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Commentary

PAQR-2 is a C. elegans homolog of the 
mammalian adiponectin receptors. 

We have recently shown that PAQR-2 is 
essential for the ability of C. elegans to 
grow at its lower temperature range, i.e., 
15 °C, and that the likely role of PAQR-2 
during cold adaptation is to regulate 
membrane fluidity by promoting fatty 
acid desaturation. Here we present a 
summary of this work, with an emphasis 
on placing our C. elegans findings in the 
context of mammalian biology.

Why Study Adiponectin  
Receptor Homologs in C. elegans?

Adiponectin
Adiponectin, discovered in the mid-

’90s, is a hormone expressed specifically 
by adipocytes.1-3 It is composed of 244 
amino acids, with a collagenous domain 
that mediates multimerization, and a 
globular domain that interacts with the 
receptors. In mice, administration of 
adiponectin enhances insulin sensitivity, 
fatty acid oxidation4-7 and energy expen-
diture,8,9 protects from atherosclerosis,10 
and causes decreased body weight.5,11 In 
human, serum concentration of adipo-
nectin correlates negatively with BMI 
and insulin resistance,12 and low serum 
adiponectin level is a well-established risk 
factor for type 2 diabetes13,14 and myocar-
dial infarction.15 Importantly, polymor-
phisms in adiponectin or its receptors 
are associated with an increased risk of 
type 2 diabetes and other metabolic syn-
drome complications.16-20 What emerges 
from the literature is that adiponectin is 
a key regulator of metabolism, and that 
pharmacomodulation of the adiponectin 

pathway has great potential in the con-
text of the metabolic syndrome. How 
adiponectin signals to cause its important 
effects remains however far from clear.

Adiponectin receptors
Human adiponectin likely acts via 

two homologous receptors: AdipoR1 
and AdipoR2.21 These are members of 
the poorly understood PAQR (proges-
tin and adipoQ receptors) protein family 
characterized by seven transmembrane 
domains with a topology inverse that of 
G protein-coupled receptors (GPCRs): in 
PAQR proteins the N terminus is intracel-
lular.22 Both receptors are expressed in the 
hypothalamus and many peripheral tis-
sues.9,21 Knockout mice have confirmed 
the insulin-sensitizing roles of these recep-
tors: they exhibit increased adiposity, 
insulin resistance, excess gluconeogen-
esis, and reduced fatty acid oxidation.23,24 
Adiponectin receptors clearly regulate the 
balance between energy utilization and 
storage, but how?

Events immediately downstream of 
AdipoR1/2 are ill-defined, and several dis-
crepancies exist in the literature. Recent 
work inspired by studying a distant yeast 
homolog indicates that the AdipoR1/2 
receptors may have an associated cerami-
dase activity, but this remains to be 
experimentally confirmed in other organ-
isms.25-27 Some groups also reported that 
adiponectin induces AMPK in liver,28 that 
globular and recombinant adiponectin are 
biologically active,10,23 that double knock-
out mice lacking AdipoR1 and AdipoR2 
are viable,23 and that adiponectin regu-
lates apetite.9 Other groups have contrary 
findings.24,25,29-32 It is not known whether 
the receptors act as dimers or monomers, 

PAQR-2 may be a regulator of membrane f luidity during cold 
adaptation

Marc Pilon* and Emma Svensk
Department of Chemistry and Molecular Biology; University of Gothenburg; Medicinaregatan 9C; Gothenburg, Sweden

Keywords: adiponectin, PAQR, mem-
brane fluidity, AdipoR1, AdipoR2, 
cold adaptation, CREST proteins, 
desaturases, NHR-49, SBP-1

