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Diffusion tensor imaging (DTI) has been used to evaluate white matter (WM) integrity in major depressive disorder (MDD), with several

studies reporting differences between depressed patients and controls. However, these findings are variable and taken from relatively

small studies often using suboptimal analytic approaches. The presented DTI study examined WM integrity in large samples of

medication-free MDD patients (n¼ 134) and healthy controls (n¼ 54) using voxel-based morphometry (VBM) and tract-based spatial

statistics (TBSS) approaches, and rigorous statistical thresholds. Compared with health control subjects, MDD patients show no

significant differences in fractional anisotropy, radial diffusivity, mean diffusivity, and axonal diffusivity with either the VBM or the TBSS

approach. Our findings suggest that disrupted WM integrity does not have a major role in the neurobiology of MDD in this relatively

large study using optimal imaging acquisition and analysis; however, this does not eliminate the possibility that certain patient subgroups

show WM disruption associated with depression.
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INTRODUCTION

Major depressive disorder (MDD) is highly prevalent and a
leading cause of worldwide disability (McKenna et al, 2005).
Despite decades of research, the neurobiology of MDD
remains poorly understood. MDD is increasingly viewed as
a disorder of neural circuitry, in which a network of brain
regions involved in mood regulation is dysfunctional
(Drevets et al, 2008a; Mayberg, 2009). In an effort to better
understand the pathophysiology of MDD and develop
more effective treatments, much research has focused
on delineating the structure and function of this mood
regulation network. Although many studies have focused
on the function of the network (Drevets et al, 2008b;
Hafeman et al, 2012; Mayberg, 2003a, b; Murray et al, 2011;
Phillips, 2006), including functional connectivity between

key brain regions (Craddock et al, 2009, 2012; Greicius,
2008, 2007; James et al, 2009; Seminowicz et al, 2004;
Sheline et al, 2010), others have focused on the struc-
tural connectivity of the network, ie, the white matter
(WM) pathways between brain regions (Abe et al, 2010;
Blood et al, 2010; Cole et al, 2012; Cullen et al, 2010;
Kieseppa et al, 2010; Korgaonkar et al, 2011; Ma et al, 2007;
Tha et al, 2013; Wu et al, 2011; Zhu et al, 2011; Zou et al,
2008).

Diffusion tensor imaging (DTI) is a noninvasive, mag-
netic resonance imaging (MRI) technique used to assess the
integrity and fiber orientation of WM. Diffusion measure-
ments reflect the degree of diffusion directionality because
diffusion perpendicular to main fiber direction is more
hindered by myelin layers and cell membranes than
diffusion along the main direction (Le Bihan et al, 2001;
Pierpaoli and Basser, 1996). The most commonly used
diffusion measurement is fractional anisotropy (FA). In
addition to FA, mean diffusivity (MD), radial diffusivity
(RD), and axial diffusivity are frequently used for diffusion
measurements. MD reflects the total magnitude of diffusion
and higher MD has been reported with increased tissue
water in edema. RD appears to be modulated by myelin in
WM, whereas axial diffusivity is more specific to axonal
degeneration (Song et al, 2002).
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Regions of interest (ROIs) and voxel-based analyses have
been commonly used to analyze differences in DTI data
between groups or within subjects over time. ROI-based
analyses have the advantage of being hypothesis directed
and less statistically constrained by control for multiple
comparisons. However, ROI analyses can be biased because
of manual and non-standardized selection of ROIs, and the
analyses limited to ROIs cannot identify any differences
outside of the chosen ROIs. Voxel-based methods have the
advantage of allowing whole-brain analyses and can be fully
automated. This eliminates investigator bias (eg, from
manual ROI selection).

