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Abstract

The development of accurate implicit solvation models with low computational cost is essential

for addressing many large-scale biophysical problems. Here, we present an efficient solvation

term based on a Gaussian solvent-exclusion model (EEF1) for simulations of proteins in aqueous

environment, with the primary aim of having a good overlap with explicit solvent simulations,

particularly for unfolded and disordered states – as would be needed for multiscale applications. In

order to achieve this, we have used a recently proposed coarse-graining procedure based on

minimization of an entropy-related objective function to train the model to reproduce the

equilibrium distribution obtained from explicit water simulations. Via this methodology, we have

optimized both a charge screening parameter and a backbone torsion term against explicit solvent

simulations of an α-helical and a β-stranded peptide. The performance of the resulting effective

energy function, termed EEF1-SB, is tested with respect to the properties of folded proteins, the

folding of small peptides or fast-folding proteins, and NMR data for intrinsically disordered

proteins. The results show that EEF1-SB provides a reasonable description of a wide range of

systems, but its key advantage over other methods tested is that it captures very well the structure

and dimension of disordered or weakly structured peptides. EEF1-SB is thus a computationally

inexpensive (~ 10 times faster than Generalized-Born methods) and transferable approximation for

treating solvent effects.
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Introduction

The aqueous environment plays an important role in determining the structure, function and

dynamics of biomolecules.1,2 For this reason, the solute-water interaction has been the

subject of many recent theoretical, computational and experimental studies.3–5 The most

realistic way to treat solvation effects in computer simulations is through the inclusion of

explicit water molecules. The high level of detail provided by this approach, however, has

substantial computational costs, due to the larger system size (usually 90% water molecules)

and need to compute long-range forces, which often become prohibitive for molecular

systems undergoing significant structural rearrangements. Examples include conformational

changes of allosteric proteins, molecular motors, protein folding and folding/binding of

intrinsically disordered proteins.

Implicit solvent representations provide a simplified, although in practice less accurate,

alternative to explicit water models for treating solvent effects. In implicit solvent models

the average influence of water molecules is described by an effective free energy that

depends only on the atomic coordinates of the solute. The formulation of an accurate and

computationally efficient description of solvent effects is a nontrivial theoretical problem,

and the development of implicit water models for biomolecular simulations has progressed

along many different lines of research. There are two main challenges in the development of

implicit solvent models, common to force field development in general. The first is to

develop a physically motivated approximation to the solvation free energy as a function of

atomic coordinates, and the second is to determine, in some sense, the best possible

parameters for that function. We discuss theses issues in turn below.

One of the simplest approaches to approximating solvation free energy is given by solvent-

accessible surface area (SASA) models,6 in which the solvent effect is taken to be

proportional to the area of the solute atom that is accessible to solvent molecules. Typically,

the proportionality constants are determined by matching the experimental free energy of

hydration of small molecules6,7 or by reproducing the relative hydrophobic and hydrophilic

solvent accessible surface areas in simulations of a selected set of folded proteins, compared

with their known crystal structures.8,9 Even for hydrophobic solutes, however, the surface

area approximation is questionable, as solvation free energy is only proportional to surface

area for solutes larger than ~ 1 nm in radius. For small hydrophobic solutes, more typical of

protein-like functional groups, solvation free energy is better approximated using the

volume of the solute than the surface area;10,11 this problem has been recently addressed in a

refined version of the SASA model.12

Another group of methods are the contact models, where the solvation free energy depends

on the number of contacts that each atom makes with other solute atoms,13 and the contacts

are weighted according to some function of their distance.14 This is related to the approach

which we consider in more detail here, namely the Gaussian solvent-exclusion models, in

which the solvent effects are assumed to be proportional to the volume of the first hydration

shell that is accessible to the solvent;15 interactions with nearby groups exclude solvent and

thus reduce the solvation free energy. This approximation has been motivated by theoretical
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work on solvation thermodynamics,16,17 and is described in more detail below. The

solvation free energy of the solute in the absence of any solvent exclusion is derived from

empirical solvation free energies for small model compounds. Because of its good accuracy

and computational efficiency (only about 50% more computer time with respect to a vacuum

simulation), the Gaussian solvent-exclusion model EEF1 (hereafter called EEF1-C19)18 has

been applied to a wide range of biological problems.

Several studies have shown EEF1-C19 to provide a reasonably accurate description of

solvent effects,18–22 and it has been shown in certain cases to yield comparable results with

respect to explicit water simulations,23 and recently was used in successful applications in

protein structure prediction24,25 and folding studies.26 Furthermore, it is often used as a

component of the highly successful ROSETTA energy function for structure prediction and

design.27 A conceptually similar model based on empirical solvation free energies has been

employed in the ABSINTH force field;28 the principal difference is that in this model the

electrostatic interactions are screened by a function which also is dependent on the degree of

burial of an atom. Although the short-range contribution to solvation free energy in EEF1-

C19 is quite well developed, the treatment of electrostatic interactions through a simple

distance-dependent dielectric is much cruder. Another deficiency which has been identified

is the treatment of the protein backbone in the underlying force field (CHARMM19), and it

has been suggested that EEF1 might be profitably combined with a CHARMM CMAP-

style29 backbone energy function.22 Given these limitations of EEF1-C19, other implicit

solvent approaches have sometimes been found to be superior (e.g. in stabilizing the native

structure of a folded protein30 and in reproducing the unfolding behaviour of an amyloid

beta fragment31 – note, however, that stabilization of the structure of a folded protein is not

by itself a sufficient test for the quality of an implicit solvent model, as we will show later).

