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Abstract

Implicating particular genes in the generation of complex brain and behavior phenotypes requires

multiple lines of evidence. The rarity of most high impact genetic variants typically precludes the

possibility of accruing statistical evidence that they are associated with a given trait. We show

here that the enrichment of a rare Chromosome 22q11.22 deletion in a recently expanded Northern

Finnish sub-isolate enables the detection of association between TOP3β and both schizophrenia

and cognitive impairment. Biochemical analysis of TOP3β revealed that this topoisomerase is a

component of cytosolic messenger ribonucleoproteins (mRNPs) and is catalytically active on

RNA. The recruitment of TOP3β to mRNPs was independent of RNA cis-elements and was

coupled to the co-recruitment of FMRP, the disease gene product in fragile X mental retardation

syndrome (FXS). Thus, we uncover a novel role for TOP3β in mRNA metabolism and provide

several lines of evidence implicating it in neurodevelopmental disorders.

Introduction

Disruptions in messenger RNA (mRNA) metabolism play an important role in the etiology

of human disease1. Genetic studies have identified disease-causing mutations in several

known mRNA binding proteins, while molecular biology approaches have connected

disease genes of unknown function to mRNA metabolism. Here, we combine both methods

to show that deletion of the topoisomerase TOP3β is associated with neurodevelopmental

disorders, and identify a function for this DNA-processing enzyme in mRNA metabolism.

The Finnish disease heritage (FDH) refers to rare Mendelian disorders (http://

www.findis.org/) that are more prevalent in Finland than elsewhere in the world and that

vary substantially in frequency between different parts of Finland. This variation reflects

extreme genetic drift at the causative loci, due to multiple population bottlenecks that have

generated sub-isolates within the overall Finnish isolate, in particular in Northeastern

Finland2, 3. Drift can also dramatically elevate the frequencies, in such isolates, of rare

alleles with a high impact on common traits2. It is unlikely that any single variant could

substantially influence the overall population risk for specific disorders, such as

schizophrenia. We hypothesized, however, that enrichment in Northern Finland for multiple

high-impact variants could contribute to an increased frequency of particular classes of

disorders in this region compared to other parts of country, acting along with environmental

influences such as socioeconomic factors4, 5.
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The prevalence of several neurodevelopmental phenotypes in Finland follows a striking

gradient from Northeast to Southwest (Fig. 1), as exemplified by schizophrenia, which is

almost three times more prevalent in Northeastern sub-isolates than in Finland overall4, 6, 7.

Considerable evidence supports the association of large deletions, both overall variant

burden as well as specific variants, with a wide range of neurodevelopmental disorders,

including schizophrenia and cognitive impairment8, 9. We previously showed an association

between the burden of large deletions and neurodevelopmental phenotypes in a Northern

Finnish population cohort, and established that several of these deletions represent founder

mutations, carried on haplotypes shared identical by descent10. We hypothesized that some

smaller deletions might be sufficiently increased in frequency in Northern Finland to enable

the detection, by analyses of single-variants, using currently available study samples, of

associations to schizophrenia and other neurodevelopmental phenotypes that are particularly

frequent in this region. As we show here, the enrichment of a rare Chromosome 22q11.22

deletion in the Northern Finnish sub-isolates enabled analyses suggesting TOP3β, which is

wholly contained within the deletion, as a risk gene for neurodevelopmental disorders.

TOP3β encodes the DNA topoisomerase III β. Our biochemical investigations of TOP3β
revealed functions for this protein that could explain the phenotypic impact of its deletion. In

particular, it was strikingly and unexpectedly associated with FMRP, an RNA binding

protein, that normally inhibits the translation of neuronal mRNAs11, 12. The deregulated

expression of these mRNAs, in the absence of this protein is the molecular defect underlying

FXS13 (OMIM#300624). The process through which FMRP-containing mRNPs form

remains ill-defined; however, recent investigations of the functional impact of the highly

pathogenic I304N FMR1 missense mutation suggest that protein-protein interactions may

contribute to the recruitment of FMRP to its target mRNAs14.

Our studies have uncovered a mechanism for such a recruitment: The Tudor domain

containing protein 3 (TDRD3), which itself binds to the exon junction complex (EJC)15

deposited on newly spliced mRNAs, mediates the concomitant integration of TOP3ββ and

FMRP into mRNPs. Our demonstration of TOP3β topoisomerase activity on RNA

substrates suggests its involvement in the metabolism of FMRP-bound mRNAs.. Together

with the results from genetic analyses of the Northern Finnish 22q11.22 deletion and from

independent investigations of de novo TOP3β mutations16-18, this biochemical evidence

indicates the important role of this protein in neurodevelopment.

Results

Identification of deletions enriched in Northern Finland

Using genome-wide SNP arrays, we searched for deletions enriched in the Northeastern sub-

isolates compared to the rest of Finland, in representative samples from each population

(Sub-isolate Population Sample, N=173; Whole Finland Population Sample, N=1586)19, 20,

(see Online Materials and Methods and Table S1 for descriptions of all cohorts used in this

study). To minimize false positives we considered only deletions of > 20 kb in length,

detected with ≥10 probes. We identified, in the combined samples, 5,313 putative deletions

(5,004 heterozygous, 309 homozygous) comprising 1,041 distinct genomic loci, with a mean

size of 89.4 kb.
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Two deletion loci, on chromosomes 4q12 and 22q11.22, displayed significantly higher

frequencies in the Sub-isolate Population Sample compared to the Whole Finland Population

Sample (empirical p-value < 0.001 after 10,000 permutations), were in Hardy-Weinberg

Equilibrium, and were confirmed by manual inspection of intensity distribution plots (Fig.

S1). The 4q12 deletion (181.7 kb) occurred in 6/173 individuals from the Sub-isolate

Population Sample and was not observed in the Whole Finland Population Sample (p=

8.7×10−7, Fisher’s Exact Test) while the 22q11.22 deletion (243.9 kb) occurred in 18/173

individuals from the Sub-isolate Population Sample and only in 1/1586 individuals from the

Whole Finland Population sample (p= 8.55×10−18, Fisher’s Exact Test).

Shared SNP haplotypes among deletion-carriers indicated a single ancestral origin for each

deletion. Carriers of the 4q12 deletion shared a 2.248 Mb haplotype (248 kb proximal and

2.0 Mb distal to the deletion), while carriers of the 22q11.22 deletion shared a 289 kb

haplotype (167 kb proximal and 122 kb distal to the deletion). The presence of the shared 4q

and 22q haplotypes among Finnish non-carriers of the deletions (population frequencies of

1.1% and 13.0%, respectively, assuming full LD between their proximal and distal portions)

indicate that both deletions arose relatively recently.

Neither the 4q12 deletion nor the shared haplotype in this region overlapped with known

genes. The 240 kb 22q11.22 deletion lies within the 1.4 −2.1 Mb distal 22q11.2

microdeletion syndrome region21. Several studies have implicated this region, ~400kb

telomeric to the region deleted in velocardiofacial syndrome (VCFS)22, in both

schizophrenia and developmental delay9, 23, 24. The deletion described here encompasses

two possible genes; TOP3β, is a stable protein-coding gene predicted by all algorithms, and

with an unambiguous genomic position, while IGLV2-14 is a predicted transcript of

unknown function, whose position has shifted between different genome builds, and which

shares sequence homologies with immunoglobulin variants. Two complementary low copy

repeats (chr22:20638870-20642866 and chr22:20904962-20908959) flank the 22q11.22

deletion and likely facilitated its formation (Fig. 2a).

Association of the 22q deletion with schizophrenia

To assess whether the increased frequencies of the 4q12 and 22q11.22 deletions in the

Northeastern sub-isolate are related to risk for neurodevelopmental disorders, we compared

previously genotyped samples; 185 individuals diagnosed with schizophrenia (Sub-isolate

Schizophrenia Sample25) with 747 unscreened controls (Sub-isolate Control Sample). The

22q11.22 deletion showed significantly increased frequency in the Sub-isolate

Schizophrenia Sample (OR = 1.84, p < 0.03), while the 4q12 deletion showed no such

difference (p = 0.14) (Table 1).

