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Abstract

Over the past year, significant advances have been achieved through the use of phage-displayed

peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and

enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of

different types of peptide library. The demonstrated therapeutic potential of some of these

peptides, as well as new insights into protein structure and function that peptide ligands have

provided, highlight the progress made within this rapidly-expanding field.

Introduction

The field of phage display was first begun by George P Smith in 1985 [1]. Yet, it was his

idea for phage-displayed peptide libraries, published in 1988 [2], that caused a burst of

activity in the field, culminating in the publication of three papers describing the first phage-

display libraries in 1990 [3–5]. Since then, phage display has developed into a wide-ranging

field, full of novel applications and responsible for significant advances in many areas of

protein recognition. In preparing this review, we counted over 170 papers published in the

field over the past year. (A complete bibliography of this literature search, including an

extended, annotated bibliography that covers antibody [Ab], and site-directed mutant

libraries, is available on the World Wide Web at URL: http://www.biol.sfu.ca/faculty/scott/

phage97-98). Although we cannot do justice to most of this work, we present the results

from a handful of selected papers covering the results from screening peptide libraries. Also

presented ate advances in library construction and screening methods. To provide the reader

an idea of the impact that phage-display technology is making on areas such as drug

discovery and cancer therapy, we also include a few ‘follow-up’ reports on exciting,

bioactive molecules that were previously selected from phage-display libraries.

Antibody-binding peptides and the structural basis of peptide recognition

A number of groups have screened peptide libraries with monoclonal (M) Abs were

produced against protein and non-protein immunogens, and have isolated ‘peptide mimics’

that cross react with the MAbs. In several cases, these ligand peptides were also

immunogenic mimics of the antigen ‘target’ against which the screening Ab was made; that
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is, if whole phage were used as immunogens, or if the synthetic counterpart to the phage-

displayed peptide was used in a protein-conjugate to immunize, the resulting immune sera

cross-reacted with the antigen target. Thus, the polyclonal Ab response induced by an

immunogenic-mimic peptide will bind to the same epitope on the target antigen as that

recognized by the MAb used to select the peptide. As described below, this type of

experiment has now been performed successfully for a number of antigens. The concept of

using peptides as ‘epitope-mimic’ haptens that produce highly-directed Ab responses has

held great promise since its inception [6]; yet, the use of ‘designed’ peptides as

immunogenic mimics has not had good success. It is beginning to emerge that small features

within the peptide that are involved in Ab binding, but not necessarily in epitope mimicry,

may often be responsible for the recent successes. Thus, given a vast set of peptide

sequences to choose from, many Abs appear to select effective, immunogenic mimics of

their corresponding target epitopes.

Demangel et al. [7] previously isolated clones beating linear-epitope-mimic peptides by

screening a disulfide-constrained, 6-mer (CX6C; single letter amino acid code where X may

be any amino acid) peptide library with a malaria-specific MAb. On immunization, several

clones elicited malaria-binding Abs, including two clones whose peptide sequence bore no

homology with the presumed malarial epitope. More recently, this group isolated two MAbs

from the malaria-binding, anti-phage response and compared their heavy chain variable

region and light chain variable region sequences with those of the parent MAb that was

initially used to isolate the phage clone [8•]. They found that there were significant

differences in hypervariable-region sequences, although there were similarities in features

contributing to the gross structure of the Ab combining site, such as variable-gene and

canonical structure use. Thus, the phage-borne peptide and the malarial epitope may elicit

Abs sharing gross structural features that allow cross-reactivity, but that differ in their finer

specificities. Similarly, in collaboration with M Yu and P Talbot (Institute Armond Frappier,