In all of the aforementioned effective potentials, the electrostatic effects are usually crudely

approximated (e.g. using a distance-dependent dielectric constant9,18) or completely

ignored. The effect of the solvent on electrostatic interactions may be more accurately

described through continuum electrostatic models, where the solute is assumed to be a low-

dielectric cavity immersed in a high-dielectric and featureless environment. The electro-

static (polar) free energy of solvating a molecule is then calculated by solving the Poisson-

Boltzmann (PB) equation32–34 or estimated by using the popular Generalized-Born (GB)

equation.35,36 While a more accurate description of electrostatic solvation free energy,

continuum models are nonetheless still an idealization and cannot distinguish features

dependent on the molecular details of the solvent (e.g. the difference in solvation free energy

for otherwise identical positively and negatively charged ions37), without adopting artificial

parameter values. It is also worth noting that the computational cost of most PB and GB

methods scales extremely poorly with the system size and is comparable to explicit water

simulations for large, globular molecules.38 For this reason, several approximations and

variations to the original GB approach have been introduced in order to improve the

computational efficiency and the accuracy of the method. Many popular implicit solvent

models such as the analytical continuum electrostatic method (ACE),39 the fast analytical

continuum treatment of solvation (FACTS)40 as well as the accurate GBSW model41 all

belong to this category. In the screened Coulomb potential implicit solvent model
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(SCPISM),42 instead, the electrostatic contribution to solvation free energy is efficiently

estimated by employing a distance dependent, sigmoidal dielectric function. While such

continuum electrostatic models all provide a theoretical formulation for polar interactions,

the non-polar effects (e.g. hydrophobicity) are modelled by empirical potentials proportional

to the solvent-accessible surface area.

In the present work, our goal was to derive a computationally inexpensive implicit solvent

model for use in conjunction with the CHARMM3643 all-atom model. Our principal aim in

doing this was to improve the description of unfolded and disordered states, which in current

implicit solvent models are much too structured and compact (as our results below will

show), making them unsuitable for applications to structure, binding and folding of

intrinsically disordered proteins.44 We also wanted a model which could be used in

multiscale applications, for example to perform an initial exploration of the conformation

space of interest before explicit simulations are performed. For this purpose, we have chosen

to use the EEF1 implicit solvent functional form from the original EEF1-C19 force field,18

which was based on the united-atom CHARMM19 force-field.45 The significant differences

in the molecular representation as well as in the parameterization of the two force-fields do

not allow a direct transfer of the EEF1-C19 model parameters. Therefore, we devised a

modified version of EEF1-C19, which we term EEF1-SB, where the model parameters are

adjusted so as to mimic the equilibrium ensemble obtained from explicit water simulations.

Following the ideas of Shell and co-workers,46–49 we minimize an objective function known

as the relative entropy, which is a measure of the “overlap” between the ensembles sampled

with the implicit and explicit water models. We have recently used this method to obtain

additive force fields by an effective coarse-graining of polarizable models.50 This approach

is conceptually similar (although in practice very different) to the force-matching51

procedure employed by Fraternali and co-workers52 to optimize the parameters in a SASA

implicit solvent model; force matching has also recently been applied to deriving implicit

solvent models for ionic solutions from atomistic simulations.53

This paper is structured as follows: first, we describe the EEF1-SB effective energy

function, and briefly outline the relative entropy minimization approach used for

parameterization. The procedure is used to determine optimal values for two parameters in

EEF1-SB. We initially considered optimization of many more parameters, as discussed, but

found that a charge screening parameter and backbone torsion term yielded the greatest

improvement in our target function. As “training” data, we used explicit water simulations

of the α-helical peptide Ac-(AAQAA)3-NH2 (which we will refer to as (AAQAA)3)54 and

the GB1 β-hairpin.55,56 The optimization is able to match the distribution for the helical

peptide particularly well, although the results for the hairpin are less ideal. For both

peptides, the optimal parameters result in an increased sampling of expanded over collapsed

structures, in agreement with the explicit solvent data. In this respect, the new force field

represents a significant improvement over previous implicit solvent models. Finally, we test

the accuracy of EEF1-SB on systems not used in the parameterization, by performing

molecular dynamics simulations on the native state of globular proteins and by conducting

folding studies on short peptides. EEF1-SB produces stable trajectories when simulating the

native state of two globular proteins, and good agreement with NMR scalar couplings for the
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folded state. In the folding studies, EEF1-SB results in near-native conformations of the Trp-

cage and WW-domain, but fails to fold the helical Villin headpiece protein to the correct

structure. Finally, EEF1-SB accurately captures the secondary structure propensity of an

unstructured fragment of hen lysozyme, both with respect to experimental data and to the

sampling in explicit solvent simulations, yielding much improved accuracy relative to

existing implicit solvent models. Overall, our results demonstrate that the presented model is

an extremely fast and reasonable approximation for treating solvent effects, and holds

particular advantages relative to other models when considering disordered or unstructured

proteins.

Theory and Methods

Description of the solvent model

The functional form of the solvent exclusion model in EEF1-SB is identical to the EEF1-

C19 approach, which we briefly summarize here.18 The total solvation free energy of a

protein is expressed as a sum of atomic contributions:

(1)

Each individual term  is equal to a reference solvation free energy , obtained

by dissecting into group contributions the experimental free energy for a set of small

compounds,57 minus a reduction due to the presence of surrounding atoms.