Abbreviations: AAK-2, AMP-Activated 
Kinase-2; AMPK, AMP kinase; CCT, 
phosphocholine cytidylyltransfer-
ase; CEPT-1, Choline/Ethanolamine 
PhosphoTransferase-1; CPT, choline-
phosphotransferase; CREST, alkaline 
ceramidase, PAQR receptor, Per1, 
SID-1, and TMEM8; ECH-7, Enoyl-
CoA Hydratase; FA, fatty acid; gof, 
gain-of-function; HACD-1, Hydroxy-
Acyl-CoA Dehydrogenase; lof, loss-of 
function; MDT-15, MeDiaTor-15; 
NHR-49, Nuclear Hormone Receptor 
family-15; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PCYT-1, 
CTP-phosphocholine cytidyltransfer-
ase; PMT-1, Phosphoethanolamine 
MethylTransferase-1; SAMS-1, 
S-Adenosyl Methionine Synthetase-1; 
SBP-1, Sterol regulatory element Binding 
Protein-1

*Correspondence to: Marc Pilon; 
Email: marc.pilon@cmb.gu.se

Submitted: 10/22/2013; Accepted: 11/07/2013

http://dx.doi.org/10.4161/worm.27123

Svensk E, Ståhlman M, Andersson CH, Johansson 
M, Borén J, Pilon M, Ashrafi K. PAQR-2 Regulates 
Fatty Acid Desaturation during Cold Adaptation 
in C. elegans. PLoS Genet 2013; 9:e1003801; http://
dx.doi.org/10.1371/journal.pgen.1003801



e27123-2	 Worm	 Volume 2 Issue 4

and some investigators even suggest that 
ligand binding causes monomerization of 
inactive receptor dimers.33 This confusing 
situation about an important metabolic 
hormone calls for an unbiased approach to 
elucidate the adiponectin signaling path-
way, which is one of our goals.

Adiponectin Receptor 
Homologs in C. elegans

The road to isolating paqr-2 suppres-
sors in C. elegans

There is no obvious homolog of adipo-
nectin in C. elegans. However, in 2011 we 
published a description of the two closest 
C. elegans adiponectin receptor homologs, 
which we named PAQR-1 and PAQR-
2.34 These are expressed in metabolically 
important tissues, and paqr-2 is the most 
important of the two genes: the paqr-2 
mutant exhibits a cold adaptation defect 
(inability to grow at 15 °C), a distinctive 
tail tip morphology defect, and an excess 
fat storage phenotype when combined 

with a paqr-1 mutation. Furthermore, 
paqr-2 is sterile or synthetic lethal with 
mutations in regulators of fatty acid 
metabolism, including the Δ9 desaturase 
fat-6, the SREBP homolog sbp-1, and the 
HNF4/PPARα homolog NHR-49.34

The greatest merit of using C. elegans 
is that it can be used as a tool to discover 
new molecular components that regulate 
or mediate the effects of proteins, such 
as AdipoR1 and AdipoR2. A powerful 
and unbiased approach is to use random 
mutagenesis screens to identify modifier 
mutations. In work recently published, 
we screened 15 000 mutagenized hap-
loid genomes and identified nine novel 
mutations (alleles et6 to et14) that can 
suppress the growth arrest phenotype of 
paqr-2 mutants at 15 °C.35 Importantly, 
all nine suppressors alleviated the paqr-2 
tail phenotype, at least to some degree. 
This indicates that they compensate spe-
cifically for loss of paqr-2 function, rather 
than generally improving cold tolerance. 
The suppressor mutations therefore likely 

affect genes downstream of PAQR-2, or 
genes acting in parallel pathways. This 
mutant collection is potentially an impor-
tant resource to elucidate the adiponectin 
pathway, of which many components will 
certainly be conserved between mammals 
and worms.