Laval, Quebec), we isolated a number of linear-epitope-mimic clones by screening a panel

of 12 peptide libraries [9] with a MAb that neutralizes a murine coronavirus. In this case, all

of the clones shared a strong consensus sequence matching a sequence on the viral coat, and

all bound the MAb with similar strength; yet, when each of the clones was used to immunize

mice, only one clone produced cross-reactive Abs that protected mice from intracerebral

challenge with the virus (M Yu, JK Scott and P Talbot, unpublished data). These results

indicate that relatively small sequence differences in the peptides (in this case, differences in

the regions flanking the consensus sequence) are responsible for driving the fine specificity

of the Ab response. Structural studies are imperative for understanding the complexities

involved in this process. The molecular basis of immunogenic mimicry can best be revealed

by comparing the target epitope and peptide mimic bound to both the screening MAb and to

cross-reactive MAbs produced by peptide immunization (see [10] for an excellent example

of such a comparison). As, in many experiments of this type, whole phage bearing cross-

reactive peptides are used as immunogens, it would also be valuable to know the structure of

a given peptide in the milieu of the phage, rather than as a synthetic analog. In some cases,

the structure of the phage-borne peptide can be determined, as shown by the NMR study of

Jelinek et al. [11••].
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There is also evidence that immunogenic-mimic peptides can be isolated by polyclonal,

serum Abs. In previous work, Mennuni et al. [12] isolated several diabetes-specific peptides

by screening two peptide libraries with scrum IgGs from a number of pre-diabetic patients;

in turn, several peptides from among these were bound by the serum Abs from a number of

patients having full-blown diabetes. Mennuni et al. [13••] showed that, on immunization of

rabbits, a phage clone bearing one of these peptides elicited Abs that recognized pancreatic-

islet β cells. Thus, this immunogenic-mimic peptide may reveal new antigens (or epitopes)

involved in the evolution of type-1 diabetes, especially if it appears to produce pathogenic

Abs (i.e. Abs that direct inflammatory responses against pancreatic-islet β cells) as a hapten

on its own.

There is some controversy as to whether immunogenic-mimic peptides always act as

structural mimics of the epitope on the target antigen, by binding MAb through the same

mechanism as the target epitope (i.e. by making identical contacts with the Ab combining

site). Alternatively, it may be that the mechanism of binding a MAb differs between the

target epitope and its corresponding immunogenic-mimic peptide (i.e. with each antigen

making different contacts with the Ab combining site). This controversy has been most

clearly defined with anti-carbohydrate and anti-DNA antibodies and their peptide ligands, as

these types of targets are chemically very different from peptides, and thus would be most

likely to bind Ab by a different mechanism from that of a peptide. Phalipon et al. [14••]

screened two peptide libraries (X9 and CX9C) with two MAbs that had been produced

against the lipopolysaccharide (LPS) of Shigella flexneri. There were 19 related sequences

identified by the MAbs, with only one clone cross-reacting with both MAbs. The 19 clones

were tested as immunogens, and two clones (the one that cross-reacted with both MAbs and

one that did not) elicited significant lipopolysaccharide-binding activity. This indicates that

structural mimicry may be involved in immunogenic mimicry (as one clone was recognised

by both MAbs and, thus, is consistent with being a structural mimic of LPS); but that

structural mimicry is not necessarily required for immunogenic mimicry to occur (as the

other peptide was specific for only one of the two MAbs and thus must bind by a different

mechanism from LPS and, yet, elicited LPS-binding Ab responses). Similarly, Sibille et al.

[15••] isolated phage bearing consensus-sequence peptides with two different, polyreactive,

anti-DNA MAbs, by screening an X4CX6CX4 library. Although the phage isolated by each

MAb cross-reacted only with its selecting MAb, several phage clones, on immunization,

produced DNA-binding Abs. These studies show that peptides can act as Ab-specific ligands

(as they can discriminate between two DNA-binding MAbs), and also act as effective

immunogenic mimics of DNA (in eliciting DNA-binding Abs). Taken together, these two

studies [14••,15••] support the notion that some immunogenic-mimic peptides do not

function as structural mimics of their LPS and DNA targets in eliciting cross-reactive Ab

production.