We additionally assessed the association between the 22q11.22 deletion and schizophrenia

in case-control samples from other parts of Finland and from elsewhere in Europe, using

large samples given the rarity of the deletion outside of the sub-isolate (Whole Finland

Schizophrenia Sample23 and Whole Finland Control Sample, 467 cases and 11,124 controls;

International Schizophrenia Consortium, ISC23, and Swedish Schizophrenia Consortium,

SSC26, 9176 cases and 9529 controls). The deletion displayed nominal association with

schizophrenia in the Whole Finland samples (OR = 2.63, p = 0.008, after controlling for
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genomic inflation [λ = 1.20]) but not in the non-Finnish samples, although the effect was in

the same direction (OR = 2.17, p= 0.12; Table 1). The combined estimate of significance

was p=0.007 (OR = 1.84, 95%-CI: 1.18 - 2.87), with no heterogeneity of effect observed

between the three samples.

Association of the 22q deletion with cognitive impairment

We analyzed the relationship between the 4q12 and 22q11.22 deletions and seven

neurodevelopmental phenotypes evaluated previously with respect to large deletions in

4,872 genotyped members of the Northern Finland 1966 Birth Cohort (NFBC1966)10, a

geographically representative population cohort, drawn from the Northeastern sub-isolates

as well as the surrounding, less genetically isolated regions; we excluded 59 individuals

diagnosed with schizophrenia who were included in the schizophrenia case-control analyses.

As with the larger deletions investigated previously in NFBC196610, carriers of the

22q11.22 deletion showed significantly higher frequencies of intellectual deficit compared

to non-carriers (OR = 4.6, 95%-CI: 1.41-14.96, p = 0.03), and an even greater

overrepresentation of milder learning difficulties (OR= 5.9, 95%-CI: 1.78-8.94, p=0.003)

(Table 2). The deletion carriers, however, did not show a significantly increased risk for

psychosis (excluding diagnosis of schizophrenia), although the effect was in the predicted

direction (OR = 4.1, 95%-CI: 0.55-30.17, p = 0.2). No phenotypes were significantly

overrepresented among 4q12 deletion carriers.

Cognitive function in schizophrenic deletion carriers

Schizophrenia is associated with cognitive impairments, and this association may reflect a

common genetic basis for these phenotypes27. Given the observed association of the

22q11.22 deletion with both schizophrenia and cognitive impairment, we evaluated

cognitive performance in relation to both diagnosis and deletion status in 566 schizophrenic

subjects (19 deletion carriers and 547 non-carriers), each of whom is the proband in a family

from the Finnish Schizophrenia Family Study (comprising the majority of the individuals in

the Sub-isolate and Whole Finland Schizophrenia Samples). Deletion carriers performed

worse than non-carriers in tests assessing verbal memory after short delay (B = −1.5, p

=0.03) and showed a similar trend for other measures, although not reaching statistical

significance (Table S2). Within the pedigrees of which the 19 deletion carriers are members,

we observe no apparent segregation with neurodevelopmental phenotypes of the 22q11.22

deletion, in heterozygous form (Fig. S2), as expected given the magnitude of the effects

observed in the association analyses.

Phenotypic impact of the 22q deletion, in recessive form

We identified, in NFBC1966 and the Sub-isolate Schizophrenia Sample, four homozygous

carriers of the 22q11.22 deletion, three of whom descended from consanguineous matings

(Fig. 2b). All four individuals displayed cognitive impairment, ranging from poor

performance on tests of executive function and information processing to moderate mental

retardation. Two of them also carried a diagnosis of schizophrenia.
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TOP3β expression is disrupted among 22q deletion-carriers

Given the limited genomic information and lack of prior genetic evidence relating to

IGLV2-14, we chose to focus on TOP3β; prior studies have suggested that de novo TOP3β
mutations may contribute to neurodevelopmental disorders16, 17, and we hypothesized that

disruption of this gene could account for the observed phenotypic effects of the 22q11.22

deletion. Microarray analysis in 65 individuals (51 non carriers, 12 heterozygous carriers,

and two homozygous carriers drawn from 18 families of the Finnish Schizophrenia Family

Study) confirmed the simple dosage-dependent effect of the deletion on TOP3β expression

(probe 4900386, Fig. 2c).

The deletion had no genome-wide significant effect on mRNA levels of other genes, either

in 22q or elsewhere in the genome. However, 813 genes (858 of 9872 probes) showed

nominal difference in mRNA levels between deletion carriers and non-carriers (p<0.05).

From this set of 813 genes, we evaluated whether any functional gene category, plausibly

affected by the down-regulation of TOP3β would be enriched among deletion carriers

compared to non-carriers. Genes involved in two related categories, translation and

ribosomal complexes displayed a 3.1 and a 2.8 -fold enrichment, respectively, (p = 6.2 ×

10−8 and 2.8 × 10−10, Table S3), suggesting the possibility that the 22q11.22 deletion exerts

its phenotypic effect via disturbed translational regulation. We were unable to detect, in

deletion carriers, an enrichment of differentially expressed FMRP target genes12 (data not

shown). For the majority of the FMRP target genes (458/843), expression levels in

peripheral blood were below the threshold for detection. These 458 undetectable genes were,

in contrast to the 385 detected genes, overrepresented in gene categories related to neuronal

functioning, suggesting that this negative result may reflect our lack of the most biologically

relevant tissues for this analysis.

A complex of TOP3β, TDRD3 and FMRP binds early mRNPs

To gain insight into the cellular function of TOP3β we generated a stable cell line allowing

the expression of FLAG/HA-tagged TOP3β. Immunoprecipitations with anti-FLAG

antibodies uncovered an interaction of TOP3β with TDRD3 and FMRP (Fig. 3a). These

proteins co-purified in an RNAse insensitive manner, illustrating a direct rather than RNA-

mediated interaction. TDRD3 is a multidomain protein that, in addition to its EJC-binding

motif (EBM), contains an N-terminal OB-fold domain (NTD) of unknown function and a C-

terminal FMRP-interacting motif (FIM)16, 17. TOP3β bound to the NTD (Fig. S3a-c),

suggesting that TDRD3 is a bridging factor in a heterotrimeric TOP3β-TDRD3-FMRP

(TTF) complex (Fig. S3d). Immunoprecipitation of TOP3β also resulted in the RNAse-

sensitive co-purification of the EJC component MAGOH and the cytosolic poly(A)-binding

protein PABPC1 (Fig. 3a), suggesting that TTF is associated with spliced mRNPs. TTF

exists in mouse brain lysates and NSC-34 cells, indicating its presence in neuronal cells

(Fig. 3b and Fig. S3e).

TOP3β is a stress granule component and binds RNA directly

FMRP and TDRD3 are nucleo-cytoplasmic shuttling proteins and localize predominantly to

the cytosol under steady state conditions14, 28. The identification of TOP3β as an interactor

of these proteins prompted us to analyze its subcellular distribution. Immunofluorescence
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microscopy, expression of GFP-tagged fusion protein and subcellular fractionation all

indicated that TOP3β also is mostly cytosolic (Fig. 3c and S4a, b). In addition, upon arsenite

treatment or strong overexpression, TOP3β co-localized with TDRD3 and FMRP in

cytosolic foci reminiscent of stress granules, storage sites of translationally silenced

mRNAs29 (Fig. 3c and S4c, d). Treatment of cells with the nuclear export-inhibitor

leptomycin-B or deletion of the putative nuclear export signal shifted GFP-TOP3β to the

nucleus (Fig. S4e-g). Thus, all components of the TTF complex exhibit similar intracellular

localization and trafficking. To test whether TOP3β directly associates with mRNAs, we

purified mRNA-bound proteins using oligo(dT)-cellulose, and captured TOP3β, along with

FMRP and PABPC1, in an RNAse sensitive manner (Fig. 3d). In a vice versa experiment,

we performed UV crosslinking and immunoprecipitation and found cellular RNAs

efficiently crosslinked to FLAG/HA-TOP3β (Fig. 3e). These results indicated that TOP3β is

a component of cytosolic mRNPs.

