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Long-term maintenance of immune 
components with defined speci-

ficity, without antigen is the hallmark 
feature of immunological memory. 
However, there are fundamental differ-
ences in how memory CD8+ compared 
with CD4+ T cells are maintained. After 
complete antigen elimination, CD8+ 
T  cells can persist as a self-renewing 
numerically stable cell population, and 
therefore satisfy the most stringent 
definition of “memory.” Comparatively, 
CD4+ T  cell maintenance is consider-
ably less stable, often requiring low-level 
antigen persistence or antigenic remind-
ers. Recent studies show these basic 
memory features, classically ascribed to 
effector CD8+ and CD4+ T cells, extend 
to immune suppressive Foxp3+ regula-
tory CD4+ T cells (Tregs). In particular, 
gestational expansion and postpartum 
retention of maternal Tregs with fetal 
specificity may explain the protective 
benefits of primary pregnancy on com-
plications in subsequent pregnancy. 
Herein, the possibility of ongoing anti-
genic reminders from fetal cell micro-
chimerism in postpartum maintenance 
of maternal Tregs with fetal specificity 
is considered.

The mammalian immune system is 
endowed not only with efficient self, 
non-self discrimination, but also the abil-
ity to “remember” antigenic encounters. 
For immunologically foreign antigens, 
prior stimulation has the potential to 
prime long-term retention of “memory” 
immune cells with specificity to the 
inciting antigen. In turn, establishing 
the molecular and cellular requirements 

for immunological memory has critical 
implications for developing more durable 
vaccines and other immune modulatory 
therapies.

Emerging studies highlight an inter-
esting discordance in necessity for 
antigen persistence in maintaining long-
term retention of CD8+ compared with 
CD4+ T  cells with defined specificity.1-7 
This is best illustrated by the dynamics 
of pathogen-specific CD8+ and CD4+ 
T  cells after infection with viruses or 
other intracellular pathogens that do not 
cause persistence. While both T cell sub-
sets expand robustly during acute infec-
tion, a numerically stable self-renewing 
pool of pathogen-specific CD8+ T cells is 
maintained indefinitely despite complete 
antigen elimination. By contrast, CD4+ 
T  cells responding to the same acute 
infection undergo protracted, but stable 
contraction with an estimated half-life 
of 15 to 40 d.8-10 This discordance may 
reflect the necessity for each T cell subset 
in host defense. For acute infection with 
viruses or other intra-cytoplasmic patho-
gens (e.g., influenza A, lymphocytic 
choriomeningitis virus, or Listeria mono-
cytogenes) where protection is conferred 
by CD8+ T  cells, these cells are chosen 
for selective retention. Comparatively for 
pathogens that primarily cause persistent 
infection and reside within the phago-
cytic vacuole of infected cells thereby 
escaping detection or elimination by 
CD8+ T cells (e.g., Mycobacterium tuber-
culosis, Leishmania major, or Salmonella 
spp.), pathogen-specific CD4+ T  cells 
play a more dominant protective role.11-13 
Importantly however, while CD8+ T cell 
mediated protection against secondary 
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infection is maintained well after anti-
gen elimination, protection by retained 
memory CD4+ T cells requires low-level 
antigen persistence. Accordingly for 
pathogens capable of establishing per-
sistent infection, antigen elimination 
that occurs naturally or with adjunctive 
antimicrobials, accelerates contraction 
of pathogen-specific CD4+ T  cells and 
overrides the protective benefits of prior 
infection.14-16 Therefore, unlike CD8+ 
T  cells, the long-term maintenance of 
CD4+ T  cell memory appear to require 
more frequent, if not constant, antigenic 
reminders.

While the memory features of CD4+ 
T  cells has been best characterized for 
IFN-γ producing Th1 cells, other CD4+ 
effector lineages (e.g., Th2 or Th17 cells) 
appear to share a similar potential for long-
term retention.7,10 By redirecting tools for 
tracking antigen-specific T cells, we and 
others have recently shown these memory 
features classically described for effec-
tor T  cells also extend to immune sup-
pressive regulatory CD4+ T cells (Tregs) 
identified by Foxp3 expression. Treg 
memory was first shown using transgenic 
mice where the model antigen, ovalbu-
min, could be inducibly expressed within 
the skin.17 Primary dermal stimulation 
with this surrogate self-antigen primed 
expansion and retention of ovalbumin 
specific Tregs that dampens the sever-
ity of localized autoimmune reactions 
when this antigen was re-expressed ~30 
d later. Likewise, a complementary study 
tracking Tregs after influenza A infec-
tion showed accelerated accumulation of 
virus-specific Tregs after secondary, com-
pared with primary infection, which may 
be important for limiting pathological 
airway inflammation from over-exuber-
ant effector CD8+ T cell activation.18 Our 
own studies investigating maternal Tregs 
with specificity to the immune-dominant 
I-Ab:2W1S

55–68
 peptide expressed as a 

surrogate fetal antigen during allogeneic 
pregnancy, showed Foxp3+ CD4+ T cells 
with this specificity progressively expand 
throughout gestation.19 Interestingly 
after delivery of the fetus and other gross 
products of conception, maternal Tregs 
with fetal specificity were maintained at 
markedly enriched levels; and these cells 
re-expand with accelerated tempo during 

secondary pregnancy upon encounter 
with the same paternal-fetal antigen. 
Considering the necessity for expanded 
maternal Tregs in maintaining fetal tol-
erance during pregnancy,19-24 these find-
ings likely provide critical mechanistic 
insights for how primary pregnancy pro-
tects against complications stemming 
from fractured fetal tolerance in subse-
quent pregnancy.19,20,25,26 In turn, applied 
to the basic biology of CD4+ T  cells, 
these findings together establish Foxp3+ 
Tregs, like effector T cells, can persist as 
memory immune cells.