Fine-specificity discrimination by peptides may be common among anti-DNA and anti-

carbohydrate Abs. With a panel of synthetic oligosaccharides, Harris et al. [16••] mapped

the minimal epitope on the cell-wall polysaccharide of Group A Streptococcus for five,

closely-related MAbs. They showed that all five MAbs recognize the same minimal

structure, and so probably bind the same epitope on the cell-wall polysaccharide. Yet, when
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used to screen a panel of different peptide libraries, the MAbs selected different consensus

sequences, and each MAb only bound the phage that it selected. This indicates that the

mechanism of binding to peptide ligands differs from that of binding to the cell-wall

polysaccharide, as all MAbs bind the same epitope on the cell-wall polysaccharide, yet each

MAb would only bind the peptides that it selected. A study by Gaynor et al. [17•] also

showed this type of fine-specificity recognition exhibited by peptides. They screened a 10-

mer library with an anti-DNA MAb that causes immune-complex-mediated glomerular

nephritis when injected into mice, and thus serves as a good model of this type of disease.

Although one of the MAb-binding peptides isolated was able to block the deposition of

MAb–DNA complexes in vivo, the peptide was shown to be MAb specific, being unable to

bind another, closely related, anti-DNA MAb. These results indicate that the peptide is

unlikely to be a structural mimic of DNA, and, consequently, will not function to suppress

the polyclonal anti-DNA Ab response involved in this type of immune-complex disease.

Contrasting this are studies suggesting that peptides can act as structural mimics of

carbohydrate epitopes. As opposed to the functional mimics described above, structural

mimics offer the great advantage of being able to replace the target antigen in functions such

as diagnostic assays and as inhibitors for a range of enzymes (so long as all of the proteins to

be tested bind the target antigen by the same mechanism). Kieber-Emmons et al. [18••]

immunized mice with three different peptides bearing the Aro–Aro–X–Aro (where Aro

denotes an aromatic amino acid) motifs identified for three different carbohydrates (alpha-

methyl mannopyranoside, Lewis Y and the major polysaccharide of N. meningitidis C). The

resulting sera cross-reacted at low titers with human breast cancer and melanoma cells, and

in another study [19•] with glycosylated HIV-1 envelope proteins, but not non-glycosylated

ones. The far-ranging immunogenic mimicry observed in these studies suggests a role for

this peptide-sequence motif as a ‘universal’ structural mimic of a variety of carbohydrate

targets. Two other recent studies suggest a role for structural mimicry in peptide-

carbohydrate cross-reactivity. In two separate screenings of an X15 library, Taki et al. [20•]

isolated peptides that bound to another MAb that is specific for its isomer; a consensus-

sequence motif that is common to both MAbs was identified from these two sets of peptides.

Synthetic peptides bearing this motif bound the lectin from Ricinus communis and also

affected the activity of Jack Bean β-galactosidase; one of the two glycosphingolipid isomers

is the native ligand of both proteins. Thus, the MAbs, lectin and enzyme may recognize

peptides bearing this sequence motif via a shared binding mechanism.

Several interesting studies on the capsular polysaccharide of Cryptococcus neoformans have

revealed that cross-reactive peptides are recognized by the sera of multiple individuals, and

that the mechanism of cross-reaction is not necessarily structural mimicry. Zhang et al.

[21••] showed broad cross-reactivity of phage bearing the consensus sequence QT(G/T)