(2)

Here, the sum runs over the neighbouring atoms j with volume Vj. The solvation free energy

density fi(r) is chosen such that volume integral over the first solvation shell accounts for ≈
85% of the solvation energy, in accordance with theoretical and computational studies on

fluids.16,17,58 In their original study,18 Lazaridis and Karplus found the Gaussian function

(3)

to have the desired behavior when setting λ equal to the width of the first solvation shell (λ
=3.5Å). Here, ΔGfree is the solvation free energy of the isolated group, and R the van der

Waals radius.

Model parameters—The atom types used in the original EEF1-C19 implementation are

those from the united-atom CHARMM19 force-field,45 in which only hydrogen atoms

belonging to polar groups are explicitly included. In the present work we instead use the

CHARMM36 all-atom representation.

The reference solvation free energies ΔGref, taken from the EEF1-C19 model,18 were

originally obtained by dissecting the experimental solvation free energy (at T = 298.15K) for

a set of model compounds into group contributions,57 and subsequently corrected to account
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for long-range van der Waals effects.18 A similar procedure was used to determine the

solvation enthalpy ΔH59 and heat capacity ΔCp.60 These quantities make it possible to

obtain an approximate expression for ΔGref as a function of the temperature. It is assumed

that the solvation free energies and heat capacities can be accurately approximated as a sum

over contributions from different chemical groups in a molecule.

The volume of each atom type is calculated as the van der Waals volume, reduced by the

overlap volume between covalently bonded atoms61 (triple or higher overlap volumes are

neglected). We have used the CHARMM36 van der Waals radii and bond lengths for the

volume calculation, and all hydrogens are assumed not to contribute to the solvation energy:

their volumes are therefore set to zero.

Finally, as in the original EEF1-C19 parameterization, the thickness of the hydration shell,

λ, is set to 3.5 Å except for the atoms in charged groups, for which a value of 6 Å is used.

The chosen values of the solvation parameters are listed in Table S1 of the Supporting

Information.

Electrostatic interactions—The electrostatic screening effect of water is not considered

directly by the solvent-exclusion model, and is here approximated using a linear, distance-

dependent dielectric constant (i.e. ε = kεr). As pointed out by Lazaridis and Karplus,18 the

distance-dependent dielectric constant does not screen the electrostatic interactions for

charged groups to a sufficient degree. In order to account for this effect, ionic side-chains

are neutralized by adjusting the partial atomic charges, as detailed in Table S2 of the

Supporting Information. To account for the strong interactions between atoms in ionic

groups and solvent molecules, the correlation length λ for these atom types is set to 6 Å, and

the reference solvation free energies ΔGref are arbitrarily set to large values, in order to

increase their hydrophilic propensity. Electrostatic and van der Waals interactions are

smoothly switched-off between 7 and 9 Å, and interactions between atoms separated by

three covalent bonds (1-4 pairs) are not rescaled.

Parameter optimization

As we show below, the direct transfer of the original EEF1-C19 model parameters to the all-

atom representation used in the CHARMM36 force-field does not accurately model the

solvent effects, and a suitable reparameterization is necessary. In the present work, the

optimal values of the EEF1-SB parameters were determined using the relative entropy

approach introduced by Shell and co-workers.46 This coarse graining technique has

previously been successfully applied in different contexts49 and makes it possible to

optimize the parameters in a coarse-grained potential so as to reproduce the equilibrium

Boltzmann distribution obtained in reference, all-atom simulations. In this work we used the

all-atom CHARMM36 force-field in combination with the TIP3P62 explicit water model for

deriving the optimal parameters in the EEF1-SB effective force-field.

The approach is based upon variational minimization of the relative entropy, Srel (also

known as the Kulback-Leibler divergence), between the configurational ensembles produced

in a reference explicit water (E) and implicit water (I) simulation

Bottaro et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(4)

pE(i) and pI(i) are respectively the probability of protein configuration i in the explicit and

implicit solvent ensembles, and the index i runs over the all-atom configurations. In the

canonical ensemble, the relative entropy is given by

(5)

Here, UE, UI are the all-atom and coarse-grained potentials, respectively, A = –kBT log Z,

where Z is the partition function and β = 1/kBT is the inverse temperature T multiplied by the

Boltzmann's constant kB. The mapping entropy 〈Smap〉E is the average entropy that results

from degeneracies in the target-model mapping. According to Eq. 5, calculating Srel requires

an impractical estimation of free energies. However, assuming the coarse-grained potential

to be a function of some parameters, k, the derivatives of the relative entropy with respect to

k can be expressed as simple averages over the two ensembles

(6)

Hence standard numerical techniques can be employed to minimize the relative entropy with

respect to the model parameters, for example by iterative application of the Newton-

Raphson update rule,

(7)

where k and k + 1 are successive values of the parameter and γ is a parameter controlling the

step size.

Performing the minimization can be challenging in practical applications. First, because it

may be difficult to monitor the progress of the optimization, as the absolute value of the

relative entropy in Eq. 5 cannot be easily calculated. As proposed by Shell and co-

workers,48 an approximate expression for the relative entropy is obtained from Eq. 5 via

standard free energy perturbation63

(8)

where Δ = β(UI – UE). The approximation holds only as long as a substantial overlap exists

between the coarse-grained and all-atom ensembles. Moreover, the average of the

exponential in Eq. 8 is dominated by individual contributions with large Δ, and can therefore

be affected by statistical errors. It is worth highlighting that for parameters linear in the

potential UI, the second derivative of the relative entropy in Eq. 6 reduces to
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. This quantity is positive definite, therefore requiring

the gradient  to be zero is a sufficient condition for optimality. As a consequence, for

parameters linear in the potential, it is not strictly necessary to monitor the absolute value of

the relative entropy during the minimization. Second, the procedure becomes inaccurate

when the individual implicit solvent simulations are not sufficiently equilibrated, causing

large fluctuations during successive iteration of parameter optimization. Therefore, in the

present work we make extensive use of replica exchange molecular dynamics (REMD)

simulations.64

As formulated here, the relative entropy approach can be easily extended to perform a

simultaneous optimization of multiple parameters. The optimization in a high-dimensional

space can however be numerically unstable and may lead to over-fitting when multiple

atom-types are considered. For this reason, in the present work we used a minimal number

of adjustable parameters.

