further 
suggesting that RAN-translated products may 
be a secondary or downstream mechanism 
which has less influence on pathology. 
Additional testing of this type of intervention in 
the context of clinical disease may help to 
determine the role that RAN-translated dipep-
tides play in C9ORF72 expansion-mediated 
disease.

Notably, the amount of RAN translation that 
occurs could alter the availability of rGGGGCC 
repeats to sequester RNA-binding proteins, 
since RAN translation would be expected to 
reduce the binding of proteins such as TDP-43 
and Pur α. Thus it is possible that the amount 
of RNA-binding protein sequestration versus 
RAN-mediated translation that occurs in each 
cell is variable, offering yet another source of 
disease heterogeneity. If indeed dipeptide 
aggregates are not toxic to the cell [82, 85], 
then it stands to reason that formation of 
dipeptides through RAN-mediated translation 
may be an adaptive mechanism by which the 
cell attempts to limit the formation of RNA foci 
and sequestration of RNA-binding proteins. In 
line with this theory, Gendron, et al. found that 
RAN-translated poly-GP peptides infrequently 
colocalized with RNA foci [83]. For neurons with 
long axons, such as motor neurons, alterations 
in RNA-binding proteins may be particularly 
problematic (e.g., myotonic dystrophy) [87]. 
Thus, the balance of RAN translation versus 
RNA foci formation in particular neuronal sub-
types could potentially affect disease patho-
genesis and thus clinical presentation. 

Other variables that may play a role in C9+ 
disease 

Expansion-size differences across tissue: The 
C9ORF72 hexanucleotide repeat expansion 
length is highly variable and likely unstable due 
to surrounding genomic architecture ([55]; 
reviewed in [14]). C9 expansion size varies 
across different brain regions [88-90] and 
between monozygotic twins [89], and larger 
expansions may contribute to more potent 
pathology in the affected network of neurons. 
Three studies have investigated this with vary-
ing results. One study of blood samples found 
that C9+ length did not correlate with diagnos-
tic group when comparing FTD, ALS, and other 
neurodegenerative phenotypes, but longer 

expansion correlated with older age of onset 
[90]. However, other studies showed that 
expansion length varies across tissues (e.g., 
blood versus brain [88, 89]) suggesting mea-
sures from periphery may not be representa-
tive of expansion size in the brain [13]. Another 
study found that C9ORF72 expansion length 
did not correlate with FTD, FTD-MND or MND 
diagnostic groups in frontal cortex, cerebellum 
or blood samples; they found that longer frontal 
cortex expansion length correlated with older 
age of onset in FTD only, and that longer cere-
bellar expansion length was associated with 
reduced survival [88]. A third study did not find 
correlations between C9+ length in cerebellum 
and age of onset or disease duration, but found 
that cerebellar expansion length was higher in 
ALS versus FTD [89]. Thus, it remains unclear 
what role expansion length in different brain 
regions plays in C9+ disease.

Finally, evidence suggests that intermediate 
repeat expansion lengths that fall under the 
“pathologic” cutoff of 30 repeats but are above 
what is considered normal (less than 20) may 
serve as a risk factor for sporadic FTD [91], ALS 
[92], and PD [20, 21]. This is in line with evi-
dence suggesting that intermediate repeat 
lengths are associated with reduced C9ORF72 
expression, if protein haploinsufficiency plays a 
role in C9+ pathogenesis. Further work will be 
required to characterize the role of expansion 
length in pathological and clinical hetero- 
geneity. 

Genetic modifiers of C9ORF72 expansion dis-
ease: It is likely that genetic variation plays a 
role in modifying the pathological and clinical 
manifestation of C9+ disease. Mutations in 
other ALS-associated genes have now been 
found in C9+ carriers suggesting a two-hit 
model of disease (e.g., [93-96]), in line with the 
oligogenic theory of ALS, which suggests that 
harboring multiple risk variants in different 
ALS-associated genes is sufficient to cause dis-
ease (reviewed in [97-99]). C9+ patients that 
also carried deleterious variation in other FTD 
genes (GRN or MAPT) demonstrated early dis-
ease onset, bvFTD clinical presentation, and no 
motor neuron involvement suggesting a paral-
lel two-hit model for FTD [100]. 