(L/D); these clones were isolated by a human MAb against the Cryptococcal capsular

polysaccharide. Phage bearing a representative consensus peptide were used in a

competition assay to block binding of Abs from sera of people with HIV-1 infections and

without such infections to the Cryptococcal polysaccharide. HlV-negative sera, but not HIV-

positive sera, were partially inhibited from binding the polysaccharide (with inhibition levels

of 27–41%), indicating that the peptide recognizes a common Ab species among non-
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infected individuals. These findings arc understandable, given the highly-restricted nature of

anti-carbohydrate responses in most individuals, (in which limited numbers of VH and VL

genes are usually expressed in response to a given carbohydrate antigen), and the diversity

of Ab production caused by the polyclonal activation of B-cell responses in HIV-1 infected

individuals (in which a large variety of VH and VL genes are expressed in the absence of

specific immunization with antigen). That partial inhibition occurred with multiple sera

indicates that this peptide-specific sub-species of Ab is produced by most people in response

to the Cryptococcal capsule, and, thus, suggests the application of peptides in diagnostics;

not as carbohydrate mimics, but as indicators of specific Ab sub-species in the Ab response

against the Cryptococcal capsule.

In a related study, Valadon et al. [22] isolated decapeptides bearing the consensus sequence

TPXW(M/L)(M/L) with a murine MAb against the Cryptococcal capsular polysaccharide. A

synthetic peptide bearing this motif was able to elicit Abs having the correct idiotype, but

that cross-reacted only weakly with the capsular polysaccharide. Interestingly, these Abs

bore the same light-chain sequence as the screening MAb, but several different heavy

chains. The crystal structute of the peptide bound to the MAb that selected it [23••] revealed

that the peptide associates mostly with the light chain, whereas binding to the Cryptococcal

antigen depends upon the sequence of the third hypervariable loop of VH (H3). This

indicates that the peptide most probably binds by a different mechanism from that of the

capsular polysaccharide. Thus, the mechanism of cross-reactivity between peptide-mimics

and their target antigens may largely depend upon the Ab used to select the peptide, with the

selection of structural versus functional mimics being a matter of the peptides having the

best fit with the Ab in question. These studies also emphasize the necessity of structural

studies in determining the mechanism of cross-reactivity. So far, there is no direct evidence,

from crystallographic or other physical studies, of structural mimicry being a mechanism of

cross-reactivity of immunogenic mimicry between peptides and non-proteinaceous epitopes.

Understanding of the basis of cross-reactivity is essential for applications of peptides in

diagnostics, therapeutics and vaccines. Using structural information as a guide, one can

decide whether a given peptide should be used in a vaccine or diagnostic application as a

structural mimic of the target epitope (as probably occurs for some peptide mimics of linear

epitopes on folded proteins; see below) or as an Ab-specific reagent (as appears to be the

case for many non-proteinaceous epitopes).

Peptide agonists and antagonists

Peptide ligands have recently been found for receptors (thrombopoietin, melanocortin

receptor, CD80, and a hantaviral receptor), receptor ligands (angiogenin, α-bungarotoxin

[24••,25]), and folded domains from within larger proteins (SH2 [26•], SH3 and WW

domains [27••]). In their second discovery of peptide agonists that are active in the dimeric

form, the Affymax group [28••] isolated linear peptides that bind to the thrombopoietin

receptor and compete with the natural ligand for binding. An optimzed peptide was

covalently dimerized, and in this form was equipotent to thrombopoietin in vitro, and

stimulated platelet production in vivo. In several cases, receptor ligands have been isolated

by novel methods. The melanocortin (MC)1 receptor is a G-protein-coupled receptor that is

activated by a peptide hormone, which also activates other MC receptor subtypes.
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Szardenings et al. [29••] constructed a ‘sublibrary’ of the hormone-core sequence, flanked

by randomized residues, and screened it on whole insect cells that overexpress the MCI

receptor. Peptides were isolated having moderately-high affinity (as compared to the native

hormone) and very high (3–4 log) selectivity for the MC1 receptor. Thus, peptide libraries

can be used to find highly selective receptor ligands by screening on whole cells. Fukumoto

et al [30••] used a novel approach to identify a receptor-ligand using a MAb against the

CTLA4 signalling protein on T cells; this MAb mimics the CD80 counter-receptor on

antigen-presenting cells. They identified from an X15 library two candidate peptides that

bind this MAb, one of which binds to CD80 and, interestingly, potentiates T-cell

proliferative responses. Yet another novel screening approach is described by Heiskanen et

al. [31••], who screened a CX7C peptide library on whole Puumala hantavirus using