TOP3β is catalytically active on RNA

TOP3β is a type IA topoisomerase that catalyzes transient breakage of a DNA strand by the

reversible transesterification between an active site (AS) tyrosyl and a DNA 5′-phopshoryl

group30. Cleaved intermediates can be released by SDS-denaturation of the enzyme during

its catalytic cycle (Fig. 4a). The ability of TOP3β to directly bind RNA (see Fig. 3e)

encouraged us to test whether TOP3β might be active on RNA substrates. Indeed, the

addition of RNA inhibited cleavage of 5′-labeled DNA by recombinant TOP3β (Fig. 4b),

indicating that both molecules compete for the same active site (Fig. 4c). Also, incubation of

TOP3β with 5′-labeled RNA resulted in a specific cleavage product (Fig. 4d). The

formation of covalent complexes of TOP3β and 3′-labeled RNA was consistent with a 5′-

phosphotyrosyl intermediate (Fig. 4e). Of note, we observed a high molecular weight smear

in Western blot analysis of FLAG/HA-TOP3β oligo(dT)-purified from cellular extracts (Fig.

3d, lane 2). Reasoning that this smear might represent covalent complexes between

FLAG/HA-TOP3β and RNA, we eluted oligo(dT)-purified FLAG/HA-TOP3β from the

column and treated the eluate with RNAse (Fig. 4f). RNAse treatment eliminated the FLAG-

positive high molecular weight species, suggesting that TOP3β is active on mRNA

substrates in vivo.

TTF-containing mRNPs are associated with polyribosomes

To analyze whether TTF-bound mRNPs are associated with the translation machinery, we

first purified translation factors from HeLa cells (Fig. 5a). As reported for FMRP31, TDRD3

and TOP3β were present in crude ribosomal pellets but dissociated upon high-salt treatment

(Fig. 5b), suggesting that they are components of translating mRNPs.

Western blot analysis of polysome gradient centrifugation from stable FLAG/HA-TDRD3

cell extracts showed that FLAG/HA-TDRD3 and endogenous TOP3β co-migrated with

FMRP in polysomal fractions in an RNAse sensitive manner (Fig. 5c), further demonstrating

that part of the TTF-bound mRNP pool is undergoing translation. This observation is

noteworthy considering the binding of TDRD3 to the EJC15, as the latter is thought to be

removed from the mRNA during the first round of translation32. A hallmark of mRNPs that

participate in this “pioneer round” of translation is their association with the nuclear cap
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binding proteins CBP20 and CBP80 instead of eIF4E32. Immunoprecipitation of TTF-

containing mRNPs via FLAG/HA-TDRD3 revealed their binding to CBP20 and CBP80, but

not to eIF4E (Fig. 5d), suggesting that TTF is a component of mRNPs undergoing the

pioneer round of translation.

TTF recruitment to mRNPs requires the TDRD3 Tudor domain

To dissect the mechanisms leading to TTF formation and integration into mRNPs, we

generated TDRD3-mutants in which individual protein-protein interactions were disrupted

(Fig. 6a). We established stable cell lines expressing FLAG/HA-tagged versions of these

mutants and analyzed them by immunoprecipitation as well as polysome gradient

centrifugation. Wildtype TDRD3 formed the TTF complex (Fig. 6b) and became integrated

into polysome-bound mRNPs (Fig. S5a). Deletion of the binding sites for FMRP

(TDRD3ΔFIM) or TOP3β (TDRD3ΔNTD) resulted in the loss of the respective protein from

TTF (Fig. 6b and S5b). However, integration of the remaining binary complexes into

mRNPs and polysomes was unaffected (Fig. 6b and S5a, b), indicating that the recruitment

of TDRD3 to the EJC can occur independently of TTF formation. Mutation of the EBM

(TDRD3EBMmut), in contrast, abolished integration of TDRD3 into mRNPs while binding of

TOP3β and FMRP were unaffected (Fig. 6b and S5a). Thus, formation of the TTF complex

occurs before TDRD3 is tethered to the EJC.

Lastly, we analyzed a missense mutation of the Tudor domain (TDRD3TDRmut), impairing

the recognition of asymmetrically dimethylated arginine (aDMA) modifications in the C-

terminal domain of RNA Polymerase II (RNAPII CTD) and in the tails of Histones H3 and

H4 at the transcription start site (TSS)33, 34. As several mRNA processing factors are

recruited to the nascent transcript via the RNAPII CTD, we reasoned that TDRD3 might

follow a similar route. Indeed, TDRD3TDRmut showed strongly reduced association of

TDRD3 with mRNPs (Fig. 6b and S5a). While this mutation did not affect the assembly of a

TOP3β-TDRD3 heterodimer, it diminished the recruitment of FMRP (Fig. 6b). Thus, the

generation of TTF-containing mRNPs requires the recognition of aDMA by TDRD3.

Although FIM and EBM reside outside of the Tudor domain14, 15, we wanted to exclude the

possibility that the latter contributes to FMRP or EJC binding, as aDMA modifications have

been reported for FMRP and other mRNP components35. We incubated purified TDRD3

with cellular extracts and analyzed for bound FMRP and MAGOH, observing no differences

between wildtype and Tudor mutant protein (Fig. 6c, lanes 2 and 3). This finding was

specific, as TDRD3EBMmut failed to associate with MAGOH (Fig. 6c, lane 4). Therefore,

mutating the Tudor domain per se does not influence the binding of TDRD3 to FMRP or the

EJC. Instead, the defect of TDRD3TDRmut in TTF formation and mRNP incorporation

appears to be a consequence of its impaired binding to aDMA-modified histones and/or

RNAPII.

Formation of TTF containing mRNPs requires TDRD3

The above results uncovered a mechanism for the concomitant integration of TOP3β,

TDRD3 and FMRP into mRNPs. To investigate whether this is the only pathway for the

biogenesis of mRNPs containing TOP3β and FMRP, we used a cell line carrying a deletion

encompassing TDRD336. Gradient centrifugation revealed that in these TDRD3-deficient
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cells, the association of TOP3β with polysomes was diminished (Fig. 6d). However, upon

transfection of FLAG/HA-TDRD3, TOP3β became redistributed into the polysomal

fractions. Thus, TDRD3 is necessary and sufficient for the recruitment of TOP3β to mRNPs.

Overexpressed TDRD3EBMmut was not associated with polysomes and consequently failed

to increase the amount of polysomal TOP3β (Fig. 6d and S6a), indicating that the EJC is the

only docking platform for TTF on mRNPs.

FMRP, by contrast, associated with polysomes in TDRD3-deficient cells (Fig. S6b). This

observation suggested that TTF-containing mRNPs constitute only a subpopulation of the

FMRP-bound pool and implied that alternative routes exist for integrating FMRP into

mRNPs. Hence we analyzed whether the presence of TDRD3 is a prerequisite for

recruitment of FMRP into a specific, TTF-containing mRNP subpopulation. For this

purpose, we transfected TDRD3-deficient cells either with GFP-TOP3β alone or together

with FLAG/HA-TDRD3 variants and assayed them for TTF and mRNP formation via anti-

GFP immunoprecipitations. Consistent with the results shown in Figure 6d, GFP-TOP3β
association with FMRP and mRNPs was entirely dependent on cotransfected wildtype

TDRD3 (Fig. 6e, lanes 6 and 8). In contrast, co-transfection of FLAG/HATDRD3ΔFIM

enabled the formation of mRNPs containing GFP-TOP3β but these mRNPs were entirely

devoid of FMRP (Fig. 6e, lane 7). Together, these data indicated that TDRD3 is essential for

the integration of FMRP into the subpopulation of mRNPs that contain the TTF complex.

Discussion

Our finding of association between neurodevelopmental disorders and a 22q11.22 deletion –

vastly increased in frequency in Northern Finnish sub-isolates and occurring on a single

haplotype – demonstrates the special value of such populations for identifying variants with

a high impact on common phenotypes. Projects underway that aim to comprehensively

genotype a large proportion of the Finnish population37 should be able to exploit such

enrichment of functional variants to identify a wide range of trait-associations that in most

populations could require unfeasibly large samples. As with the 22q11.22 deletion, this

enrichment could also facilitate the identification of homozygotes in whom the phenotypic

impact of such variants is more extreme.