Common variation in other neurodegenerative 
disease associated genes may also contribute 
to clinical heterogeneity in C9+ carriers. This 
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relationship has been observed in patients with 
GRN mutations, where carrying the AD risk 
allele APOE-ε4 resulted in exacerbated disease 
progression, amnestic syndromes and accom-
panying amyloid pathology [101]. For example, 
pathologic C9ORF72 expansion coupled with a 
high-risk genetic polymorphism in an ALS gene 
could represent a risk mechanism predisposing 
some C9+ individuals to MND, whereas indi-
viduals without these additional risk variants 
may have a predominantly behavioral form of 
disease. This remains an untested hypothesis 
worth exploring in the context of disease-modi-
fying risk genes.

In addition to exacerbating clinical presenta-
tion, genetic variation also has the potential to 
reduce disease risk. A recent study by van 
Blitterswijk, et al. identified variation in TMEM- 
106B, which was previously associated with 
protection from FTD with TDP-43 pathology 
(FTD-TDP) [102, 103] as protective in C9+ 
patients with FTD but not MND [104]. One study 
also found that variation in TMEM106B protect-
ed against cognitive change in ALS patients 
[105]. Taken together, these results suggest 
that TMEM106B may broadly modify behavior-
al/cognitive symptoms associated with TDP-43 
pathology and may thus represent a robust 
therapeutic target [106].

C9ORF72 expansion as a disease of dysfunc-
tional cellular trafficking

Recent studies in model organisms C. elegans 
and zebrafish provide compelling evidence that 
loss of C9ORF72 function is pathogenic to 
motor neurons [47, 48] and leads to motor defi-
cits. While it is currently unclear if loss of 
C9ORF72 function contributes to disease in 
C9+ carriers, the observation that C9ORF72 
transcript levels are reduced in patients with 
FTD and FTD-MND suggests that loss of pro-
tein function should be seriously considered as 
a disease mechanism. 

What cellular consequences might be expected 
due to loss of C9ORF72 function? Sophisticated 
homology searches have revealed that 
C9ORF72 is a full-length homolog of the DENN 
family of Rab-GEFs, as noted above [49, 50]. 
While nothing is known about the cell biological 
function of mammalian C9ORF72, its yeast 
ortholog has been implicated in the sorting of 
endosome-localized proteins to the cell sur-

face, such that they do not reach the lysosome. 
If this function is conserved in humans, reduced 
C9ORF72 levels might be associated with 
defects in the endo-lysosomal pathway. In addi-
tion, TMEM106B, the genetic modifier of both 
progranulin- and C9 expansion-associated FTD, 
has recently been implicated in lysosomal traf-
ficking in neurons [52, 53]. In particular, 
TMEM106B appears to negatively regulate ret-
rograde transport of lysosomes within den-
drites, with reductions in TMEM106B associat-
ed with movement of lysosomes toward the 
neuronal soma [52]. Since TMEM106B influ-
ences lysosome function and modulates pro-
granulin levels [52, 107], it is tempting to spec-
ulate that its protective role in C9+ carriers 
might similarly involve the endo-lysosomal 
pathway, providing a common link to two genet-
ic forms of FTD. Finally, the finding that some 
C9+ carriers harbor unique Ub+/p62+/TDP-43- 
pathology further implicates dysfunctional 
autophagy, as p62 is a ubiquitin-binding pro-
tein which accumulates when autophagy is 
impaired [108]. Since lysosomal degradation is 
the ultimate endpoint of autophagy, defects in 
lysosomal trafficking or degradation would be 
expected to produce the observed Ub+/p62+/
TDP-43- pathology that is seen in C9+ carriers. 
A mutation in the multivesicular body protein 
CHMP2B leading to familial FTD in a Danish 
pedigree further implicates dysregulation of 
the endo-lysosomal system as a pathological 
mechanism leading to FTD [109, 110].