‘competitive elution’ with neutralizing, antiviral MAbs. They identified peptides that

neutralize viral infection in vitro at nanomolar concentrations, which is similar to the

neutralizing activity of the MAbs. Gho et al. [32••] identified a cyclic octapeptide that binds

the factor angiogenin (by competitive elution with actin), and showed that this peptide could

block angiogenin activity in a neo-vascularization assay. Furthermore, the peptide blocked

angiogenesis induced by a tumor cell line that secretes angiogenin. Following a nearly-

identical protocol, Choi et al. [33•] identified 12-mer peptides bearing a different

angiogenin-binding sequence from that described by Gho et al. [32••], yet both groups’

peptides bind to a similar or identical site on angiogenin, because they were both obtained

by competitive elution with actin.

Phage that home to tumor-associated blood vessels were characterized by Arap et al. [34••],

who used mice bearing tumors for the in vivo screening of peptide libraries. Phage bearing

two types of cell-adhesion sequence motif (RGD and NGR) were isolated from tumor

tissues after intravenous injection of cyclic-peptide libraries that was followed by perfusion

to remove unbound phage from the vascular tree. Peptides bearing homing sequences were

covalently coupled to the anti-cancer drug doxorubicin, injected into mice beating human

breast cancer tumors and shown to cause tumor regression [34••]. Earlier work by the same

group [35•] showed that phage displaying the RGD sequence home to a variety of tumors

via the alpha-v integrins present in tumor-associated blood vessels.

Several other previously-identified receptor-binding peptides have now demonstrated

biological activity, and others have been improved by rational design. In previous work,

Bottger et al. [36] identified a peptide ligand for the site on the MdM2 protein that binds the

p53 tumor suppressor. As described in a follow-up paper [37••], this group engineered

thioredoxin to display a loop bearing the peptide, and showed that the presence of this fusion

within cells causes the accumulation of p53. Similarly, Stauffer et al. [38••] improved the

selectivity of previously-identified peptides for the SH3 domain of the Lyn tyrosine kinase,

and showed that they inhibit Lyn function when electro-porated into mast-cell-like leukemia

cells. Acyclic, 20-merpeptide, which, in the dimeric form, binds and acts as an agonist of the

erythropoietin receptor [39,40], was further characterized with regard to its critical-binding

residues, and was minimized to 13 residues [41•]; its potency was also improved by covalent

dimerization [42•].
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Substrates and inhibitors have also been found for several proteases. Whereas several new

substrate peptides have been identified using the novel ‘substrate phage’ approach of

Matthews and Wells [43], inhibitors have been identified by screening phage libraries

directly. O’Boyle et al. [44••] constructed three different substrate phage peptide libraries

and screened them with the protease of Type 1-herpes simplex virus. An optimized 8-mer

peptide, having a different amino acid sequence from the native site, was defined and shown

to be cleaved with the same efficiency as the native site. Ke et al. [45•,46•] isolated peptides

that are specific substrates for the tissue-type and urokinase-type plasminogen activators, or

t-PA and u-PA, respectively. Ploug et al. [47•] further characterized a 15-mer peptide that

inhibits the urokinase-type plasminogen activator. In contrast to studies identifying substrate

sequences, two papers from Sollazzo’s group describe inhibitors of the hepatitis C virus NS3

protease, which were identified from three different ‘scaffold libraries’ based on a camelized

VH domain [48••], a serine-protease inhibitor and a ‘minibody’ [49•].