Large-scale implementation of the above strategy for identifying high-impact variants must

address the concern that standard methods of controlling for population stratification may

not work well for rare variants38. Such stratification is unlikely to be a major issue in our

study for several reasons. First, in Northern Finland the 22q11.22 deletion has an allele

frequency of ~3-5%, and thus is not a rare variant. Second, stratification is of less concern in

populations, where substructure has a clear geographical basis38, and where fine-grained

information is available about the geographical origin of the study subjects is available, as is

the case in multiple Finnish cohorts; several studies have demonstrated the high degree of

correlation, in such cohorts, between geographical origin and measures of stratification

obtained from genome wide SNP data2, 39. Additionally, implementation of newly

developed methods for correcting for stratification at rare variants40 may facilitate

application of our strategy to a wider range of populations.
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The population impact in Northern Finland of the 22q11.22 deletion is likely much greater

than yet recognized, given its frequency there and its association with quantitative measures

of neurocognitive impairment. The predominant effect of the 22q11.22 deletion appears to

be on measures of neurocognitive function rather than on risk for specific diagnostic entities,

as evidenced by the range of phenotypes displayed by the homozygous deletion carriers, and

within the population cohort in which we have observed trait-associations. It may be feasible

to more precisely delineate the phenotypic effect of this deletion, as well as other deletions

that could have a similar effect, by obtaining more complete neurocognitive assessments in

larger samples from the Northern Finland population. The accumulation of deletion

genotype-phenotype associations that cut across classical disease categories has the potential

to enhance our understanding of mechanisms underlying disorders of brain and behavior.

For example, our results suggest that large-scale investigations of deletions in schizophrenia

study samples phenotyped for neurocognitive measures may contribute to the genetic

dissection of this phenotypically heterogeneous syndrome.

The phenotypic impact of the deletion reported here likely derives from its effect on TOP3β;

the deletion directly disrupts this gene, down regulates its mRNA levels, and does not

appear to alter transcript levels of genes outside the deletion region. This interpretation is

consistent with the findings from a recent report of a single individual, of unspecified ethnic

origins, who demonstrated speech delay and minor physical abnormalities and carried a

deletion that appears to be identical to the one presented here18. Analysis of animal models

with a genetically equivalent mutation may help clarify whether Top3β plays an important

role in synaptic plasticity.

Although the deletion also incorporates IGLV2-14, and we cannot exclude the possibility

that its loss contributes to the phenotypes that describe here, it is merely a predicted

transcript of unknown function, for which no independent mutations have been reported in

either the literature or databases. In contrast, recent surveys of de novo mutations have

yielded both direct and indirect genetic evidence suggesting that TOP3β missense variants

contribute to schizophrenia and autism spectrum disorders16, 17. The independent forms of

genetic evidence represented by the deletions and de novo variants, are complementary, and

taken together strengthen the suggestion that TOP3β plays an important role in

neurodevelopment.

Biochemical analysis revealed that TOP3β is part of a heterotrimeric TOP3β-TDRD3-

FMRP (TTF) complex. Similar to our study, an accompanying paper shows that Top3β
interacts with FMRP via TDRD3, and demonstrates that Top3β modifies dFMR1 function in

the Drosophila neuromuscular junction synapse formation41. Our data suggest a stepwise

model for TTF formation (Fig. S7a): TDRD3 reads aDMA marks on histones and

RNAPII33, 34, a process that recruits a TDRD3-TOP3β heterodimer to the TSS. After

binding of FMRP, the resulting heterotrimeric complex transfers to an EJC on the nascent

transcript. Thus, in this scenario, the recruitment of FMRP into mRNPs does not require

direct binding of FMRP to mRNA. Instead, recognition of aDMA marks at the TSS by

TDRD3 determines whether the resulting transcript is a target for FMRP. In line with this

conclusion, the genes bound by TDRD3 at their TSS overlap significantly with those that

acquire FMRP as a component of their mRNPs (Fig. S7b). Our data further show that other
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routes of FMRP recruitment to mRNPs must exist, as FMRP-containing mRNPs still form in

TDRD3 deficient cells, and our model does not rule out that FMRP – after being bound to

the EJC – directly contacts its target mRNAs, offering an explanation for the unexpected

observation that FMRP binding sites are dispersed throughout the coding regions on many

transcripts12, 42. In addition, this model predicts that, in the absence of TOP3β, mRNPs that

normally contain TTF are loaded only with a TDRD3-FMRP heterodimer (Fig. S7a).

The fate of the EJC-bound TTF complex, and the functional consequences of this interaction

are currently unknown. TTF-containing mRNPs associate with CBP20/80 but not with

eIF4E, suggesting a role of TTF during the pioneer round of translation32. EJC-associated

factors like the RNA surveillance complex or the protein kinase S6K1 rigorously control this

step. The latter is – like the TTF complex – specifically recruited to the EJC, increasing the

translational efficiency of the pioneer round43. S6K1 phosphorylates FMRP and is an

effector of the mammalian target of the rapamycin (mTOR) pathway, which controls

activity-dependent translation in neurons44. The EJC might hence serve as a molecular

scaffold to integrate the actions of FMRP and mTOR in regulated neuronal translation.

We note that the TTF complex bears striking similarity to the BLM-TOP3α-RMI1 complex

(BTR)45, implicated in the catalytic dissolution of replication-induced DNA four-way

junctions46. Similar four-way junctions present in RNA can be interconverted into kissing

complexes, which are known FMRP binding sites47, 48. Our data hence raise the possibility

that TOP3β remodels FMRP binding sites. Nevertheless, other functions of TOP3ß in

mRNA metabolism or even in completely unrelated cellular processes also appear feasible

and deserve further investigation.

The identification of TTF uncovered an unexpected biochemical link between Fragile X

patients and TOP3ß deletion carriers. This discovery raises two alternative scenarios: 1)

Neurodevelopmental disorders traditionally considered distinct share common etiologies;

under this scenario, the dysregulation of TTF-containing mRNPs may underlie the

overlapping neurocognitive impairment phenotypes observed in Fragile X syndrome and

schizophrenia. 2) Alternatively, different mutations in TOP3ß that affect different functions

of the gene result in different forms of psychopathology, and it is possible that deletion of

this gene contributes to neurodevelopmental phenotypes through as yet unidentified non-

FMRP pathways.

Future biochemical and enzymatic analyses of pathogenic TOP3ß missense mutations may

enable us to reject one or the other of these scenarios. However the second scenario implies

a greater level of specificity and certainty with respect to the definition and etiology of

neuropsychiatric syndromes, than is suggested by currently available data. For example,

Fragile X syndrome and schizophrenia share important phenotypic features that make it

unsurprising that they could also share underlying biological processes. Deficits in working

memory and other executive functions are perhaps the most salient neurocognitive features

of schizophrenia49, and are also frequently observed in Fragile X males50. Impairment in

cognitive function is also a feature of autism spectrum disorders, and it is possible that

FMRP-related abnormalities contribute to cognitive dysfunction in all of the disorders under

discussion here. The systematic identification of neuronal TTF mRNA targets and their
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functional analysis in relation to neuronal plasticity will help to clarify whether this is the

case.

Online Materials and Methods

The study samples

Table S1 summarizes features of the study samples. The relevant local and/or national

ethical review committees approved all of the studies contributing samples. All participants

provided written informed consent.

Sub-isolate Population Sample—The Sub-isolate Population Sample consisted of 173

participants, selected from FINRISK, a periodic nation-wide health survey cohort of

randomly selected, representative population samples from different parts of the country,

focused on risk factors for chronic and noncommunicable diseases19. The 1997 and 2007

surveys included individuals from Northeastern sub-isolate municipalities. We selected all

FINRISK participants with both parents originating from the sub-isolate for the Sub-isolate

Population Sample.

Whole Finland Population Sample—Individuals in the Whole Finland Population

Sample (N = 1,586) participated in the Helsinki Birth Cohort Study (HBCS), drawn from

8,760 individuals born in the Helsinki Central Hospital between 1934 and 1944, who

attended child welfare clinics in Helsinki, and lived in Finland in 1971. The individuals

comprising the Whole Finland Population Sample participated in a clinical study of HBCS

that involved collection of DNA samples from all participants.20

Sub-isolate and Whole Finland Schizophrenia Samples—The schizophrenia

subjects included in this study derived from three sources: the nationwide Finnish

Schizophrenia Family Study, the Health 2000 nationwide health survey (H2000), and the

Northern Finland Birth Cohort 1966 (NFBC 1966). Most of these subjects (N = 566) derived

from the Finnish Schizophrenia Family Study, in which the investigators used three national

registers, the Hospital Discharge Register, the Free Medicine Register and the Pension

Register to identify 33,731 individuals diagnosed schizophrenia between 1969-1998, drawn

from a cohort of individuals born between 1940 and 1976. Treating physicians contacted

potential probands; for those who provided written informed consent, they also contacted

additional family members. Independent review of materials by psychiatrists blind to the

family structures led to consensus best-estimate lifetime diagnoses according to the criteria

of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV)25.