C9ORF72 pathogenesis spreads through neu-
roanatomical networks

The underlying pattern of neurodegeneration in 
C9+ may be the best starting point for under-
standing how one type of genetic variant can 
result in such heterogeneous clinical presenta-
tions. The pattern of diffuse gray and white 
matter involvement observed in C9+ FTD/FTD-
MND (reviewed in [9]) and ALS [10, 11] patients 
stands in contrast to the idea of neurodegen-
erative processes spreading through specific, 
clearly defined functional brain networks [111, 
112]. Two intriguing hypotheses suggest how 
these patterns may fit into the ‘selective vulner-
ability’ framework: 1) the epicenter of vulnera-
bility in C9+ neurodegeneration is highly and 
diffusely interconnected to both cortical and 
subcortical regions of the brain; 2) functional 
brain networks in C9ORF72 expansion carriers 
are less strongly defined (i.e., there is more 
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inter-network connectivity than intra-network 
connectivity). 

The first theory proposes a ‘central station’ 
node that serves as a major hub for multiple 
different pathways throughout the brain such 
that degeneration of that network would result 
in a diffuse pattern of cortical atrophy and pro-
found white matter integrity loss. One such 
centrally connected subcortical structure is the 
thalamus. Divided into numerous functionally 
distinct nuclei, the thalamus receives sensory 
and motor information from a variety of corti-
cal, cerebellar, and brainstem efferent projec-
tions, and then relays it through afferent projec-
tions to the cortex for further processing and 
integration. Each nucleus has specific afferent 
and efferent projections associated with it, and 
the nuclei themselves are also highly connect-
ed (reviewed in [113]). One longitudinal study of 
C9+ patients found neuroimaging patterns con-
sistent with spread through such a distributed 
subcortical network, with thalamic and cerebel-
lar atrophy most prominent while cortical atro-
phy appeared diffuse and nonspecific [114]. 

Given the behavioral component of FTD, the 
dorsomedial nucleus is one tempting candidate 
given its interconnectivity with the prefrontal, 
cingulate, and association cortices, and its 
involvement could also contribute to memory 
deficits observed in a subset of C9+ carriers 
[115, 116]. Also, the pulvinar nucleus domi-
nates the posterior portion of the thalamus and 
is highly interconnected with the occipital cor-
tex, as well as adjacent areas of the parietal 
and temporal cortices. These two nuclei, along 
with the lateral posterior—which receives affer-
ent projects from occipital cortex and projects 
to the parietal cortex—make up the ‘associa-
tive’ functional group of thalamic nuclei involved 
in high level cognition [34]. The ventral anterior 
and ventral lateral nuclei receive inputs from 
basal ganglia and cerebellum, and project to 
premotor and motor areas of the frontal cortex, 
respectively, and along with the ventral poste-
rior nucleus compose the ‘effector’ group 
involved with movement and aspects of lan-
guage [34]. Functionally and anatomically, 
these two groups of thalamic nuclei represent 
domains affected in the clinical syndromes 
associated with C9ORF72 expansion thus far: 
bvFTD, ALS/MND and PPA. The role of the thal-
amus in C9+ disease remains to be elucidated 
through careful pathological dissection and 

characterization, and may benefit from studies 
of resting state connectivity seeded within spe-
cific thalamic nuclei and studies of thalamic 
microstructural connectivity [117, 118].