Identity of the paqr-2 suppressors
Whole genome sequencing and experi-

mental confirmation allowed us to iden-
tify all nine suppressor alleles. The novel 
alleles affect genes belonging to two meta-
bolic pathways: some mutations decrease 
phosphatidylcholine biosynthesis (loss 
of function [lof ] mutations in pcyt-1 
and cept-1) while other mutations likely 
result in increased fatty acid elongation 
and desaturation (gain-of-function [gof ] 
mutations in mdt-15 and nhr-49 or loss 
of function mutations in ech-7 or hacd-1). 
Subsequent testing of a lof allele of sams-1 
and of an overexpression sbp-1 transgene 
also revealed these to be paqr-2 suppres-
sors. The following summarizes some of 
the literature that led us to construct the 

Figure 1. Simplified pathway for paqr-2 suppressors. lof mutations affecting the proteins depicted in red, or gof mutations in proteins depicted in blue, 
can suppress the cold adaptation and withered tail tip phenotypes of the paqr-2(tm3410)-null mutant. Two main pathways are at work: on the left is the 
pathway for PC biosynthesis, and on the right are reactions important for FA metabolism. Lowering PC biosynthesis is expected to promote SBP-1 activa-
tion, which in turn activates Δ9 desaturases such as FAT-6 and FAT-7, ultimately resulting in more unsaturated fatty acids and increasing their relative abun-
dance within membrane phospholipids. This increases membrane fluidity, which is adaptive at low temperatures. The role of PAQR-2 itself is unknown but 
one speculation is that it may regulate PC levels. lof mutations in aak-2 and nhr-80 can also partially suppress paqr-2 phenotypes (not shown).
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model shown in Figure 1, and discusses 
some implications of our findings.

paqr-2 suppressors and PC 
biosynthesis

SAMS-1 is the homolog of the mam-
malian methionine adenosyltransferase, 
while SAMe is the methyl donor for hun-
dreds of methylation reactions, including 
RNA, DNA, proteins, and lipids,36 and 
methylation represents one of the earliest 
steps in de novo PC biosynthesis. PCs are 
produced by two alternative pathways: 
they can be synthesized either from cho-
line (Kennedy pathway) or by methyla-
tion of phosphatidylethanolamine (PE) 
by PEMT in mammals, or of phospho-
ethanolamine by the PMT-1 and PMT-2 
orthologs in C. elegans and plants.37-39 
The Kennedy pathway includes the reac-
tions performed by the C. elegans proteins 
PCYT-1 and CEPT-1.40 In mammals, 
these enzymes are named phosphocholine 
cytidylyltransferase (CCT) and choline-
phosphotransferase (CPT), respectively, 
with CCT carrying out the rate-limiting 
step.41 The PC biosynthesis enzymes just 
mentioned have the following intracellu-
lar localizations: SAMS-1 is cytosolic;42,43 
PMT-1 and PMT-2 work together and are 
also likely cytosolic;38,44 PCYT-1 is present 
in the nucleus where it may be connected 
to lipid signaling or simply sequestered 
in its inactive form, and associates with 
ER membranes where it may be regu-
lated by bilayer elastic stress;45-48 CEPT-1 
is associated with the ER and nuclear 
membranes.45

paqr-2 suppressors and FA metabolism
SBP-1 activation has two primary out-

comes: the production of elongated and 
unsaturated fatty acids, and the accu-
mulation of stored fat.49,50 The positive 
regulation of elo-2, fat-5, fat-6, and fat-7 
by SBP-1 is supported by quantitative 
PCR and in vivo GFP reporters,49 and a 
role for SBP-1 as promoter of fat storage is 
evidenced by visualization of fat depots in 
sbp-1 mutants.49,50 The mediator subunit 
MDT-15 is required for SBP-1’s ability to 
control lipid homeostasis in C. elegans,51 
and also interacts with NHR-49 to medi-
ate its effects on fatty acid metabolism and 
response to dietary stress that, like SBP-
1, include activation of the Δ9 desatu-
rases.52,53 ECH-7 and HACD-1 are the 
worm homologs of the mammalian enoyl 

CoA hydratase and L-3-hydroxyacyl CoA 
dehydrogenase, mitrochondrial enzymes 
responsible for two of the four recurring 
steps of β-oxidation of fatty acids.54,55 
lof mutations in these genes would be 
expected to decrease the rate of FA oxi-
dation, hence increasing the time during 
which they are available to be modified 
by Δ9 desaturases. AAK-2 (the C. elegans 
AMP-activated kinase α2 catalytic sub-
unit) acts to inhibit ATGL, hence slowing 
down energy utilization during periods 
of starvation;56,57 lof mutations in this 
gene also partially suppress paqr-2 pheno-
types,34 and could act by releasing stored 
FAs for further exposure to Δ9 desaturases.