The 566 subjects selected from the schizophrenia study were members of independent

nuclear families. The Sub-isolate Schizophrenia Sample included 171 of these individuals

who originated from the Northeastern Finland sub-isolate. The Whole Finland

Schizophrenia sample included those who originated outside of the sub-isolate (N=395). We

identified the rest of the Finnish schizophrenia subjects included in this study (14 in the Sub-

isolate Schizophrenia Sample, and 72 in the Whole Finland Schizophrenia Sample) among

participants of H2000 and NFBC1966 diagnosed with DSM III-R or DSM IV schizophrenia
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or schizoaffective disorder using multiple sources of information, including structured

clinical interviews and medical records.

Sub-isolate Control Sample and Whole Finland Control Sample—These samples

are distinct from those that we used to investigate regional differences in deletion

frequencies, and consist of participants of nationwide Finnish health surveys and population

cohorts; NFBC1966, the Northern Finland 1986 Birth Cohort (NFBC1986), H2000, The

Cardiovascular Risk in Young Finns study (YFS), the Finnish Twin Cohort (FTC), and the

Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome study

(DILGOM). The cohorts comprised altogether 11,871 individuals. Of these individuals, the

Sub-Isolate Control Sample included 747 who originated from the Northeastern Finland sub-

isolate, while the Whole Finland Control Sample included the remaining 11,124

individuals.. Descriptions of the individual cohorts are below.

Northern Finland 1966 and 1986 cohorts—The study subjects were members of two

prospective birth cohorts consisting of 96% and 99% of all live-born children in the two

most Northern provinces of Finland in 1966 and between July 1985- June 1986 (NFBC1966

and NFBC1986, respectively)10, 51. NFBC1966 began with collection of prenatal clinical

data on 12,068 live born children and has continued with follow-ups at multiple time points

that generated a phenotype data base combining information from official registers, hospital

records, questionnaires and clinical examinations of the participants. The present study

included 4931 genotyped individuals from this cohort10, 59 with a DSM-III-R based

diagnosis of schizophrenia or schizoaffective disorder, and 4872 without such diagnoses

(members respectively of either the Sub-isolate Schizophrenia Sample/Sub-isolate Control

Sample or Whole Finland Schizophrenia Sample/Whole Finland Control Sample, depending

on their parents’ birthplace). We additionally used the 4872 “controls” to evaluate the

relationship between the 4q12 and 22q11.22 deletions and other neurodevelopmental

phenotypes previously examined in this cohort in relation to larger deletions10.

NFBC1986 consists of 9,340 live born children, prospectively followed since their 12th

gestational week. The last follow-up to date, at age 16 years (years 2001-2002), included

6645 individuals who gave consent to participate in the study. The Sub-isolate Control

Sample includes NFBC1986 individuals (N=212), with both grandparents originating from

the Northeast Finland sub-isolate51.

Health 2000—Health 2000 (H2000) is a nationally representative cross-sectional health

study carried out in 2000 - 2001 and includes 8028 individuals. We selected 2,402 H2000

participants for the current study as follows: The majority (N=2212) were cases and controls

from a sub-study of genetic risk factors for metabolic syndrome, of whom 27 met DSM-IV

diagnosis for schizophrenia or schizoaffective disorder, included as cases in the present

study52. The remaining 190 individuals were controls in a large European schizophrenia

consortium, SGENE53.

The Cardiovascular Risk in Young Finns Study—The Cardiovascular Risk in Young

Finns Study (YFS) is a follow-up study of cardiovascular risk factors from childhood to

adulthood, in study participants randomly chosen from the Population Register and recruited
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from five university cities in Finland. The baseline study launched in 1980 and included

3596 individuals. Follow-ups have occurred on average every three years, most recently in

2007, when participants were 27 years old. The present study included 2308 individuals

from YFS with available GWAS data54.

Finnish Twin Cohort (FTC)—We ascertained 1492 individuals (one twin, chosen

randomly, per pair) from the genotyped participants of the Finnish Twin Cohort, FTC. The

FTC includes both monozygotic and dizygotic twins, collected in several separate phases.

The older cohort included 13,888 same-sex and 8000 opposite sex pairs with known

zygosity. The younger Finnish twin cohorts, referred to as FinnTwin12 and FinnTwin16, are

longitudinal studies of behavioral development and health habits of Finnish twins enrolled at

ages 11-12 and 16, respectively. These cohorts included 4913 pairs of both monozygotic and

dizygotic pairs55.

Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic
syndrome study (DILGOM)—A subset of individuals, aged between 25 and 74, from the

FINRISK 2007 health survey participated in the DILGOM sub study. The present study

included the 612 genotyped individuals from DILGOM as members of the Whole Finland

Control Sample56.

The International Schizophrenia Consortium (ISC)—The ISC sample consisted of

3,391 schizophrenia subjects, diagnosed according to DSM-IV or ICD 10, and 3181

controls, all of European origin. A previous publication detailed the data set and the CNV

Calls (obtained using Birdseye, from the intensity data of the genotype probes on the

Affymetrix 5.0 and 6.0 genotyping arrays23.

The Swedish Schizophrenia Cohort (SSC)—The SSC sample included individuals in

Sweden hospitalized at least twice for schizophrenia since 1973 (N= 5785). The SSC

controls (N = 6348), group matched with the cases regarding age, sex, and county of

residence had no hospitalization due to psychiatric diagnoses.

GWAS and CNV calling—Genome-wide genotyping studies utilized the following

arrays: Illumina Human670K customBeadChip (HBCS, NFBC1986, YFS, FT TWINS,

DILGOM, and parts of the Schizophrenia Family Study sample), Illumina Infinium

HDHuman610-Quad BeadChip (DILGOM and the majority of the H2000 sample), Illumina

HumanHap300 Chip (the remainder of the schizophrenia subjects and H2000 controls,

included in the SGENE consortium), Illumina HumanHap370 Chip (NFBC1966), and

Affymetrix 5.0 and 6.0 genotyping arrays (ISC and SSC). We utilized QuantiSNP57 and

PennCNV58 software to make CNV calls, employing the LogR Ratio (LogRR) and B-allele

frequency (BAF) of SNP probes included in the genotyping arrays. We called CNVs

independently for each cohort and carried out QC based on graphical clustering of LogRR or

BAF standard deviations, removing outlier samples from each cohort. In all cohorts we

excluded individuals if their LogRR or BAF standard deviations were over 0.35 and 0.07,

respectively; waviness factor was outside the range −0.04 - 0.04; and BAF drift exceeded

0.002, according to software recommendations.
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We conducted a genome-wide scan for deletions (>20 kb in size) in the Sub-isolate and

Whole Finland Population Samples, reading deletion genotypes from QuantiSNP and

including only deletions with > 10 probes and Bayes factor over 10. To ensure reliable high

quality data, we visually inspected the intensity distributions for deletions that showed

significant deviation in frequency between the Sub-isolate and Whole Finland samples and

tested them for Hardy-Weinberg equilibrium. For the other data sets we utilized deletion

calls intersecting the previously identified regions on chromosomes 4 and 22. We validated

the 22q11.22 in a subset of 258 individuals (19 carrying the deletion) with Sequenom

MassARRAY and quantitative real-time PCR (QRT-PCR). The deletion genotypes had

100% correspondence with those from GWAS arrays.

Statistical analysis—We discarded from the analysis breakpoints including more than 88

overlapping deletions (frequency > 5%) in the 1,759 individuals. We used PLINK

software59 to cluster individuals to sub-isolate and whole Finland groups, according to

parental origin; compare the frequencies of deletions (>20 kb, at the start and end point of

each deletion) between the Sub-isolate Population Sample and the Whole Finland

Population Sample; and calculate allelic Chi-square p-values. We calculated empirical p-

values after 10,000 permutations for each deletion breakpoint. For testing associations with

schizophrenia and other traits we used allelic Fisher exact tests and Conchran-Mantel-

Haenszel statistics.