Two common voxel-based approaches for DTI analyses
include voxel-based morphometry (VBM) and track-based
spatial statistics (TBSS). VBM of DTI data is a fully
automated method that allows investigation of WM
integrity in the whole brain, at each voxel (Ashburner and
Friston, 2000; Good et al, 2001). TBSS is a newer analytic
technique developed to reduce the alignment and smooth-
ing problems that have been reported with VBM (Smith
et al, 2006, 2007). Both approaches have been used to assess
for differences in WM integrity in a variety of psychiatric
disorders including MDD (Bae et al, 2006; Li et al, 2009; Xie
et al, 2006).

Numerous DTI studies have looked for WM integrity
differences in patients with MDD (Abe et al, 2010; Blood
et al, 2010; Cole et al, 2012; Cullen et al, 2010; Kieseppa
et al, 2010; Korgaonkar et al, 2011; Ma et al, 2007; Tha et al,
2013; Wu et al, 2011; Zhu et al, 2011; Zou et al, 2008).
However, the findings have been highly variable with respect
to the location and direction of the difference in FA (Table 1).
Six studies report a reduction of FA (in various regions) in
MDD patients compared with healthy controls (HCs), whereas
another five studies show either an increase or no difference
in FA between the groups. The source of this heterogeneity is
unclear, but may reflect clinical heterogeneity of different
patient cohorts, small samples (and publication bias), and/or
the use of suboptimal acquisition/analytic methods. Regard-
ing the last possibility, interpretation and analysis of DTI data
may be complicated by a small number of diffusion-weighted
directions (more directions yield higher integrity data),
anisotropic voxel size, and susceptibility distortion.

In an effort to provide a more definitive analysis of
potential WM abnormalities in depressed patients, DTI was
performed as part of two large, similarly designed studies
on depressed patients and in a group of HCs, all scanned
using a common protocol (Dunlop et al, 2012a, b). Using
optimized processing methods, VBM and TBSS were
performed on these data to assess for differences in FA
between the groups. A strict threshold for statistical
significance was applied.

MATERIALS AND METHODS

Participants

Fifty-four HCs and one hundred and thirty-four MDD
patients participated in accordance with Institutional
Review Board policies at Emory University. All patients
were participants in one of two clinical trials designed to
identify treatment-specific imaging biomarkers of treatment
outcomes. One trial selected for MDD patients who had

never received antidepressant treatment during their life-
time (N¼ 98: Dunlop et al, 2012a). The other trial enrolled
patients who had prior antidepressant treatment but were
medication free for at least 2 weeks before the scanning
(N¼ 36; Dunlop et al, 2012b; McGrath et al, 2013). All
participants, including HC, were evaluated for current or
past psychiatric disorders using the Structured Clinical
Interview for DSM-IV (First et al, 1995) and an interview
with a study psychiatrist. HCs were required to have no
current or past diagnosis of a mood or psychotic disorder,
and no current psychiatric diagnosis other than specific
phobia. Current or past medical or neurological disorders
were evaluated via medical history, vital signs assessment,
physical exam, electrocardiogram, and routine laboratory
screening tests, including urine drug screens. Participants
with uncontrolled medical conditions (including hyperten-
sion or diabetes) or medical or neurological conditions that
could interfere with the conduct of the study or interpreta-
tion of the study results were excluded, as were those with
contraindication to MRI or currently pregnant or breast-
feeding women. Eligible depressed patients were adults
between 18 and 65 years of age who met criteria for a
primary diagnosis of MDD without psychotic features.
Patients were excluded if they met lifetime criteria for a
lifetime diagnosis of psychotic disorder or bipolar disorder,
current obsessive compulsive disorder, substance depen-
dence in the past year, or substance abuse in the past 3
months. Depressed patients were required to have a
minimum Hamilton Depression Rating Scale (HDRS) 17-
item score of X18 at the screening visit to be eligible for the
study. Table 2 shows the demographic information and
clinical characteristics of all participants.

