Skip to main content
. 2014 Apr 15;9(4):e94238. doi: 10.1371/journal.pone.0094238

Figure 3. Effect of various mutations on the transcriptional repression and identification of EAR-like motif.

Figure 3

(A) Arabidopsis mesophyll protoplasts were co-transformed with the pHAT1::GUS reporter gene and the following effector constructs: chloramphenicol acetyltransferase (CAT), ATHB17, ATHB17 with amino acids 74–137 deleted, ATHB17 with amino acids 1–137 deleted and ATHB2. Data are mean fluorescence readings measuring GUS-mediated substrate (4-methylumbelliferyl-beta-D-glucuronide) conversion. Error bars represent ± SD of three replicates. (B) Multiple alignment of the protein sequences similar to the amino terminus of ATHB17 from publically available HD-Zip II α subfamily proteins. Gaps are indicated by dashes. A putative EAR motif is shaded in red for the α-subclass, while the EAR motif identified in [25] is shaded in green. Abbreviations for species are as follows: At Arabidopsis thaliana; Al Arabidopsis lyrata; Th Thellungiella halophila; Vv Vitis vinifera; Cp Carica papaya; Pt Populus trichocarpa; Rc Ricinus communis; Zm Zea mays; Sb Sorghum bicolor; Os Oryza sativa. (C) ATHB17, ATHB17 with the EAR motif mutated (ATHB17 L84A L86A), or CAT effector constructs were co-transformed into Arabidopsis mesophyll protoplasts with the pHAT1::GUS reporter gene. Data are mean fluorescence readings measuring GUS-mediated substrate (4-methylumbelliferyl-beta-D-glucuronide) conversion. Error bars represent ± SD of three replicates.