Gene expression analysis—Using an Illumina HumanHT-12 v4 Expression BeadChip

we generated genome-wide gene expression data for 65 individuals from 18 families of the

Finnish Schizophrenia Family Study, at the FIMM Technology Centre. To study the direct

impact of the 22q11.22 deletion on TOP3B, we studied its average expression levels (probe

4900386) in heterozygous carriers (N = 12 individuals), homozygous carriers (N = 2), and

non-carriers (N = 51), and used R (MA-ANOVA program package) to analyze the effect of

carrying this deletion on genome-wide gene expression levels, including. only the 9872

probes that showed signal above background levels in all individuals. Since this analysis

was exploratory, we derived q-values to determine if any of the observed significant changes

have occurred beyond the level of false discovery. The pathway analysis carried out for 813

genes (858 probes) showed nominal statistical difference (p < 0.05) between deletion

carriers and non-carriers, using the functional annotation tool in DAVID bioinformatics

resources 6.760.

Antibodies—A previous publication described the primary antibody against FMRP14.

Purchased primary antibodies include: FLAG (Sigma # A2220), HA (HISS # MMS-101R),

GFP (Roche # 11814460001), TDRD3 (Bethyl # A310-983A), TOP3β (Abcam # ab56445),

PABPC1 (Abcam # ab21060), GAPDH (Abcam # ab9485), HISTONE H3, rpL7 (Abcam #

72550), MAGOH (Santa Cruz # sc-271405), CBP80 (Santa Cruz # sc-271304) and CBP20

(Santa Cruz # sc-48793), eIF2γ (Proteintech # 11162-1-AP), eIF4E (Abcam # ab1126).

Plasmids and mutagenesis—We cloned cDNAs of TDRD3 (wt or truncations) and

TOP3β in a pcHA/DNA5/FRT/TO plasmid (Invitrogen) containing an N-terminal FLAG-tag

(for stable cell line preparation), a pGEX-6P-1 Vector containing a C-terminal 6xHis-stop
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sequence (for protein expression) or a pEGFP C1 vector (for immunocytochemistry or IP),

and introduced point mutations and deletions into the individual constructs by PCR

mutagenesis.

Cell culture, plasmid transfections—The culture medium for all cells was DMEM

containing 10% FCS and 1% Pen/Strep (PAA). Stable cell line medium additionally

contained balsticidin and hygromycin (both Invivogen); tetracycline addition (1:2000) 5h

prior to harvesting induced protein-expression in these cells. We carried out all transfections

using Nanofectin™ (PAA). Generation and cultivation of HEK293 FlpTRex cell lines

(Invitrogen) was according to manufacturer’s instructions. We purchased the TDRD3

deficient human lung adenocarcinoma cell line JCRB0814 [VMRCLCD] from the JCRB

Cell Bank of the National Institute of Biomedical Innovation.

Immunocytochemistry and stress treatment—For immunocytochemistry and stress

treatment we followed procedures described previously16. We treated cells with 50 ng/ml

Leptomycin B for 3 h to block nuclear export.

Co-immunoprecipitations (IPs)—We performed IPs with 25μl of α-FLAG M2 agarose

(Sigma) or protein-G Sepharose (GE-Healthcare) bound α-GFP-antibodies (Roche) per ml

cell extract. After adding lysis buffer (150 mM NaCl, 50 mM Tris pH 7.5, 2.5 mM MgCl2
and 0.5% NP40, 0.5 mM DTT, protease inhibitors) and incubation on ice for 10 min, we

cleared extracts by centrifugation (11000 rpm, 10 min, 4°C) before IP for 1 h (4°C).

Subsequent to extensive washing of the beads with lysis buffer, we eluted precipitated

complexes with 1% SDS (15 min, 70°C) and subjected them to SDS PAGE and Western

blot. Dounced and cleared mouse brain homogenate (in ice-cold IP lysis buffer, see above)

served for immunoprecipitations, with the indicated antibodies bound to Protein G-

Sepharose (GE Healthcare).

Cross-linking and immunoprecipitation (CLIP)—We grew HEK293 FlpTRex-

TOP3β cells or HEK293 control cells on 15cm plates to ~90% confluency and UV-cross-

linked them 5 h later (254 nm, CL-1000 Ultraviolet Crosslinker). We then incubated

harvested cells with lysis buffer containing protease inhibitors (50 mM HEPES pH 7.5, 150

mM KCl, 2 mM EDTA, 0.5% NP40, 1 mM DTT) for 10 min on ice. After lysate clearing

(11000 rpm, 10 min, 4°C), a treatment with RNAse T1 followed (1:10000, 7 min, 22°C)

(Ambion 1000 U/μl). We cooled the extracts subsequently on ice for 5min and incubated

them with pre-equilibrated magnetic FLAG M2 agarose (SIGMA) (1 h, 4°C). We then

washed the beads (washing conditions: 50 mM HEPES pH 7.5, 300 mM KCl and 0,05%

NP40) before adding different RNAse T1 concentrations (1:100000, 1:10000, 1:1000 or

1:100) and repeated the washing procedure ( 3x with high salt buffer (50 mM HEPES pH

7.5, 500 mM KCl, 0,05% NP40 and 3x with phosphatase buffer (10 mM Tris-HCl pH.8, 100

mM KCl, 5 mM MgCl2 and 0.2% Triton X-100). Dephosphorylation of co-precipitated

RNAs occurred within 40 min at 37°C using Fast AP (Fermentas). We 5′-labeled RNAs on

washed beads using [γ-32P] ATP (Perkin Elmer) and PNK (Fermentas) (1 h, 37°C). After

additional washing 5x with labeling buffer, we boiled the beads in SDS sample buffer and

subjected eluates to gel electrophoresis (NuPAGE Bis-Tris 4-12%, Life Technologies) and
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subsequent Western blotting on nitrocellulose. α-FLAG antibodies enabled us to detect

precipitated FLAG/HA-TOP3β, and exposing the blot membrane to an X-ray film allowed

the detection of the RNA.

oligo(dT) pulldown—We performed oligo(dT) pulldown assays using oligo(dT) cellulose

(Fluka) according to manufacturer’s instructions. We analyzed the oligo(dT) bound mRNPs

by SDS-PAGE and Western blot as described above either after Mock-treatment or after

digestion with RNAse A. (Qiagen).

Cleavage assays—We labeled RNA

(GGGAUUAUUGAACUGUUGUUCAAGCGUGGU) or DNA

(GGGATTATTGAACTGTTGTTCAAGCGTGGT) oligomers at the 5′-end using [γ-32P]

ATP (Perkin Elmer) and PNK (Fermentas) (1 h, 37°C) or at the 3′-end using [5′-32P] pCp

and T4 RNA Ligase (Fermentas) (over night at 4°C). For cleavage assays, we incubated ~

40 fmol of radiolabeled oligomers with recombinant TOP3β wildtype or active site mutant

(Y336F) (amounts are indicated in the individual experiment) at 42°C in buffer containing

40 mM HEPES pH6.5, 10% PEG400, 40% glycerol, 1 mM MgCl2, 1 mM DTT and 10

μg/ml BSA for 2 min. SDS at a final concentration of 0,2 % and incubation for 1 min

stopped the reaction. We analyzed release of 5′-fragments on 12% UREA PAA-Gels, and

covalent 3′-labeled TOP3β-RNA intermediates on a 10% SDS PAA-Gel. Detection of

recombinant TOP3β occurred via Western blotting using anti-TOP3β antibodies, detection

of RNAs via autoradiography.

Cell fractionation and gradient centrifugation—We used the Qproteome cell

compartment kit (Qiagen) to prepare nuclear and cytoplasmic extracts from HeLa cells

according to manufacturer’s instructions. A previous study described translation factor

purification31 except that we dounced cells and pelleted ribosomes in a Beckman 45Ti rotor

(4 h, 40000 rpm, 4°C). For polysome gradient centrifugations (5-45% sucrose) we lysed

cells in a buffer containing 100 mM KCl, 20 mM Tris pH 7.5, 5 mM MgCl2, 0.5% NP40, 1

mM DTT, 100 μg/ml cycloheximide and protease inhibitors and extracts clarified (11000

rpm, 10 min, 4°C) and subjected extracts to centrifugation in an SW60Ti rotor (Beckman)

(1:35 h, 34500 rpm, 4°C). UV profiling [A254nm] served to control ribosomal

sedimentation and we analyzed individual fractions by SDS PAGE and Western blot.