Data Acquisition

Data were acquired on a 3T Tim Trio MRI scanner (Siemens
Medical Solutions, Malvern, PA, USA) that permits max-
imum gradient amplitudes of 40 mT/m. A 12-channel head
array coil was used. DTI and T1-weighted data were
collected within a single session for each subject and foam
cushions were used to minimize head motion. A single-shot
spin-echo echo-planar imaging sequence was used with
generalized auto-calibrating parallel acquisition with two-
fold acceleration (R¼ 2; Griswold et al, 2002). The
parameters used for DTI were: FOV¼ 256� 256; b value¼
1000 s/mm2; voxel resolution¼ 2� 2� 2 mm; number of
slices¼ 64; matrix¼ 128� 128; TR/TE¼ 11 300/104 ms; 60
non-collinear directions with four non-diffusion-weighted
images (b¼ 0) were acquired twice: once with phase
encoding in the anterior to posterior (A-P) direction and
once in the posterior to anterior (P-A) direction.
To compensate susceptibility distortion, both phase up
and down images were acquired. In addition to suscept-
ibility distortion correction, we used slightly longer TR and
TE than a typical diffusion protocol because of mechanical
vibration of the patient table that caused by the low-
frequency gradient switching associated with the diffusion
weighting. High-resolution T1 images were collected using a
3D magnetization-prepared rapid gradient-echo sequence
with following parameters: TR/TI/TE¼ 2600/1100/3 ms;
voxel resolution¼ 1� 1� 1 mm; number of slices¼ 176;
matrix¼ 224� 256.
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Table 1 Summary of Diffusion Tensor Imaging Studies in Patients with Major Depressive Disorder using Corrected Whole-Brain Analysis

Participants Imaging parameters Findings after rigorous threshold

Healthy control MDD

Study n Age
(mean
(SD))

Gender
(M/F)

n Age (mean
(SD))

Gender
(M/F)

Magnet
strength

DTI
resolution

(mm)

Number
of

diffusion
direction

Number
of average

Data
processing

Analysis
method

Reduction Increase

Tha et al
(2013)

19 36.5 (12.5) 13/6 19 38.6 (14.5) 12/7 1.5T 1.875 * 1.875 *
5

12 2 No distortion
correction
Study-specific template
SPM

VBM Bilateral frontal WM
Anterior limbs of internal
capsule
Let putamen
Right thalamus
Bilateral cerebellar
hemispheres

Cole et al
(2012)

66 50.4 (7.9) 23/43 66 48.6 (8.2) 30/36 1.5T 2.5 * 2.5 * 2.5 60 1 No distortion
correction
JHU DTI template
FSL

TBSS
ROI regions

Splenium
Genu and body of corpus
callosum
Bilateral superior
longitudinal fassiculus
anterior and posterior
corona radiata
Anterior and posterior
limbs of internal capsule

Zhu et al
(2011)

25 20.33
(1.68)

10/15 25 20.55 (1.86) 10/15 1.5T 2 * 2 * 4 12 1 No distortion
correction
MNI template
FSL

TBSS Left anterior limb of
internal capsule
Right parahippocampa
gyrus
Left posterior cingulate
cortex

Wu et al
(2011)

21 30.4 (8.2) 9/12 23 31.4 (8.8) 10/13 1.5T 0.94 * 0.94 * 4 12 5 No distortion
correction
MNI template
DTIStudio and SPM

VBM Right superior longitudinal
fassiculus
Right middle frontal
Left inferior parietal

Korgaon-
kar et al
(2011)

39 29.6 (46.2) 18/21 29 40.5 (15.8) 12/17 3.0T 1.72 * 1.72 *
2.5

42 1 No distortion
correction
MNI template
FSL

TBSS No difference between
MDD vs controls
Reduction between
meloncholic and controls
in corpus callosum,
dosalateral prefontal,
thalamic projection fiber
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Table 1 (Continued)

Participants Imaging parameters Findings after rigorous threshold

Healthy control MDD

Study n Age
(mean
(SD))

Gender
(M/F)

n Age (mean
(SD))

Gender
(M/F)

Magnet
strength

DTI
resolution

(mm)