Simulation Methods

The explicit water simulations used in this work are taken from the study of Best et. al.43

For ease of reference, we briefly report the simulation conditions. All simulations were

performed with the CHARMM36 force-field and TIP3P water model using GROMACS

4.5.3.65 Long range electrostatics were treated using Particle-Mesh Ewald66 summation with

a real-space cutoff of 12 Å and a 1 Å grid spacing, while the Lennard-Jones interactions

were treated with a switching function from 10 to 12 Å. The equations of motion were

integrated with a 2 fs time step. All bond lengths were constrained using the LINCS

algorithm.67 The Ac-(AAQAA)3-NH2 peptide was solvated with 1833 water molecules in a

truncated octahedron cell with a distance between nearest faces of 42 Å. The peptide was

first unfolded using a 5 ns constant volume simulation at 800 K. Subsequently, a constant

volume replica exchange MD was run, with 32 replicas spanning a temperature range from

278 to 416 K and exchange attempts every 10 ps, for a total of 150 ns per replica, of which

only the last 50 ns were used as target in the relative entropy procedure. A Langevin

thermostat with a friction coefficient of 1 ps–1 was used. The GB1 hairpin (residues 41-56 of

protein G)55 in a completely unfolded structure obtained from high temperature vacuum

simulations was solvated in a 49 Å truncated octahedron box with 2225 water molecules. A

500 ns REMD simulation was conducted utilizing 40 replicas from 278 to 595 K, attempting

exchanges every 1 ps. Simulations in implicit water were performed with the CHARMM36

force-field using the CHARMM software package.68 Langevin dynamics with a friction

coefficient of 1 ps–1 was used, and all bond lengths were constrained using the SHAKE

algorithm. REMD simulations were performed utilizing 16 replicas spanning a temperature

range from 285 to 570 K and with exchange attempts every 0.4 ps. Simulations were

analyzed using the software package wordom.69 3J backbone scalar couplings and backbone

order parameters were calculated as described in previous studies.70,71
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Results

Relative Entropy parameterization of EEF1-SB

In order to obtain the optimized parameters in EEF1-SB, we use the structural ensemble

obtained from explicit solvent molecular dynamics simulations of the α-helical (AAQAA)3

peptide and of the GB1 hairpin. (AAQAA)3 is a weakly structured peptide that significantly

populates helical states under physiological conditions,54 while the GB1 hairpin is known to

populate 40%-60% conformations similar to the β-hairpin of the full structure.55,56 The

characteristic secondary structure propensity of the two systems, together with their small

size, has made them systems of choice for force-field optimization,72,73 validation and

comparison.74–76 Furthermore, it was recently shown that force fields that were corrected to

improve the balance between helical and coil structures in (AAQAA)3 were able to fold both

α-helical and β-sheet proteins,71,77 suggesting this peptide to be useful for force-field

parameterization.

Since the CHARMM36 force-field reproduces the behavior of (AAQAA)3 and GB1 hairpin

in solution as inferred from chemical shift data, in the present work we employ the

equilibrium ensemble obtained from explicit water simulations as target distributions in the

relative entropy minimization.

There are a large number of parameters which can be optimized in the force field, even if

attention is restricted only to the aspects related to the implicit solvent model. However,

considering too many parameters can lead to numerical instability when handling noisy data.

We therefore considered a number of small sets of parameters with the potential to improve

the agreement between the implicit and explicit solvent simulations. For example, during the

developmental stage, the following parameters were included in the minimization procedure:

(i) the solvation free energies ΔGfree, (ii) the thickness of the hydration shell in Eq. 3, (iii)

the 1-4 scaling of electrostatic interactions. However, their values were subject to small

variations during optimization - and were therefore kept fixed.

However, we found the linear factor kε of the distance-dependent dielectric constant (ε =

kεr) to be critically suboptimal when combining the original EEF1-C19 parameters with the

CHARMM36 force-field. Furthermore, we adjusted the force constant kψ in a dihedral

correction term of the form

(9)

The phase shift δ = 227° was chosen to allow us to tune the balance between extended and

helical structures. Previous works suggest this correction to be of particular importance, as it

is crucial to reproduce the correct balance between secondary structures in proteins.71–73,75

We note that this torsional term would have been zero in the “bare” CHARMM36 force

field.

The relative entropy-based optimization procedure can be summarized as follows:

1. Generation of target trajectories With the purpose of generating an equilibrated

ensemble, we used a previously conducted 150 ns REMD simulation (32 replicas
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spanning a temperature range from 278 to 416 K) on (AAQAA)3 with the

CHARMM36 force field in combination with the TIP3P water model, while for the

GB1 hairpin we used a 500 ns REMD simulation spanning a temperature range

278-595 K and utilizing 40 replicas. The last 50 ns (for (AAQAA)3) and 250 ns

(for GB1 hairpin) of the trajectories at 300 K were used as reference simulations in

the relative entropy procedure.