Protein expression and pulldown assays—We expressed indicated proteins in E. coli

BL21 Rosetta II (500 ml of TB medium supplemented with glucose (20 g/l) and antibiotics

at 30°C to 0.4 OD600, and expression conditions were 4 h at 18°C after induction with 0.5

mM IPTG). We resuspended pelleted cells in lysis buffer (20 mM HEPES pH8, 500 mM

KCl, 5 mM EDTA, 5 mM β-mecaptoethanol (β-ME) and 10% glycerin, protease inhibitors

1:1000), sonified them and prepared a cleared lysate (1 h, 35000 rpm, 4°C) in a Beckman

45Ti rotor. Addition of 200 μl of pre-equilibrated Glutathion-Sepharose (GE-Healthcare) to

the supernatant and incubation for 2 h at 4°C lead to binding of recombinant protein to the

matrix. After extensive washes, we eluted bound proteins with 50 mM glutathione. In the

subsequent purification, we incubated 200 μl of Ni2+-NTA (Qiagen) matrix with the pooled

elution fractions for 2 h at 4°C, followed by washing with lysis buffer containing 10 mM
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imidazole. Elution of boundprotein occurred in 20 mM HEPES pH8, 100 mM KCl, 5 mM β-

ME, 500 mM imidazole and 10% glycerin. For TDRD3-TOP3β interaction studies, we

prepared TDRD3 as described above (cleavage of the GST-tag occurred via incubation with

PreScission protease (GE Healthcare) at 4 U/μl for 5 h at 4°C prior to the Ni2+-NTA

purification step. For in vitro binding assays, we incubated immobilized GST-TOP3β-6xHis

with TDRD3-6xHis (1 h, 4°C) and washed 3x with buffer containing 20 mM HEPES pH 8,

300 mM KCl and 0.5% NP40. We analyzed the bound complexes by SDS-PAGE and

Coomassie staining. For wildtype or mutant GST-TDRD3-6xHis pull-down assays from cell

lysates we immobilized equal amounts of protein on Glutathion-Sepharose and incubated

them with HeLa extracts prepared as described above (see IP section). Analyis of

precipitated proteins occurred via SDS-PAGE and Western blot.

We expressed catalytically active recombinant GST-TOP3β-6xHis in Sf21 insect cells. For

this step, we transformed E. coli DH10EMBacY with a pACEBac1 transfer plasmid

carrying GST-TOP3β-6xHis (wildtype or active site mutant (Y336F)), using the resulting

recombinant bacmid DNA for transfection of Sf21 cells using Cellfectin II Reagent

(Invitrogen). A typical expression was in 200 ml culture volume (2×106 cells per ml) for

72h. We then sonicated harvested cells in lysis buffer (750 mM KCl, 20 mM Tris-HCl pH

7.5, 10% glycerin, 1 mM EDTA, 0.05% NP40, 1 mM DTT and protease inhibitors 1:500)

and cleared lysates by centrifugation (45 min, 25000 rpm, 4°C). We performed affinity

purification as described above.

Comparison of FMRP PAR-CLIP and TDRD3 Chromatin IP data—We inferred

known protein coding genes associated with TDRD3 from a genome-wide TDRD3

chromatin IP dataset33, and FMRP targets from a recent study that used photoactivatable

ribonucleoside enhanced crosslinking and IP (PAR-CLIP) as well as ribonucleoprotein

immunoprecipitation followed by microarray analysis (RIP-chip) to define human FMRP

bound mRNAs42. Transcripts considered FMRP targets contained at least one identified

binding site and showed enrichment in the RIP-chip (log fold enrichment > 0.1). We

assessed statistical significance of the overlap (i.e. FMRP target transcripts of TDRD3-

bound genes) using a Chi-square test with Yates’ correction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The frequency of neurodevelopmental disorders in Finland varies by region.
This variation corresponds to the migration history of the Finnish population, as exemplified

by schizophrenia prevalence4, 6, 7 (Fig. 1A) and by the percentage of the population with a

disability pension due to intellectual disability (Official Statistics of Finland, the Social

Insurance Institution of Finland, 2011) (Fig. 1B). Black arrows depict the radiation of

migration, beginning in the 16th century, from the early settlement region to the late

settlement region (the border of the two regions is outlined in light grey). Red arrows show

the location of sub-isolate municipalities within the Northeastern late settlement region.

Gradients in prevalence of neurodevelopmental disorders, across different municipalities,

are shown by the intensity of the blue shading.
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Figure 2. The 22q11.22 deletion covers about 240 kb, is present in homozygous form in
individuals diagnosed with schizophrenia and/or cognitive deficits, and results in dose-dependent
reduction in TOP3β.
(a). A schematic representation of 22q11.2 (17 −22.0 Mb) depicts the distinct regions

containing the deletions implicated in VCFS and the distal 22q11.22 deletion syndrome; the

latter region includes the 240 kb deletion described in this paper. Orange bars depict known

disease-related genes (based on OMIM) as well as genes relevant for the current study. Grey

bars represent low copy repeats associated with the deletions in this region, while blue bars

show the most common syndrome-related deletions18and the 240 kb 22q11.22 deletion

reported here. The SNPs defining the breakpoint are marked above the deletion. The

breakpoint region between the SNPs is marked with dashed lines. The deletion is flanked by

two complementary low- copy repeats (grey bars). The genes located on the deletion region

are presented below the deletion, which incorporates the full extent of TOP3β and

IGLV2-14. Genomic positions are according to hg build 36. (b). Four individuals with
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homozygous 22q11.22 deletions, all of whom display schizophrenia and/or intellectual

impairment, are members of three pedigrees from Northern Finland. The pedigrees, which

include two documented consanguineous matings, are presumed to descend from a common

ancestor (dashed line) based upon the common 22q11.22 haplotype observed among all of

the homozygous deletion carriers. (c) TOP3β mRNA levels differ among non-carriers,

heterozygous carriers and homozygous carriers of the 22q11.22 deletion. The expression

level of TOP3β in non-carriers (269.99, 95%-CI = 249.18 - 290.79) was twice that of

heterozygotes (127.61, 95%-CI = 103.92- 151.30), while homozygous deletion carriers had

no detectable transcript.

Stoll et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2014 April 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. TOP3β is part of a cytosolic, mRNP-associated protein complex that contains TDRD3
and FMRP.
(a) Immunoprecipitation of FLAG/HA-TOP3β from stably transfected HEK293 cells led to

the co-purification of TDRD3 and FMRP in an RNAse-insensitive manner. In contrast,

RNAse abolished the association of TOP3β with the mRNP proteins PABPC1 and

MAGOH. (b) The TTF complex is present in neuronal cells. Immunoprecipitations from

mouse brain lysates using antibodies directed against TDRD3 (lane 3) or TOP3β (lane 4).

Precipitated TTF components were immunodetected as indicated. Specificity was controlled

by an immunoprecipitation with pre-immune serum (lane 2). (c) Immunostaining of

untreated (CTR; upper panel) and arsenite treated (+ARS; lower panel) HeLa cells with an

anti-TOP3β antibody (green); nuclei were counterstained with DAPI (blue). TOP3β was

localized predominantly in the cytosol where it showed a diffuse staining pattern. Arsenite

treatment led to its accumulation in cytosolic foci that resemble stress granules (see also Fig.

S3). Scale bars represent 50 μm. (d) TOP3β binds mature mRNAs. Cells expressing
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FLAG/HA-TOP3β were lysed in the presence of SDS (lane 1, input) and polyadenylated

RNA was purified by affinity to oligo(dT) cellulose (lane2). This led to the co-purification

of TOP3β and the known RNA binding proteins FMRP and PABPC1, while the control

protein GAPDH was not found in the eluate. Treatment of the lysate with RNAse A prior to

oligo(dT) affinity purification (lane 3) diminished binding of TOP3β, FMRP and PABPC1.