In contrast to the central node hypothesis, the 
second theory suggests that the diffuse pat-
tern of neurodegeneration observed in C9+ 
patients may be a by-product of damage that is 
spreading throughout multiple functional net-
works rather than being isolated in a single, 
defined functional circuit, and implicates early 
systemic disorganization as the underlying 
cause of diffuse non-selective spread. Reduced 
network connectivity has been observed even 
prior to symptom onset in Huntington’s disease 
(HD), another neurodegenerative disorder 
caused by DNA repeat expansion in the HTT 
gene. Pathogenic HTT expansion carriers show 
lower cortico-striatal functional connectivity as 
compared to controls, even prior to disease 
onset [119]. Early changes in brain organiza-
tion have been suggested in a transgenic rat 
model of HD [120], with differential aging pat-
terns observed in the brains of transgenic rats 
as compared to wildtype as early as the first 
year of life [121]. Microstructure alterations in 
brain regions relevant to HD were also seen in 
these transgenic rats during postnatal develop-
ment [122], though further study is required to 
determine if similar changes occur in people. 

Identifying early changes in brain structure and 
function in C9ORF72-expansion carriers may 
help to disentangle these two hypotheses, 
which are not necessarily mutually exclusive. 
For example, a highly connected node of C9+ 
neurodegeneration could be identified during 
prodromic stages of disease, with longitudinal 
follow-up demonstrating insidious spread 
across multiple, interconnected functional net-
works of the brain. On the other hand, early ani-
mal experiments established that retrograde 
degeneration of thalamic nuclei occurs when 
damage is inflicted upon the cortical area that 
specific nucleus projects to [123], suggesting a 
mechanism by which widespread cortical loss 
across multiple networks could result in tha-
lamic neurodegeneration.

Contributions of C9ORF72 expansion to clini-
cal heterogeneity

In addition to the phenotypic heterogeneity 
highlighted in preceding sections, C9+ disease 
is also associated with other aspects of pheno-
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typic variability. As suggested by slowly pro-
gressive C9+ bvFTD cases, there is a large 
variation in the length of disease course; some 
groups have suggested that C9+ patients dem-
onstrate longer disease courses than matched 
sporadic cases (e.g., [124]) whereas others 
have observed shorter durations of disease 
(reviewed in [13]). Age of onset is also highly 
variable, ranging from the 20’s – 80’s [13], with 
50% penetrance by age 58 and nearly full pen-
etrance by age 80 [125]. One report, however, 
described two C9+ carriers with no cognitive 
impairments as of ages 80 and 84, suggesting 
that C9ORF72 expansion has incomplete pen-
etrance [126]. Whether slowly progressive 
forms of C9+ bvFTD and predominant psychiat-
ric presentations are a result of reduced expan-
sion size or other genetic or environmental 
modifiers remains to be established. 

In sporadic neurodegenerative disease, there 
appears to be a sudden precipitous drop in cog-
nitive function several years before a full clini-
cal symptom manifests [127, 128]. However, in 
a genetically mediated adult-onset disease it is 
difficult to deny the neurodevelopmental aspect 
– how is the brain of a disease-causing gene 
carrier different from that of a non-carrier? 
Does the brain learn to ‘adapt’ to deficits, and 
only during the aging process—which weakens 
neural plasticity—does dysfunction become 
apparent? Is there slow, insidious accumula-
tion of pathology in the neurons such that, only 
after 50+ years, it comes to the point where 
neurons are being killed? Or are there subtle 
signs that there is underlying dysfunction from 
the outset, but these go unrecognized until the 
symptoms become impossible to ignore? 

Whether a prodrome of neurodegenerative dis-
ease exists remains unanswered; gene carriers 
may provide a unique opportunity to study dis-
ease in its earliest stages, prior to frank symp-
tom onset. For example, early personality/
behavioral changes have been described in 
some C9+ carriers [129]. In C9+ bvFTD 
patients, there is often emotional dysregulation 
reminiscent of cerebellar disconnection syn-
drome [8, 34]. If subtle alterations in emotional 
and/or physiological regulation reflect progres-
sive neural dysfunction from a central node or 
due to systemic disorganization as proposed 
above, then measures of these features could 
provide a quantitative measure of these under-
lying pathological processes as they progress 

into a full clinical syndrome. Studies of sporadic 
bvFTD suggest that patients often have psychi-
atric diagnoses years before referral to the neu-
rology clinic [130]. Whether these are simply 
misdiagnoses of an underlying neurodegenera-
tive process or are, in fact, early manifestations 
of FTD remain to be determined. 