2. Generation of model trajectories A 100 ns REMD simulation in implicit solvent

on the two systems is performed, starting from an extended conformation and with

initial parameters kε,0 = 1.0, kψ,0 = 0.0

3. Parameter update The parameters, kε and kψ, are updated using the Newton-

Raphson rule (Eq. 7). The gradient and Hessian are calculated after discarding the

first 50 ns. The numerical stability of the minimization is further improved by

dynamically adjusting the step size in parameter space (i.e. the value of γ in Eq. 7).

More precisely, the stepsize is reduced until two heuristic criteria are met: i) the

absolute change in the parameter at each iteration step is smaller than 50% of its

initial value and ii) the change ΔSrel = Srel(kj+1) – Srel(kj) is smaller than the 20% of

Srel(kj), where the variation ΔSrel is extimated via Zwanzig perturbation as

(10)

Here, ΔU = U(kj+1) – U(kj), and the averages are computed over the kj ensemble.

4. Reweighting Instead of performing a new simulation every iteration step, we used

an efficient scheme,48,63,78 that makes it possible to compute the parameter update

at step j + l by reweighting the simulation performed at iteration j. The reweighting

strategy is accurate as long as a substantial overlap between the simulations j and j

+ l exists. To avoid this problem, we reweighted the trajectory j until the effective

fraction of frames contributing to reweighting, fRW, dropped below 0.6. Here,

, n is the total number of frames and

, with wi = exp(β(U(kj, xi) – U(kj+l, xi))). Note that in principle,

multiple rounds of sampling can be included in the reweighting via a multiple

histogram procedure.79

5. Convergence The resampling-reweighting procedure described above is iterated

until convergence of the parameters as well as of the relative entropy gradient.

Before optimizing EEF1-SB, we tested the validity of the this relative entropy approach and

the correct implementation of the minimization procedure using synthetic data (Figure S1)

generated using known parameters.

Finally, the above procedure was applied to a global optimization against the real explicit

solvent training data. The optimization converged after 7 resampling and a total of 493

reweighting iterations, producing the optimal values kε = 1.5 and kψ = 0.5 kcal/mol (Fig. 1).

We assess the effect of the relative entropy minimization by comparing the structural

ensembles obtained using both the optimized and initial parameter set with the target,
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explicit solvent simulations. As shown in Fig. 2 the changes in the parameters – although

relatively small in magnitude – greatly affect the folding free energy surface of (AAQAA)3

at T=298 K. The unoptimized model favors compact, hairpin-like structures, while the broad

distribution observed in the explicit water simulation is reproduced by the optimized implicit

solvent model (Fig. 2a-2c). The structural diversity of the equilibrium ensemble observed in

explicit water simulations, in accordance with experimental data,54 is composed of a mixture

of elongated polyproline II (PPII) and α-helical configurations. A significant helical content

is observed for the optimized implicit solvent, while helix is completely absent in the

unoptimized model (Fig. 2d). When helices are not formed in the optimized implicit solvent,

we instead observe turn or hairpin structures, suggesting that the implicit solvent model does

not stabilize sufficiently the unstructured, solvent-exposed states associated with the PPII

region of the Ramachandran map (Fig. 2e-2f). As described in a number of experimental

studies,80,81 these PPII conformations are stabilized by direct interactions between the main

chain and water molecules, that may be difficult to capture with a simple solvent-exclusion

model. It is also important to note that only helical or very compact conformations are

observed in vacuum (i.e. using the “bare” CHARMM36 force-field), thus proving the

solvent model to play a major role in determining the behaviour of the (AAQAA)3 peptide

(Fig. 3a). Finally, we highlight that the helix-coil balance of (AAQAA)3 is modeled poorly

by many force-fields in explicit solvent,71 unless specific corrections are introduced. We

show in Fig. 3b- 3d that other implicit solvent models suffer from similar weaknesses, as

they favour the formation of beta strands (as in the original EEF1-C19 model) or over-

stabilize helical, compact structures (as in the case of FACTS40 and SCPISM42).

Conversely, EEF1-SB is able to capture the correct fraction helix near ~ 300 K (Fig. 4),

where it was parameterized; however the temperature-dependence of helix formation is too

weak, given that the explicit solvent model does capture the temperature-dependence of

helix formation.82 This may be because the reference free energies used in all replicas were

those at 300 K (although these may in principle be varied), or alternatively because many-

body effects arising from the elimination of solvent degrees of freedom are not well

described by the model.

The free energy surface of GB1 hairpin observed in explicit water simulations reveals a

broad distribution, with a clear “folded’ basin (Fig. 5c).

Although the relative entropy procedure greatly improves the agreement with the explicit

solvent result, the correctly folded β-hairpin is only partially stabilized in the optimized

EEF1-SB model (Fig. 5a-5b). It is likely that the neutralization of charged groups in EEF1-

SB diminishes the formation of the salt bridge between the charged termini, that is known to

play a role in the stabilization of hairpin structures.75 By contrast, the implicit solvents

EEF1-C19, SCPISM and FACTS are able to describe well the dominant folded state (Fig.