Connecting PC biosynthesis and FA 
metabolism

The profound regulatory effects of PC 
levels on SREBP activity have recently 
been discovered and are conserved 
between C. elegans and mammalian 
cells,58 although the precise mechanism is 
not yet clear. Our own work on PAQR-2 
and its role in cold adaptation suggest that 
decreasing PC synthesis may be essential 
for cold adaptation by allowing adaptive 
remodeling of the structural lipids via 
elongases and desaturases regulated by 
SBP-1 and NHR-49.

The identity of the paqr-2 suppressors 
suggest that this adiponectin receptor 
homolog is a regulator of fatty acid metab-
olism in C. elegans. Furthermore, our 
results suggest a specific role for PAQR-2 
in the regulation of membrane fluid-
ity during cold adaptation in C.  elegans: 
in the suppressor mutants there is a dra-
matic increase in the expression of a fat-7 
transcriptional reporter that is accompa-
nied by an increase in the abundance of 
unsaturated FAs.35 A greater proportion 
of unsaturated FAs is expected to increase 
membrane fluidity, which is an important 
adaptation to cold in poikilotherms. The 
role of paqr-2 as a regulator of membrane 
fluidity via influencing unsaturated FA 
levels could also explain the tail pheno-
type: the tail tip, being such a fine and 
delicate structure, may be particularly 
sensitive to defects in membrane fluidity. 
Remarkably, growth of the paqr-2 mutant 
was rescued by cultivating the worms in 
the presence of mild detergents used at 
concentrations expected to increase mem-
brane fluidity.35 This observation provides 

elegant support for the hypothesis that one 
essential function of paqr-2 is to increase 
membrane fluidity during cold adapta-
tion. Modulation of membrane fluidity is 
of great importance for many cellular pro-
cesses, including regulating the function 
and clustering of membrane proteins, such 
as receptors and ion channels.59,60

PAQR-2, Adiponectin, 
and Cold Adaption

Human subjects wearing a 10 °C 
liquid-conditioned suit for 2 h have 
shown a near-doubling of circulating 
adiponectin levels.61 Although based 
on a relatively small study, cold expo-
sure is the only known condition that 
can cause an acute increase in adipo-
nectin levels. Furthermore, the increase 
was highest among individuals with the 
lowest basal levels of adiponectin, i.e., 
subjects with the highest BMI. Cold-
induction of serum adiponectin levels 
has also been observed in rats kept at 4 
°C for 24 h, with adiponectin mRNA 
levels also becoming elevated in brown 
adipose tissue (BAT).62 The induction 
of adiponectin by exposure to cold and 
the specific and significant increase of 
mRNA in BAT suggests that adiponec-
tin might play a role in maintaining body 
temperature and basal metabolic rate 
in response to changing environmental 
conditions. Interestingly, as noted by 
Scherer and co-workers,3,63,64 adiponectin 
shows sequence homology with hiberna-
tion-associated plasma proteins (HP-27, 
HP-25, and HP20) and p88 HRP in the 
blood of Asian chipmunks (T. asiaticus) 
and hibernating woodchucks, respec-
tively, which suggests that adiponectin 
may be part of a protein family that 
functions during cold adaptation, possi-
bly by acting via the AdipoRs. Very few 
studies have been done that monitor the 
levels of adiponectin or its several CTRP 
homologs during hibernation. Based on 
scant evidence however, it does seem that 
the levels of adiponectin are lowest dur-
ing hibernation, just as is the case for the 
hibernation-associated proteins;65,66 one 
effect of this may be to facilitate a drop 
in body temperature and cause a slow uti-
lization of the fat stores during the many 
months of hibernation. Interestingly, 
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some authors have suggested that the 
common ancestor to all mammals may 
have been a hibernator.67,68