If C9+ pathogenesis begins in the thalamus, 
then the molecular mechanism of spread 
through the interconnected networks of the 
thalamic nuclei could involve physical spread of 
toxic TDP-43 pathology in a seeded fashion 
[131], or functional spread whereby changes in 
synaptic activity in the thalamus could result in 
downstream neuronal dysfunction. In mouse, 
C9ORF72 is robustly expressed in the thala-
mus [23], and unique Ub+/p62+/TDP-43- 
pathology is often found in the thalamus of C9+ 
carriers, supporting a mechanism whereby 
molecular changes resulting from C9ORF72 
expansion could begin in this central subcorti-
cal region and then, over time, affect other 
regions of the brain through its interconnected-
ness with cerebellar and diffuse cortical 
structures.

Regardless of the mechanism, the fundamen-
tal leap to identifying effective biomarkers for 
making predictions of clinical prognosis and 
disease progression will require linking periph-
eral measures of disease with local pathologi-
cal processes. This may include tracking chang-
es in the expression of C9ORF72 transcripts or 
other genes dysregulated (directly or indirectly) 
by hexanucleotide-generated RNA foci and/or 
RAN-translated dipeptides. Multimodal neuro-
imaging may also serve as a sensitive measure 
of C9-specific changes in gray and white matter 
structures over time [114, 132], even in pres-
ymptomatic carriers.

Concluding remarks

In summary, C9ORF72-mediated disease is 
characterized by heterogeneous clinical pre-
sentations of motor and/or behavioral syn-
dromes of ALS, bvFTD, or FTD-MND, as well as 
less common diagnoses of PPA, primary 
amnestic presentation and psychiatric disease 
such as depression or bipolar disorder. 
Parkinsonism is also a common symptom 
accompanying these clinical diagnoses. Three 
main molecular mechanisms of C9+ disease 
have emerged as potential contributors to this 
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observed clinical heterogeneity: haploinsuffi-
ciency resulting in a loss of C9ORF72 protein 
function, formation of RNA foci resulting in a 
toxic gain of function, and formation of dipep-
tide aggregates resulting from RAN-mediated 
sense and antisense translation of the hexa-
nucleotide expansion. Variable expansion 
length across tissue types and brain regions as 
well as contributions of other genetic modifiers 
may provide additional sources of disease het-
erogeneity. In addition, C9+ diseases may be 
associated with alterations in cellular traffick-
ing, particularly within the endo-lysosomal 
pathway. The mode of spread of one or more of 
these contributing pathological mechanisms 
could occur via a centrally located neural hub 
connecting multiple selectively vulnerable func-
tional networks, or through multiple, intercon-
nected networks converging on a common neu-
roanatomical region. The diversity of clinico- 
pathology demonstrated by C9+ patients sug-
gests a spectrum of disease manifestations 
that ultimately culminate in unique protein 
pathology (Ub+/p62+/TDP-43- in the cerebel-
lum and hippocampus) and neuroanatomical 
damage (thalamic atrophy). 

Elucidation of novel genetic and molecular 
modifiers of C9-mediated disease progression 
will provide the opportunity for development of 
therapeutic interventions. In addition, identifi-
cation of biomarkers that predict future clinical 
syndrome will be critical for identification of 
candidates for clinical trials. Finally, gaining a 
better understanding of the preclinical mani-
festations of disease – whether they are behav-
ioral, functional or physiological—will also pro-
vide deeper insight into the workings of the 
neuroanatomical system most vulnerable to 
C9ORF72 expansion disease.
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