Increasing the range of receptors that cross-react with peptides

Several problems are associated with failed screens in which low-affinity or non-binding

phage are isolated. The affinity of weakly-binding phage can sometimes be improved by

constructing ‘sub-libtanes’ of two types. If a consensus sequence is observed but the

peptides bind with low affinity, a new library can be constructed in which the consensus

residues are fixed, and the residues flanking them randomized. Alternatively, when there is

only a single weakly-binding peptide, a library can be constructed in which the nucleotide

sequence encoding a binding peptide is doped (during oligonucleotide synthesis) with lesser

amounts of the remaining three bases at each nucleotide in the sequence, to yield variability

at every amino acid residue. Such libraries can be re-screened under more stringent selection

conditions for tighter binders. Another means of improving the apparent affinity (rather than

the instrinsic affinity) of a weakly-binding peptide is to make it multivalent. Terskikh et al.

[50•] devised the ‘peptabody’ which displays peptides in a pentavalent array. Alternatively,

highly-multivalent phage libraries can be screened. Similar to the ‘organic landscape’ phage

libraries of Petrenko et al. [51], Iannolo et al, [52•] constructed an octapeptide library in

which the peptides were fused to every copy of the pVIII major coat protein. (Filamentous

bacteriophage are composed of thousands of copies of pVIII, with the number of molecules

per virion varying with the length of the genome; one pVIII molecule for every 2.3

nucleotides in the single stranded genome.) Thus, this library of high-density peptides was

screened with an organic dye to find dye-binding peptides. Such multivalent systems have

particular application for targets that are themselves multivalent; furthermore, the phage,

being relatively large filaments, can also be used as a cheap means to a selective adsorbant.

As for the problem of negative screens, in which no binding phage are found, it is probable

that the existing peptide libraries do not cover enough sequence space to include tight-

binding peptides for targets that require more than 5–6 critical binding residues (these are

residues that form high-energy contacts, and are usually few in number). In some cases,

‘gene-fragment’ libraries may provide a better way of identifying epitope sequences for

protein-binding molecules. In a comparative study, Fack et al. [53••] mapped the epitopes

for a panel of four MAbs using two random-peptide libraries (X6 and X15) versus a gene-

fragment library constructed from fragments of cDNA encoding the target antigen. The
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MAbs always selected cross-reactive phage from the gene-fragment library, but not the

random-peptide ones. This approach has limited application as a new library must be made

for each screening target, and the target has to be a cloned protein. Alternatively, ribosome-

display technology [54,55], which can accommodate libraries of 1013–1014 sequences, may

allow the screening of a much larger sequence space in the future.

Whereas the approach to epitope mapping of Fack et al. [53••] is recommended for

immunoblot-reactive Abs that presumably recognize linear epitopes, there is still the

problem of identifying discontinuous epitopes, whose structures cannot be mimicked by

simple peptides. This is in part due to the gross topology of Ab combining sites, which can

be related to the types of epitope that Abs can recognize. Anti-peptide Abs bear grooved

sites having particular dimensions, whereas Abs against discontinuous epitopes arc larger

and flatter [56,57]. Craig et al. [58••] showed, from screening a panel of peptide libraries

with polyclonal Ab responses against two folded proteins, that peptide mimics of linear

epitopes predominate in these screens, even though Abs against linear epitopes constitute

only a small fraction of the total Ab response against folded proteins [59]. Linear-epitope-

mimic peptides are much more abundant in peptide libaries than discontinuous-epitope

mimics, as the number of different clones isolated for a given linear epitope is relatively

large compared to the number of clones isolated for a discontinuous epitope. Unpublished

work from our lab with a panel of MAbs known to bind discontinuous epitopes has shown

that 60–70% of these types of MAbs isolate rare clones from the same panel of libraries, and

these ‘discontinuous-epitope mimics’ often bind their MAbs relatively tightly. Thus, in

comparison to linear-epitope mimics, peptides that cross-react with discontinuous protein

epitopes are rare or altogether absent from standard peptide libraries. Jespers et al. [60••]

have circumvented the problem of mapping discontinuous epitopes with peptides by a

strategy in which a library of mutants of a protein antigen is produced, and then ‘negatively

selected’ on an a MAb against the discontinuous epitope of interest. Phage that do not bind

the MAb are then ‘positively selected’ for global folding by binding to a ligand for the

antigen or MAb against a separately-located, discontinuous epitope on the antigen. This

approach was extended to mapping the major epitopes recognized by a set of patients in

their polyclonal Ab response against a protein antigen [61•].