(e) TOP3β is in direct contact with RNA. Control cells (lane 1) or FLAG/HA-TOP3β-

expressing cells (lanes 2-6) were crosslinked using UV light (lanes 1-5) or left untreated

(lane 6). FLAG/HA-TOP3β was immunoprurified under stringent conditions and

crosslinked RNAs were treated with increasing amounts of RNAse T1 prior to 5′-labeling

with [γ32P]-ATP. Middle panel: Autoradiography of [32P]-labeled RNA crosslinked to

FLAG/HA-TOP3β. Lower panel: Western blot control of immunoprecipitated FLAG/HA-

TOP3β. All images are representative of at least 3 independent experiments; full-length

blots and gels are presented in Figure S8.
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Figure 4. TOP3β catalyzes RNA transesterification.
(a) Schematic of the reaction mechanism. TOP3β binds to a substrate oligonucleotide and a

cleavage-religation equilibrium is established, leading to the transient formation of a 5′-

fragment and a covalent complex with a tyrosyl-5′-phosphodiester bond between the 3′-

fragment and the enzyme. Addition of SDS to the reaction intermediate leads to a release of

the cleaved 5′-fragment and the covalent complex. (b) Coomassie stain of purified

recombinant wildtype TOP3β and an active site mutant (Y336F). (c) TOP3β is active on

DNA oligonucleotides and can be competed off by addition of RNA. A single stranded, 5′-

[32P] labeled DNA oligo was incubated with TOP3β, the reaction was stopped with SDS

and cleavage products were analyzed by denaturing polyacrylamide gel electrophoresis and

autoradiography. Cleavage was observed for wildtype TOP3β (wt; lanes 1-3) but not for an

active site mutant (lane 4). Addition of cold competitor RNA resulted in a strong inhibition

of the reaction (lanes 2 and 3). (d) TOP3β cleaves RNA. A 5′ [32P] labeled RNA oligo was

incubated with TOP3β either in Y336F mutant (lane 2) or wildtype (lane 6) form and

cleavage products were analyzed as in (b). To control for impurities in the recombinant

protein preparations that might lead to unspecific RNA fragmentation, wildtype and Y336F

mutant protein were titrated against each other (lanes 3-5). (e) TOP3β forms a covalent

tyrosyl-5′-phosphodiester bond with RNA. Cleavage reactions using the indicated amounts

of TOP3β were performed like in (c) except that 3′-[32P] labeled RNA was used. Formation

of the TOP3β-RNA covalent complex was monitored by denaturing SDS-PAGE and

autoradiography (upper panel). As a control, TOP3β protein was detected by Western blot

(lower panel). (f) The TOP3β-RNA covalent complex is present in cellular extracts. Proteins

bound to polyadenylated RNAs were affinity-purified by oligo(dT) cellulose as described in

figure 4e, except that RNAse A treatment was performed not in the extract but after elution

of from the column. This revealed high molecular weight species migrating above

FLAG/HA-TOP3β, which were recognized by the anti-FLAG antibody. These were

enriched by oligo(dT) purification and sensitive to RNAse treatment, indicating for covalent

FLAG/HA-TOP3β-RNA complexes. SDS-PAGE of input (lane 1) and eluates either

untreated (lane2) or treated with RNAse (lane 3) was analyzed by and Western blotting.

Proteins of interest were immunodetected using the indicated antibodies. All images are
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representative of at least 3 independent experiments; full-length blots and gels are presented

in Figure S8.
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Figure 5. The TTF complex is present on early mRNPs that undergo the pioneer round of
translation.
(a) Schematic of the ribosome salt wash (RSW) used to purify proteins associated with the

translational machinery. Fractions used in (b) are underlined. (b) RSW of HeLa cells

analyzed by SDS-PAGE with subsequent Coomassie staining (left panel) and Western blot

against the indicated marker proteins (right panel). Immunodetection shows that endogenous

TDRD3 and TOP3β co-purify with translation initiation factor eIF2γ in the high salt

supernatant (S500), indicating that they are indirectly associated with ribosomes via

translating mRNPs.(c) Polysome gradient analysis of extracts from a stable cell line

expressing FLAG/HA-TDRD3. RNA profiling (upper panel) and Western blot analysis of

gradient fractions (lower panel) revealed that the TTF-complex components co-sediment

with polyribosomes in an RNAse sensitive manner (d) TTF-bound mRNPs show

characteristics of early mRNPs that have not yet undergone steady state translation. Extracts

of control cells (lane 1) or FLAG/HA-TDRD3 expressing cells (lane 2) were subjected to

anti-FLAG IP to purify TTF-bound mRNPs either without (lanes 3 and 5) or with (lanes 4

and 6) RNAse pretreatment. The TTF complex was associated with ribosomal RNAs and the

nuclear cap binding proteins CBP80 and CBP20 but not eIF4E in an RNAse sensitive

manner. All images are representative of at least 3 independent experiments; full-length

blots and gels are presented in Figures S8 and S9.
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Figure 6. Formation of the TTF complex is essential for the co-recruitment of TOP3β and FMRP
into mRNPs.
(a) Schematic of the TDRD3 mutants that were used to analyze the biogenesis of TTF-

containing mRNPs. (b) Recognition of aDMA by the TDRD3 Tudor domain is required for

efficient TTF complex formation in vivo. The indicated mutants were immunoprecipitated

and co-precipitated proteins were analyzed by Western blotting. Note that the residual

FMRP signal is RNAse sensitive for TDRD3ΔFIM but not for TDRD3TDRmut, indicating

that in the latter case the TTF complex was formed, albeit with an efficiency lower to that of

wildtype TDRD3 (see Fig. S5c)..(c) Tudor-mutant TDRD3 can still bind mRNPs. HeLa cell

extracts (input; lane 1) were incubated with purified recombinant GST-TDRD3-6xHis either

in wildtype (lane 2), Tudor-mutant (lane 3) or EBM-mutant (lane 4) form. GST-6xHis was

used as a control (lane 5). Upper panel: Coomassie-stained bait proteins. Lower panels:

Western Blot detection of FMRP and MAGOH. (d) Recruitment of TOP3β to mRNPs

requires binding of TDRD3 to the EJC. Analysis of extracts from a cell line carrying a

deletion of TDRD3 (ΔTDRD3) by sucrose gradient centrifugation revealed that the

association of TOP3β with polysomal mRNPs was disrupted. Polysomal migration of

TOP3β was restored by transfection of wildtype, but not EBM-mutant TDRD3. Lower

panel: Quantification of polysomal TOP3β from three independent experiments; error bars:

SD. (e) TDRD3 is essential for the co-recruitment of FMRP to TOP3β-containing mRNPs.

TDRD3-negative cells were co-transfected with GFP-TOP3β and either a control

(FLAG/HA) or FLAG/HA-TDRD3 in ΔFIM-mutant or wildtype form. GFP-TOP3β-

containing mRNPs were immunoprecipitated and analyzed for co-precipitated proteins by

Western blotting with the indicated antibodies. While co-transfection of ΔFIM-mutant

TDRD3 enabled the formation of mRNPs containing GFP-TOP3β (lane7), a co-recruitment

of FMRP was observed only when wildtype TDRD3 was transfected (lane8). All images are
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representative of at least 3 independent experiments; full-length blots and gels are presented

in Figure S9.
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Table 1
Association of the 22q11.22 deletion with schizophrenia

22q11.22 Deletion

Sample cases CTRLs Frequency OR (95%-CI) p-value

Finland, Sub-isolate 185 747 0.03 1.84 (1.05-3.23) 0.031

Finland, Whole 467 11124 0.003 2.63 (1.28-5.59) 0.0078

Europe, ISC and SSC 9176 9529 0.0005 2.17 (0.81-5.80) 0.12
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Table 2
Neurodevelopmental phenotypes among non-schizophrenic carriers of the 22q11.22
deletion in NFBC1966 (N=4,872)

Frequency 22q11 deletion alleles**

Phenotype Affected Unaffected Affected Unaffected OR (95%-CI) P (Fisher)

Psychosis* 0.02 0.004974 0/1/24 1/46/4778 4.08 (0.55-30.17) 0.2242

Intellectual disability 0.02174 0.004811 1/1/67 0/46/4735 4.60 (1.41-14.96) 0.03227

Repeated grades in school 0.01777 0.004513 1/5/191 0/42/4611 3.99 (1.78-8.94) 0.003399

Epilepsy 0 0.005132 0/0/76 1/47/4726 0 (0-inf) 1

Neonatal convulsions 0.002392 0.005171 0/1/208 1/46/4594 0.46 (0.06-3.35) 0.7239

Cerebral palsy and/or perinatal brain damage 0.008475 0.005009 0/1/58 1/46/4744 1.70 (0.23-12.40) 0.4519

Impaired Hearing at 14 years old 0.005814 0.005024 0/2/170 1/45/4632 1.16 (0.28-4.79) 0.6927

*
Includes individuals with diagnoses of bipolar disorder, depression with psychotic features, or other psychotic disorders, excluding schizophrenia

and organic psychosis.

**
Homozygous carriers/heterozygous carriers/ non-carriers
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