In any case, adiponectin-type proteins 
may have been regulating fat storage vs. 
utilization in response to body tempera-
ture changes since the dawn of mammals, 
and probably even before that. It is there-
fore very interesting that an adiponectin 
receptor homolog is essential for cold 
adaptation in C. elegans, a poikilotherm. 
In C. elegans, adaptation to cold requires 
changes to the lipid composition so as 
to maintain membrane fluidity, as well 
as other changes that are currently not 
well defined.69-71 The paqr-2 suppressor 
mutants that we have identified suggest 
that homeostasis of lipid fluidity during 
cold adaptation is a primary function of 
this adiponectin receptor homolog. Given 
that the last common ancestor between 
worms and mammals was also a poiki-
lotherm, the ancient function of the adi-
ponectin receptors may perhaps, quite 
speculatively, be inferred from that of 
paqr-2 in C. elegans: to maintain mem-
brane fluidity by promoting fatty acid 
desaturation, with these effects being 
essential for growth at lower temperature. 
In homeotherms such as mammals, the 
AdipoR1 and AdipoR2 have evidently 
retained their roles as metabolic regula-
tors, and may even have retained a role 
in cold adaptation if the acute rise in adi-
ponectin serum levels in response to cold 
exposure have a functional relevance.

Outstanding Question:  
What Does PAQR-2 Actually Do?

In spite of having identified many 
paqr-2 suppressors, we still have no idea 
of the actual biochemical function of the 
PAQR-2 protein, nor of its immediate 
downstream target. A PAQR-type pro-
tein exists in yeast, and was found to be 
associated with a ceramidase activity,27 
a finding that prompted some investiga-
tors to examine this possible function for 
the mammalian AdipoR1/2 proteins.25 
However, our own studies in C. elegans 
give no hint of a connection to cerami-
des, although it is certainly interesting to 
point out that ceramides are well known 
to have profound effects on membrane 
fluidity. A bioinformatics analysis of 

PAQR-type proteins led to the proposal 
that they are part of a much larger pro-
tein family, termed CREST (alkaline 
ceramidase, PAQR receptor, Per1, SID-1, 
and TMEM8).72 CREST proteins all have 
seven transmembrane domains inserted 
in an inverse orientation compared with 
GPCRs, i.e., having their N terminus 
facing the intracellular space, and all 
seem to act as hydrolases, including pro-
teins with ceramidase and phospholipase 
A2 activities. One speculates, therefore, 
that PAQR-2 may also be a hydrolase. 
Specifically, and with an eye to the path-
way that emerges from the study of the 
paqr-2 suppressors, one interesting possi-
bility is that PAQR-2 may be a phospholi-
pase that uses PCs as its substrates. In this 
scenario, the end effect of PAQR-2 would 
be similar to those mutations that inhibit 
PC synthesis, i.e., reducing PC levels. This 
hypothesis is particularly seducing in view 
of the fact that PCYT-1, which is responsi-
ble for the rate limiting step in PC synthe-
sis, is regulated by membrane properties, 
such as curvature and/or fluidity that 
reflect a need for increased PCs.48 Thus, 
PAQR-2 and PCYT-1 could have oppo-
site and complementary roles to fine-tune 
membrane properties. One way to test this 
is to examine the potential phospholipase 
activity of PAQR-2 using in vitro assays. 
Another is to identify new mutants that 
phenocopy the paqr-2 mutant, hoping 
that they will be more directly informative 
about the point of contact between paqr-2 
and its downstream pathway. We are pur-
suing both avenues.
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