The view that peptides only sporadically cross-react with discontinuous epitopes on protein

antigens can be extended to include many other types of receptor-binding sites, especially

those on protein ligands. With the intention of better mimicking discontinuous epitopes,

several groups [62–64] have produced libraries that form a surface on a folded-protein

scaffold. Such scaffolds are expected to form a more constrained framework for displaying

the randomized (X) residues in a library, and, when displayed on separate adjacent strands

of a folded protein, the X residues can assemble into a library of discontinuous epitopes.

Such libraries are reminiscent of site-directed, protein-mutant libraries, such as protease-

inhibitor [65,66] and zinc-finger libraries [67,68], which are targeted to specific classes of

ligands, such as proteases and DNA, respectively. Two new libraries have been constructed

based on different protein scaffolds [69••,70•]; both groups based their design on very

stably-folding scaffolds that would allow modeling of the ligands isolated from them. Nord

et al. [69••] designed a three-helix bundle to display 13 randomized (X) positions on its
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surface. From this library, they isolated ligands for three very different proteins: a

polymerase, insulin and an apolipoprotein. Similarly, Smith et al. [70•] constructed a library

using the knottin-like, cellulose-binding domain and identified ligands for cellulose and

alkaline phosphatase, but not for α-amylase or β-glucuronidase.

Although the chances are slim that a single ‘universal’ constrained-scaffold library will

contain ligands for most receptors and Abs, it is quite possible that a panel of different

libraries will.

It is clear from several studies [9,28••,39] that the screening of a variety of peptide libraries

with a given receptor or Ab increases the chances of identifying ligands for it. Besides the

number and types of library screened, the design of the selection experiment is crucial to

successful ligand identification; however, few studies exist in which different screening

methods have been compared side-by-side. Levitan [71•] has devised a model of phage-

library screening to clarify the effects of several parameters in the probability of selecting

phage bearing ligand peptides. For instance, we routinely perform screenings on about 16

different peptide libraries that are mixed into seven or 11 pools. Following the general

principles outlined by Levatin [71•], we firstly remove high-background phage by pre-

adsorbing our libraries on plastic plates before each round of selection, secondly, perform

the first round of selection by ‘biopanning’ [2,3] with solid-phase target [9] to ensure the

capture of all target-binding phage, thirdly, introduce high-stringency, biopanning

selections, [3,72] in later rounds of screeing, by capturing page-target-molecule complexes

out of solution and using target-molecule concentration to control selection stringency, and

finally, using phage yield (i.e. the yield of binding phage over a control phage) during the

selection experiment and a functional assay (usually ELISAs) to choose phage pools from

which clones will be selected for further evaluation. As the phage yield and ELISA show the

enrichment of target-binding phage for a given round of selection, selection stringency can

be increased by dropping target concentration (usually by 1–2 orders of magnitude) and

repeating that round of selection.

Conclusions

As new libraries are constructed their value would be mote clearly demonstrated were they

tested side-by-side along with several other different libraries in screenings against a variety

of receptors, enzymes and Abs. Futhermore, optimization of screening methods should be

performed for each target molecule screened to ensure the highest probability of identifying

ligand peptides from a given library. As it stands now, most researchers only test a single

library at a time using screening methods that arc usually not optimized. The results of side-

by-side comparisons between different libraries would clarify the types of libraries that most

effectively produce ligands for a given type of receptor or Ab, and whether there are any

general rules that govern the types of libraries that contain ligands for a particular class of

receptor or Ab. In the longer view, the combination of these types of functional studies with

structural studies that determine the mechanisms of peptide binding (i.e. functional versus

structural mimicry) would be of great benefit in determining the rules governing protein

cross-reactivity.
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