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Abstract

Food allergies represent an increasingly prevalent human health problem and therapeutic options

remain limited, with avoidance being mainstay despite its adverse effects on quality of life. A

better understanding of the key immunological mechanisms involved in such responses will likely

be vital for development of new therapies.

This review outlines the current understanding of how the immune system is thought to contribute

to prevention or development of food allergies. Drawing from animal studies as well as clinical

data when available, the importance of oral tolerance in sustaining immunological non-

responsiveness to food antigens, our current understanding of why oral tolerance may fail and

sensitization may occur, as well as the knowledge of pathways that may lead to anaphylaxis and

food allergy–associated responses are addressed.

Introduction

Within the clinical realm of allergy, food allergy is receiving an increasing amount of

attention, mirroring its increasing prevalence both nationally and internationally. Current

estimates put food allergy as affecting up to 15 million people within the United States (1).

Therapeutically, these patients are dependent on a difficult avoidance approach with

injectable epinephrine as a life-saving option in case of accidental exposure. This has been

shown to significantly affect quality of life (2), and recent advances in understanding the

mechanisms behind food allergy have been fueled by the desire to develop improved

therapies.

In considering such mechanisms, we propose to focus on three processes that may be

important: oral tolerance, sensitization to food allergens, and anaphylactic reactivity to these

food allergens. Finally, an emerging concept of “non-responsive tolerance”, where

anaphylactic reactivity does not occur or is lost despite evidence for IgE-associated

sensitization will be highlighted.
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1. Oral Tolerance

Oral tolerance to egg proteins was first described over 100 years ago (3). This natural

phenomenon, where ingested food proteins do not elicit a specific immune response, is also

observed in humans (4), but the necessary mechanisms still remain unclear. Despite

gastrointestinal enzymes degrading food and the physical barrier of the intestinal mucosa,

immune surveillance of food antigens and establishment of tolerance mechanisms are clearly

occurring. Several reviews have addressed possible routes of antigen sampling and

presentation (5-7), including sampling by dendritic cells (DCs) across the epithelial layer;

presentation by M cells or goblet cells to DCs; or soluble antigen directly traversing the

epithelium through paracellular or transcellular routes.

Key cells seem important for oral tolerance and the maintenance of regulatory (FoxP3+) T

cell (Treg) populations. CD11c-CD11b+F4/80+ macrophages exhibit an anti-inflammatory

gene signature and produce IL-10 (8). Additionally, two distinct subsets of tolerance-

associated CD11c+ cells reside in the intestinal lamina propria, expressing either CX3CR1 or

CD103 (9). CX3CR1 KO mice show diminished IL-10 production and Treg populations as

well as a lack of oral tolerance in a food allergy model (10). In contrast, CX3CR1+CD103-

cells have been implicated in intestinal inflammation (11).

Most evidence supports the role of CX3CR1-CD103+ DCs in tolerance. These cells exhibit

lymph-node homing where they activate naïve T cells (9, 12) and promote a FoxP3+ Treg

phenotype, a process requiring both transforming growth factor-beta (TGF-β) and retinoic

acid (13-15). Retinoic acid imprints the gut-homing receptors CCR9 and α4β7 onto both

Tregs (16) and IgA-secreting B cells (17), an event that also seems to contribute to oral

tolerance (16). CD103+ DCs also utilize indoleamine 2,3-dioxygenase (IDO) for tolerance,

and loss of IDO function drives T cells towards a Th1 or Th17 phenotype, limiting Tregs

and oral tolerance (18). Recent findings also show that MUC2, a mucin secreted by

intestinal goblet cells, supports the anti-inflammatory potential of these CD103+ DC cells

(19).

IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) patients with

mutations in the FoxP3 locus (20) develop severe food allergy as well as a plethora of other

disorders, including autoimmunity, enteropathy, and atopic dermatitis (21), indicating the

importance of Tregs in tolerance. FoxP3-mutant mice (scurfy) and DEREG mice, in which

Tregs can be deleted upon diphtheria toxin treatment, have also been used to demonstrate

the importance of Tregs in allergic responses (22, 23). Expression of CCR9 and α4β7 on

Tregs are necessary for tolerance, since these molecules support gut homing (10, 16). While

previous reviews have summarized the effects of antigen concentration in oral tolerance (5,

6) (i.e., low doses drive Tregs, while high doses yield anergy and deletion of T cells (24)),

most evidence points towards Treg-associated low-dose tolerance as being critical in food

allergy. We previously showed that loss of oral tolerance to peanut was associated with

diminished Treg responses but also that high-dose antigen feeding could overcome allergic

responses (25).
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2. Sensitization

In food allergy, the immune response is clearly biased towards a Type 2 cytokine–associated

phenotype. Why specific food antigens trigger this response remains unclear, although some

food antigens possess the potential to stimulate innate immune responses. For example, the

peanut allergen Ara h1 binds to CD209 on DCs (26), while milk sphingomyelin activates

Type 2 cytokine responses from iNKT cells (27).