5e-5g). Nevertheless, the extended unfolded configurations observed in EEF1-SB as well as

in explicit water simulations, are completely absent in EEF1-C19, SCPISM and FACTS,

suggesting that such models over-stabilize compact conformations with well-defined

secondary structure relative to more disordered states.
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Model Validation

Simulations of native proteins—We first show EEF1-SB to yield stable trajectories by

performing molecular dynamics simulations at room temperature for two folded proteins,

ubiquitin (76 residues, pdb code 1UBQ83) and GB3 (56 residues, pdb code 1P7E84). As a

number of experimental and computational studies suggest, both systems are very stable, but

at the same time undergo small conformational changes occurring on the microsecond time-

scale.85,86 In the present test, we assess the ability of the solvent model to maintain a native-

like structure during the simulation. Starting from the experimentally solved structures, we

perform 100 ns molecular dynamics simulations at a temperature of 300 K using the EEF1-

SB model. Both systems remain in the vicinity of the native structure throughout the

simulations, with an average Cα root mean squared deviation (RMSD) of 2.7 Å (residues

1-71) and 4.0 Å for ubiquitin and GB3, respectively. We, however, observe a partial loss of

the native secondary structure content, as helices are not stabilized to a sufficient degree

(Fig. S2). Since we have established that EEF1-SB provides a good balance between helix

and coil for (AAQAA)3, this most likely arises because the helix is insufficiently stabilized

by tertiary packing in our model.

To compare EEF1-SB with existing models, we performed molecular dynamics simulations

on the two folded proteins using a number of implicit solvents currently implemented within

the CHARMM software package: the EEF1-C19 effective energy function18 with

CHARMM19, the analytic continuum electrostatics (ACE) model,39 the fast analytical

continuum treatment of solvation (FACTS),40 the Generalized-Born model GBSW41 and the

screened Coulomb potential SCPISM,42 as well as simple simulations in vacuum. All

simulations were conducted using the simulation protocol described in the original papers.

The results, summarized in Table 1, show the RMSD for EEF1-SB to be comparable to the

CHARMM19 EEF1-C19 model and with ACE. Other implicit solvents such as FACTS,

SCPISM and GBSW appear to perform significantly better, partly because they were

parameterized with an emphasis on folded proteins, and more importantly because such

models treat electrostatic interactions more rigorously.

The ultimate test of accuracy is comparison with primary experimental data. Thus, to further

assess the ability of the different force-fields to model accurately the folded state, we report

the agreement between the simulations and measurements of 3J backbone scalar couplings

and S2 amide order parameters (Fig. 6). J-couplings were calculated using a Karplus relation

as described previously.71,72 The overall agreement between experiment and simulation was

assessed by computing the statistic:

(11)

where the sum runs over N experimentally measured scalar couplings Jobs,i which are

compared with the corresponding Jcalc,i calculated from the simulations. The quantity σi is

an estimate of the uncertainty in computing the scalar coupling from the simulation data,

which is the main source of error. All force-fields except CHARMM22 with EEF1-C19 and

the vacuum simulation provide a reasonably accurate description of the native state of
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ubiquitin and GB3, although EEF1-SB is less accurate compared to GBSW, FACTS and

SCPISM. In particular, large deviations between calculated and experimental values of S2

are observed in the helical regions of the two proteins.

Test on a disordered peptide—While good performance of the solvent model for

folded proteins is important, the strength of EEF1-SB is expected to be for weakly structured

(or “intrinsically disordered”) peptides. This is because data for such peptides was used in

the parameterization; as with any coarse graining, it is inevitable that not all features of the

original model can be captured faithfully, but by using data for small peptides to derive the

parameters, we expect the properties of similar peptides to be best reproduced.

We have chosen a 19-residue fragment of hen lysozyme (HEWL19), studied by NMR by

Schwalbe and co-workers,87 as test case for a disordered peptide. This peptide is helical in

the full-length lysozyme native structure, but only partially helical by itself. NMR scalar

couplings have been recorded which reflect the (ϕ,ψ) torsion angles of the central three Ala

residues, allowing these to be directly compared with sampling from simulations. The

peptide was sampled by running REMD simulations for at least 100 ns for each force-field,

of which the first 50 ns was discarded as equilibration. The calculated scalar couplings

(Table 2), show that the optimization was successful in bringing the sampled distribution of

(ϕ,ψ) angles closer to the sampling obtained with CHARMM36, despite this peptide not

being used as part of the optimization. The calculated scalar couplings are also much closer

to experiment as evident from the reduction of χ2 from 12.0 in the unoptimized EEF1-SB to

2.4. The sampling of the α-helical region of the Ramachandran map (α+ in Table 2) is much

closer to that in CHARMM36, and the fraction of helix is also much improved (a helical

residue is defined as part of sequence of three consecutive residues in the helical region of

the Ramachandran map). However, the ppII region is still undersampled, as also evident for

the (AAQAA)3 peptide in Figure 2. For reference, we have also run REMD simulations of

the HEWL19 peptide with the FACTS and SCPISM models. In both cases, essentially only

helix is populated at 298 K (despite the REMD simulations being initiated from disordered

structures), and so the deviation from experiment is consequently substantial.

Folding simulations—As a final test, we assess the ability of EEF1-SB to fold different

peptides. The aim of this experiment is not to perform a full thermodynamic characterization

of the system, but rather to assess the correct qualitative behavior of the force-field at room

temperature. Here, three fast-folding peptides with different secondary structure propensities

are considered: the α-helical mini protein Trp-cage,88 the 3-β stranded GTT variant of the

FiP35 WW domain,89 and the 35-residue Nle/Nle double mutant of the villin headpiece,90

whose native fold consists of 3 helices. For each system, we report the results from 500 ns

REMD simulations (16 replicas spanning the temperature range 278-525K) using EEF1-SB.