Given the discordance in necessity 
for antigen persistence in sustaining 
long-term retention of CD8+ compared 
with CD4+ effector T cells with defined 
specificity, these findings also open up 
exciting new questions regarding whether 
retained Tregs reflects bona fide memory 
or maintenance in response to antigen 
persistence. In the case of Tregs with 
specificity for surrogate-self ovalbumin 
antigen within the skin, ongoing stimu-
lation is unlikely since naive ovalbumin 
specific T cells failed to proliferate after 
adoptive transfer without induced anti-
gen expression.17 Similarly, Tregs retained 
after influenza A infection are unlikely 
to reflect stimulation from residual viral 
antigen, since this pathogen is not known 
to cause persistent infection.18 However 
in each of these models, the longer-term 
durability of Tregs, with specificity to 
either self or pathogen, remain undefined 
since the impacts of secondary antigen 
challenge were reported at most ~35 d 
after silencing primary antigen stimula-
tion.17,18 In our studies tracking maternal 
Tregs with surrogate fetal-2W1S speci-
ficity, enriched cells were maintained 
through at least 100 d postpartum despite 
progressively diminishing cell numbers.19 
In particular, the postpartum decay 
kinetics of maternal Tregs with fetal spec-
ificity (estimated t

1/2
 of 25 d) show strik-

ing similarity with effector CD4+ T cells 
primed by acute infection.

On the other hand and in sharp con-
trast to the tempo of antigen stimulation 
that occurs after acute infection condi-
tions, retained maternal Tregs with fetal 
specificity are likely to have more frequent 
antigenic encounters from fetal cells that 
establish microchimerism, analogous 

to low-level antigen stimulation in the 
later stages of persistent infection. Fetal 
cell microchimerism initiated during 
pregnancy and sustained postpartum 
probably occurs ubiquitously, but this 
phenomenon has become only recently 
widely appreciated with the use of molec-
ular tools that allow these rare (~1 in 106) 
cells to be consistently identified.27-29 
Accordingly, antigenic reminder from 
fetal cell microchimerism may be pivotal 
for sustaining memory among pregnancy-
induced maternal Tregs. Moreover, if 
maternal CD4+ Treg memory is sustained 
by fetal cell microchimerism, it would 
be interesting to consider the necessity 
for comparable antigenic reminders in 
maintaining regulatory CD8+ T  cells 
shown in other contexts.30-32 Along with 
the long-term maintenance of maternal 
cell microchimerism sustained by fetal 
Tregs in offspring,33 this emerging body 
of evidence highlight remarkably potent 
and long-lived immunological program-
ming that occurs naturally with the bi-
directional transfer of cells and antigens 
between mother and fetus through in 
utero exposure.

Based on these findings, we propose 
important next steps are to more meticu-
lously dissect the physiological milieu of 
pregnancy and in utero development that 
primes immunological tolerance and Treg 
memory. Taking cues from effector CD4+ 
T cell memory,1-7,34 this will likely include 
interrelated contributions from naive cell 
precursor frequency, primary expansion 
magnitude, antigen avidity, and response 
to cytokine growth factors, along with 
increased frequency of antigenic remind-
ers. Furthermore, given the potential for 
Treg conversion into inflammatory cyto-
kine producing effector T cells with the 
same specificity,35,36 microchimeric fetal 
cells also have the dangerous potential 
for sensitizing responses that may trigger 
autoimmunity.37-39 This is analogous to 
pathological responses to microchimeric 
maternal cells in offspring with various 
diverse autoimmune disorders including 
diabetes,40 biliary atresia,41 and derma-
tomyositis.42 Therefore, establishing the 
molecular signals that reinforce Treg dif-
ferentiation stability are of equally high 
importance and priority.
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Nevertheless, applied to the devastat-
ing complications in human pregnancy 
that stem from underlying defects in 
fetal tolerance (preeclampsia, prema-
turity, miscarriage), basic investigation 
on the fundamental biology of CD4+ 
T  cells and memory features for protec-
tive regulatory subsets provides renewed 
hope for new, more efficacious therapeu-
tic approaches. In turn, given the striking 
parallels between Treg and effector CD4+ 
T cell memory, unraveling how maternal 
Treg memory is sustained will likely also 
provide critical insights for priming more 
durable effector T  cells with pathogen 
specificity for augmenting host defense 
against infection.
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