Changes in microbial flora have been associated with allergic sensitization, with several

lines of evidence supporting protection by specific bacteria and their products, likely

through sustaining intestinal Treg populations (Reviewed by Berin and Sampson (28)). Mice

with decreased commensal bacteria colonies, which includes either germ-free or antibiotic-

treated mice, exhibit increased food-allergen sensitivity (29), high serum IgE, and increased

circulating basophils (30). Interestingly, mice with enhanced signaling through IL-4Rα who

display profound allergic sensitization and anaphylaxis to food antigens (31) also exhibit an

altered microbiota that can be normalized by Treg transfer (32). Consequently, the

interaction of host immunity and commensal microbiota seems bidirectional, with host

immune responses not just responding to bacterial presence but also shaping the bacterial

flora towards that associated with pathology.

The critical mechanisms responsible for allergic sensitization are beginning to be elucidated.

Generally in allergy, epithelial production of TSLP, IL-25, and IL-33 has become a key area

of interest (33). However, a recent study of these cytokines using a cholera-toxin–driven oral

peanut model showed that only IL-33 was required for sensitization (34). IL-33 can increase

mucosal permeability (35) and promote Th2 skewing by DCs (36). Interestingly, while

constitutive IL-33 expression occurs in epithelial cells, increasing evidence supports the

potential for inducible expression by several immune cells, including DCs, that is sufficient

for subsequent Th2 immunity, as has been shown in helminth infection and for IgG immune

complexes (37, 38). However, the key producer of IL-33 in food allergy remains to be

determined.

At the level of antigen presentation, several mechanisms that may participate in tipping the

balance from tolerance to sensitization have been described. Binding of OX40 ligand to

OX40, TIM4 to TIM1, and jagged to notch on DCs and naïve T cells, respectively, can

regulate T cell differentiation from Treg towards Th2, as previously reviewed (39).

Environmental interactions may drive this differentiation; for example, Staphylococcal

enterotoxin B (SEB) can break tolerance and promote food allergy (25, 40), and has been

shown mechanistically to induce TIM4 expression on DCs that is necessary for Th2 skewing

(40). Th2-associated responses can also occur if Tregs are deleted (10), or become

dysfunctional, as induced by SEB (41). In contrast, some innate signals may also protect

against sensitization, since TLR9-/- mice have impaired IgE and IgA responses, resulting in

reduced anaphylaxis to peanut (42).

Intestinal penetrance by allergens may also enhance allergic sensitization (43). On intestinal

epithelial cells, IL-4 can induce upregulation of the low-affinity IgE receptor, CD23, which

binds antigen-specific IgE and facilitates antigen uptake (44). This potential mechanism may

explain why large or low-solubility antigens traverse the epithelium and elicit systemic
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responses (45). Similarly, alterations in tight-junction integrity may allow antigen

penetrance. For example, deficiency in the desmosomal intercellular adhesion molecule

desmoglein-1 has been shown to elicit profound allergic responses (46), while its expression

is reduced in tissues of patients with Eosinophilic Esophagitis (47).

Recent interest has also focused on the skin as a potential route for sensitization, since food

allergy often associates with eczema in patients (1). Barrier integrity may also be important

here, since filaggrin-deficient mice, which exhibit weak epithelial barrier function, become

sensitized to proteins on the skin (48), and epicutaneous sensitization is sufficient to

promote anaphylaxis upon oral challenge (49). While very few studies have defined specific

genes associated with food allergy, it is interesting to note that mutations in desmoglein-1

(47) and filaggrin (50) as well as in TSLP (51) have been shown to be associated with food

allergy or Eosinophilic Esophagitis in human cohorts, since these molecules all regulate skin

homeostasis. However, it is unclear if these associations relate to food allergy or eczema,

since these diseases are often coincident in children, and the number of genes associated

with food allergy alone remains relatively limited (52).