All simulations were initialized from an extended conformation, and the first 150 ns were

discarded in the analysis. Figures 7 and 8 show the folding free energy surfaces of the three

proteins. EEF1-SB is able to fold to near-native conformations both Trp-Cage and WW

domain, but fails in reproducing the folded state of the double mutant of Villin headpiece.

Experimental studies on the latter protein suggest the Nle/Nle mutant to be stabilized by salt

bridges,89 that are poorly modeled in EEF1-SB.
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Because it is small, and readily sampled, we have used Trp Cage to compare EEF1-SB

against other implicit solvent models, and against simple vacuum simulations in

CHARMM36 (Figure 7). These free energy surfaces show that the vacuum simulations will

clearly not fold to the native state, while for EEF1-C19, a native-like state is only marginally

stable. While FACTS and SCPISM do obtain the correct folded structure, the unfolded

structure is much too compact, relative to the explicit solvent simulations (in fact, more

compact than the folded state). By contrast, EEF1-SB captures much better the overall

dimensions of the unfolded protein seen in explicit solvent simulations, as we have also seen

above for the (AAQAA)3 and GB1 peptides.

Discussion

Describing the effect of the aqueous environment is of fundamental importance in molecular

simulations of biomolecules. While explicit water simulations provide a high level of detail,

implicit solvent models represent a fast and approximate way to describe the behavior of

proteins in solution, that can be useful for systems undergoing large conformational

transitions, (e.g unfolding experiments, simulations of unstructured peptides) or aggregation

studies, that typically require a large simulation box when explicit solvent is included.

In the present work we have employed an approximate, but extremely fast solvent-exclusion

model and combined it with the all-atom CHARMM36 force-field. CHARMM36 was

extensively optimized against experimental data, by performing long molecular dynamics

simulations in explicit water. In order to retain the accuracy of the original force-field, we

optimized the parameters in the solvent-exclusion model so as to mimic the behavior of

explicit water simulations, using a coarse-graining technique based on the minimization of

the relative entropy. In contrast to standard parameterization approaches, this methodology

is not aimed at stabilizing only native conformations, but at reproducing the full equilibrium

distribution as observed in explicit water simulations. This is a desirable target if non-native

or disordered states are of interest, and also the ideal reference if the implicit solvent

simulations are intended for use in conjunction with the explicit solvent in a multiscale

approach.

Various tests conducted with the optimized model were shown to produce favourable

results. EEF1-SB was shown to result in stable trajectories of native proteins in room

temperature molecular dynamics simulations, although for that purpose the alternative

FACTS and SCPISM models are more accurate. Where EEF1-SB appears to have a distinct

advantage over other implicit models is in its description of the dimensions and secondary

structure formation in disordered peptides and non-native states. Finally, EEF1-SB is able to

fold Trp-Cage and WW domain to near-native structures, but not the Villin headpiece

subdomain. When compared to the other implicit solvent models considered here, EEF1-SB

is much better able to capture the overall dimensions of the chain, and the features of the

folding free energy landscapes, relative to the explicit solvent simulations.

The design of an implicit solvent model often entails three distinct but connected elements.

Firstly, a force-field describing the solute-solute interactions must be chosen. Secondly, a

specific physical model describing the effects arising from the presence of the solvent must
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be assumed. Lastly, the parameters of the implicit solvent model, and possibly also of the

solute-solute model must be optimized according to some procedure. In principle, the solute

model should not need to be adjusted when moving to implicit solvent, but in practice (as we

have shown here), such adjustments can yield signficant improvements. These adjustments

should be thought of as part of the implicit solvent model, as they effectively project some

of the solvation effects onto the internal degrees of freedom of the solute.

For the first element, we have chosen one of the latest generation of protein force fields,

representing many years of careful parameterization, and for the second element we have

chosen a computationally efficient, yet accurate implicit solvent model. For the third

element, we have demonstrated that the relative entropy formalism is able to systematically

improve the quality of the EEF1-C19 force field, resulting in a final model which reproduces

well the free energy landscapes of small peptides. The remaining discrepancies are most

likely due to the functional form of the implicit solvent model we have chosen to optimize,

particularly the description of electrostatic energy. This would be a likely direction for

future improvement of the model.
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Figure 1.
Relative entropy minimization. The relative entropy minimization converged after 500

iterations (7 resampling steps, marked by points), yelding the optimized parameters kε = 1.5

and kψ = 0.5 kcal/mol. The convergence of the procedure is ensured by monitoring the

behaviour of the gradient (dashed line).
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Figure 2.
Relative entropy minimization on (AAQAA)3. (a-c) Folding free energy surfaces of

(AAQAA)3 projected onto the radius of gyration and RMSD from α-helical state for the

unoptimized/optimized EEF1-SB implicit solvent and for the target explicit water simulation

at 298 K. (d-f) Ramachandran map for the 9 central residues and representative structures

associated with β-sheet, helix and polyproline (PPII) regions.
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Figure 3.
Folding free energy surfaces of (AAQAA)3 at 298 K projected onto the radius of gyration

and RMSD from α-helical state for vacuum simulations with (a) CHARMM 36 and for

different implicit solvent models: (b) EEF1-C19, (c) FACTS and (d) SCPISM.
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Figure 4.
Comparison between calculated and experimental54 helical fraction of the (AAQAA)3

peptide in simulations and experiment as a function of temperature. The optimized and

unoptimized EEF1-SB models are compared with FACTS,40 SCPISM42 with the EEF1-

C1918 force field and with CHARMM36 in vacuum.
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Figure 5.
(a-c) Folding free energy surfaces of GB1 projected onto the radius of gyration and RMSD

from the folded state for the unoptimized/optimized EEF1-SB implicit solvent and for the

target explicit water simulation at 298 K. For the optimized EEF1-SB model, the centres of

the first three clusters (in gray) are superimposed on the native structure (orange). Free

energy surfaces obtained in vacuum simulations with (d) CHARMM 36 and using the

implicit solvent models (e) EEF1-C19, (f) FACTS and (g) SCPISM.
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Figure 6.
Consistency of folded protein simulations with NMR data. Upper panel: χ2 between

experimental and back-calculated 3J backbone scalar couplings. Lower panel: root mean

squared deviation (RMSD) between experimental and back-calculated S2 backbone amide

order parameters.
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Figure 7.
Explicit water and implicit solvent folding free energy surfaces of Trp-cage at T=298 K.