3. Reactivity

The mechanisms of anaphylaxis––the hallmark of food-allergy reactivity––are generally

biphasic: an acute reaction occurs immediately after allergen exposure, followed by a late-

phase reaction several hours later. Symptoms occurring during the acute reaction are due to

release of pre-formed mediators, while the late-phase response involves influx of

inflammatory cells. Clinically, heterogeneity in responses is observed, with some patients

experiencing either the acute or late-phase reaction, and others experiencing both the acute

and late-phase reactions (53). In addition to clinical heterogeneity, anaphylactic responses

can be elicited through multiple mechanisms.

Antibodies in Anaphylaxis—First shown in 1997 by Miyajima and colleagues (54),

both IgE and IgG can play a role in anaphylaxis in the mouse. IgE functions via its high-

affinity receptor, FcεRI, which is highly expressed on mast cells and basophils (55).

FcεRI-/- mice do not respond in a passive IgE-mediated systemic anaphylaxis model (56)

and have reduced responses in models of allergic diarrhea and food allergy (57-59). IgG has

several receptors: the high-affinity FcγRI and FcγRIV, and the low-affinity FcγRIIB and

FcγRIII. These receptors are all expressed on several cell types involved in anaphylaxis,

including mast cells, basophils, neutrophils, and macrophages. Using a model of systemic

anaphylaxis, Strait et al. showed that inhibition of FcγRII/III abolished temperature drops

associated with shock in IgG-, but not IgE-, mediated anaphylaxis (56). Similarly, Jönsson et

al. used knockout mice to show that FcγRIV is necessary for systemic anaphylaxis (60).

While these pathways have been differentially defined using these passive models, both

antibodies appear to participate in active food allergy: Arias et al. showed that IgE-/- and

IgG1
-/- mice were only partially protected from peanut-induced anaphylaxis, but blockade of

IgG1 in IgE-/- mice completely abolished the response (61); similarly, FcRγ-/- mice, which

lack the common chain for both the IgE and IgG receptors, were protected (62). Importantly,

recent studies using humanized mice have supported the potential anaphylactic functions of

IgG via human receptors (63).
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Mediators of Anaphylaxis—Histamine, platelet-activating factor (PAF), and 5-

hydroxytryptamine (5-HT, serotonin) are all sufficient to induce early-phase anaphylaxis

(64, 65). Several groups have also looked at the necessity for each of these mediators in

anaphylaxis, and there appears to be heterogeneity here also.

Histamine, produced from both mast cells and basophils, is a well-established mediator

necessary for anaphylaxis (56, 66). In IgE-mediated systemic anaphylaxis, histamine

synthesis as well as histamine H1 and H2 receptors are necessary for responses (66, 67), and

blockade of these receptors is therapeutically beneficial in patients with acute allergic

reactions (68).

Additionally, PAF and 5-HT have been shown to contribute to anaphylaxis (56, 58, 61-63).

Several inflammatory cells make PAF, including macrophages/monocytes, mast cells,

basophils, neutrophils, and platelets. While associated with platelet activation, PAF also

influences vascular permeability, leukocyte recruitment, and leukocyte activation (69).

Studies using models of allergic diarrhea, food allergy, or systemic anaphylaxis models have

shown that responses may be due to either PAF and histamine (56, 61), or PAF and 5-HT

(58, 63).

While other mast cell– and basophil-derived mediators have been implicated in food allergy,

their role is less defined. These include other pre-formed mediators (e.g., tryptase, chymase,

and heparin), lipid mediators (e.g., PGD2, LTC4, LTD4, and LTE4 (70)), and several

cytokines. IgE activation of mast cells has the potential to generate several cytokines that

have been shown to direct late-phase inflammation, including release of preformed TNF and

synthesis of IL-33 (71, 72). TNF has been shown to be necessary for late-phase recruitment

of neutrophils (71) as well as for a late-phase increase of PAF in the serum (73). The IL-33

receptor, ST2, is necessary for IgE-triggered tissue inflammation (72). IL-33 does not

directly cause mast cell degranulation (74), but promotes expression of several cytokines

and chemokines, including IL-6 and IL-13, from mast cells, as well as eosinophils (72, 75).

Similarly, IL-9 can both stimulate and be produced by mast cells (76). IL-9 has been shown

to be critical for the initiation and severity of food-associated anaphylaxis by promoting

intestinal mastocytosis (77, 78).