Upper row shows explicit water and EEF1-SB, and the lower row a selection of other

implicit solvents, and results for CHARMM36 in vacuum, as labelled. The two-dimensional

surface is calculated by projecting onto the the radius of gyration and Cα RMSD from native

structure. For the EEF1-SB simulation, the first two clusters are shown in gray, and

superimposed to the native structure (shown in orange).
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Figure 8.
EEF1-SB folding free energy surface of WW domain and Villin at T=298 K. The two-

dimensional surface is calculated by projecting onto the the radius of gyration and Cα
RMSD from native structure. For WW domain, the first two clusters are shown in gray, and

superimposed to the native structure (shown in orange).
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Table 1

Simulations on native proteins.

Ubiquitin

Force-field
(a) Solvent model Rgyr

(b)
 (Å) RMSD

(c)
 (Å) ARMSD (Å)

(d)
Speed (ns/day)

(e)

C36 EEF1-SB 11.4 2.7 2.1 12

C36 VACUUM 10.7 2.2 0.2 10

C22 FACTS 10.7 0.7 0.03 3.4

C22
EEF1

(f) 29.2 25.8 22.3 13

C22 SCPISM 10.8 1.0 0.1 6.5

C22 GBSW 10.8 1.0 0.06 1.3

C19 EEF1 11.2 3.8 2.0 23

C19 ACE 10.5 2.2 1.6 5.5

GB3

Force-field Solvent model Rgyr (Å) RMSD (Å) ARMSD (Å) Speed (ns/day)

C36 EEF1-SB 11.1 4.0 1.6 20

C36 VACUUM 10.5 3.8 1.0 17

C22 FACTS 10.3 1.6 0.2 5.6

C22
EEF1

(f) 33.4 30.7 6.4 20

C22 SCPISM 10.3 1.5 0.03 11

C22 GBSW 10.3 1.6 0.2 2.1

C19 EEF1 10.9 4.0 1.5 35

C19 ACE 10.1 3.7 0.5 9.2

(a)
The implicit solvent models were used in combination with the associated force-field described in the original paper: the united-atom

CHARMM19 force-field was used for ACE and EEF1 and the all-atom force-field CHARMM22 for FACTS, SCPISM and GBSW.

(b)
Average radius of gyration and Cα RMSD from native. For ubiquitin, residues 71-76 are not included in the RMSD and radius of gyration

calculations.

(c)
Average radius of gyration and Cα RMSD from native. For ubiquitin, residues 71-76 are not included in the RMSD and radius of gyration

calculations.

(d)
RMSD difference between the average calculated on the last and the first 10 ns of the 100 ns simulations.

(e)
Approximate computational time on a single 2.83GHz Intel Xeon processor expressed in ns/day.

(f)
C22 EEF1 is a preliminary version of EEF1 in combination with the CHARMM22 force field, provided with the CHARMM simulation

package.68
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Table 2

J-couplings for 19-residue peptide derived from hen lysozyme (HEWL19). Top part of the table gives the

scalar couplings measured experimentally and calculated from the 298 K replica of REMD simulations using

the “DFT2” Karplus relation from Ref.72 Results are only shown for the central Ala-10 for brevity; full results

are listed in Supporting Information. Data for C36 with explicit solvent are taken from Ref.43 Lower part of

table shows the overall χ2 between experiment and simulation, the populations of different regions of the

Ramachandran map, and the fraction helix averaged over Ala-9, Ala-10 and Ala-11, as defined in.72

Residue/J J expt J (C36 explicit water) J (EEF1-SB unopt.) J (EEF1-SB) J (FACTS) J (SCPISM)

A10 1 JNCα 10.58 10.35 9.60 10.53 9.52 9.81

A10 2 JNCα 7.24 7.02 6.51 7.25 6.29 6.30

A10 3 JHαC 1.72 2.10 6.33 2.50 0.53 1.27

A10 3 JHNC 1.33 0.88 1.10 0.88 1.86 0.55

A10 3 JHNCβ 2.19 2.86 2.09 1.80 3.81 3.69

A10 3 JHNHα 5.10 6.19 6.15 8.13 2.55 5.34

A10 3 JHNHα 0.46 0.37 0.37 0.53 0.10 0.16

χ2 (J) [Hz] 0.67 12.0 2.4 6.7 4.69

% α+ 57.3 49.4 (2.8) 55.3 (2.0) 100.0 (0.0) 99.2 (0.3)

% β 14.6 17.9 (3.1) 36.3 (1.3) 0.0 (0.0) 0.2 (0.2)

% ppII 18.2 0.7(0.2) 2.8(0.4) 0.0(0.0) 0.0(0.0)

% helix 39.4 0.0(0.0) 10.4(1.0) 100.0(0.0) 93.1(0.8)

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.