Pathways of Anaphylaxis and Food Allergy—Largely from murine studies of passive

sensitization models, mast cells, basophils, macrophages, and neutrophils have been shown

to contribute to anaphylactic shock responses. Four distinct pathways of response seem to be

possible—a “classic” pathway involving IgE, FcεRI, mast cells, and histamine; an

“alternative” pathway mediated by IgG1, FcγRIII, macrophages, and PAF (79); an IgG-

basophil-PAF pathway (80); and an IgG-neutrophil-PAF pathway via FcγRIV activation

(60).

In active sensitization models, IgE, FcεRI, and mast cells are responsible for inducing

allergic diarrhea (58, 59). While both allergen-specific IgE and IgG antibodies are increased

by sensitization, only FcεRI (58, 59), and not FcγRII/III (58), is required. Interestingly, the

diarrhea response seems to be mediated by a combination of PAF and 5-HT. In contrast, the

mast cell responses that are key in anaphylactic food allergy models (with contributions
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from macrophages and basophils) occur via IgE- and IgG-dependent mechanisms requiring

both histamine and PAF (57, 61, 81). Recently, the necessity for basophils in peanut

anaphylaxis was also defined (82). Interestingly, the pathways to systemic anaphylaxis

models may relate to the antigen dose required to trigger each mechanism, since small doses

activate the classical pathway and large doses activate the alternative pathway (56).

4. Non-responsive Tolerance

Clinical studies have shown that the incidence of food allergen–specific IgE is ten times

greater than the incidence of food allergy (83), suggesting an additional level of tolerance

regulation above that of simply preventing immunological priming towards Th2 and IgE.

Furthermore, in patients with Stat3 mutations leading to hyper-IgE syndrome, anaphylactic

reactivity to food allergens is actually diminished (84). Recent work has shown that Tregs

can suppress IgE-primed mast cell degranulation to antigen exposure via OX40/OX40

ligand interactions (85). In food allergy, we demonstrated that Treg transfer could suppress

anaphylaxis and restore intestinal Th17 homeostasis by enhancing mast cell–derived IL-6

(41). Interestingly, this cytokine-mediated process was OX40-independent and instead

mediated via TGF-β (41). Additionally, Tregs can downregulate FcεRI on mast cells in

vitro (86). This emerging form of active tolerance––occurring despite the presence of an

antigen-specific IgE–primed immune system––seems distinct from antigen desensitization,

which is associated with internalization of FcεRI and IgE and altered Syk activation (87,

88).

Conclusions

Immunologically, food allergy is a disease with much left to determine. The mechanisms of

tolerance, both in terms of what prevents most people from developing responses as well as

why some individuals outgrow or never develop food allergies despite sensitization, remain

unclear. Similarly, the environmental and genetic influences over sensitization are just

becoming understood. Importantly, studies from animal models are showing that the

mechanisms of anaphylactic reactions may well be heterogeneous in terms of routes of

exposure, cell types involved, and the mediators responsible for symptoms. A better

understanding of this heterogeneity will be crucial in developing future therapies.
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Figure 1.
Within the intestine, unique populations of cells that include macrophages, CX3CR1+ APCs,

or CD103+ dendritic cells (DCs) ensure maintenance of tolerance through driving

development of IL-10–producing regulatory T cells (Treg) and IgA-secreting B cells.

Critical signals for tolerance are provided by retinoic acid (RA), indoleamine 2, 3-

dioxygenase (IDO), and TGF-β. Perturbation in these cells or mediators, through largely

unknown signals, breaks tolerance and promotes allergic sensitization characterized by

dominant Th2-biased responses and class-switching towards IgG and IgE. Evidence

supports the roles for tissue-derived cytokines, particularly IL-33, in supporting these

events, perhaps via activation of innate lymphoid cells (ILCs). Initiating signals for

sensitization include intrinsic activities of food components on innate cells, such as NKT

cells, and exposure to bacterial toxins, such as SEB. The intestinal microbiota may also

influence the balance between tolerance and sensitization. Additionally, defective barrier

functions at either the skin or intestine have been shown to facilitate sensitization to food

allergens.
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Figure 2.
Multiple pathways of anaphylaxis exist, mediated by either IgE or IgG and their respective

Fc receptors. Within tissues, mast cell activation via IgE and FcεRI initiate early-phase

responses mediated by histamine and PAF; this activation is actively regulated by Treg

interactions. Macrophage activation by IgG may also represent an alternative pathway to

PAF responses. Within the blood, neutrophil and basophil activation by either IgG or IgE

presents additional pathways to generate these mediators if antigen becomes accessible.

Kinetically slower, the release of preformed cytokines (TNF) or cytokines that are

synthesized and then released (IL-33, IL-9) support localized tissue inflammation.
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