Number
of

diffusion
direction

Number
of average

Data
processing

Analysis
method

Reduction Increase

Abe et al
(2010)

42 48 (13.2) 22/20 21 48.1 (13.5) 11/10 1.5T 1.875 * 1.875 *
5

6 4 Image-based distorion
correction
Study-specific template
FSL

VBM No difference

Kieseppa
et al
(2010)

20 42 (11.6) 10/10 16 48.4 (10.3) 2/14 1.5T 1.75 * 1.75 * 5 12 1 No distortion
correction
MNI template
FSL

TBSS No difference

Cullen
et al
(2010)

14 16.81 (1.5) 6/8 14 16.79 (1.29) 4/10 3.0T 2 * 2 * 2 30 1 Field map distortion
correction
Study-specific template
FSL

TBSS No difference

Blood
et al
(2010)

22 35.3 (11.6) 10/12 22 36.3 (12.1) 10/12 3.0T 2 * 2 * 2 6 6 No distortion
correction
MNI template
FSL and Freesurfer

ROI regions Dosallateral prefrontal
cortex
Left precentral gyrus

Ventral tefmental
area
Substantia nigra
Right calcarine
cortex

Zou et al
(2008)

45 31 (10.3) 15/30 45 33.2 (8.9) 15/30 3.0T 1.875 * 1.875 *
3

14 2 No distortion
correction
MNI template
DTIStudio and SPM

VBM Left anterior limb of
internal capsule
Left superior longitudinal
fasciculus

Ma et al
(2007)

14 27.1 (6.7) 2/12 14 28.9 (8) 2/12 1.5T 1.875 * 1.875 *
4

12 5 No distortion
correction
MNI template
SPM

VBM Right middle frontal gyrus
Left lateral
occipitotempolar gyrus
Subgyral WM of the right
parietal lobe
Right angular gyrus
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Data Preprocessing

MRI data were preprocessed using FSL software (http://
www.fmrib.ox.ac.uk/fsl; Analysis Group, FMRIB, Oxford,
UK; Smith et al, 2004). Non-brain regions of T1 and
diffusion-weighted data (both A-P and P-A) were removed
using the BET toolbox. To estimate and correct suscept-
ibility-induced distortion of the diffusion-weighted images,
a phase reversal distortion correction method (also called
Topup correction tool in FSL) was applied on obtained A-P
and P-A diffusion data (Andersson et al, 2003). This phase
reversal distortion correction method assumes that different
phase-encoding diffusion images are caused by an identical
magnitude of susceptibility distortion in the phase-encoding
direction, and can be resolved by estimating the underlying
magnetic field map. By combining the images acquired in
opposite phase-encoding directions, the distortion can then
be corrected. To help confirm correction, deterministic and
probabilistic tractography results of well-known brain WM
bundles are inspected for evidence of distortion.

FA, RD, MD, and axonal diffusivity maps were generated
from phase-reversal distortion-corrected diffusion-weighted
data. To improve the signal-to-noise ratio of diffusion
tensor fitting, four non-diffusion-weighted images (b0) are
averaged after three of them are aligned to one reference
image by affine transformation. Diffusion-weighted image
data were aligned to averaged non-diffusion-weighted
image by rigid body affine transformation to remove
motion and eddy current-induced artifact (Jenkinson
et al, 2002). Diffusion tensor, eigenvector, and eigenvalue
were then calculated by a tensor fitting model for
quantification of directional diffusion and FA (Fdt function
within FSL toolbox, Oxford, UK; Behrens et al, 2003).

Study-Specific FA Template

A study-specific FA template was created using all 188
subjects (MDD and control groups combined). First, each
subject’s FA image was transformed to a standard FA
template (FMRIB58_FA, http://www.fmrib.ox.ac.uk/fsl/data/
FMRIB58_FA.html) using rigid body affine transformation

(degree of freedom: 6, FLIRT, FSL) followed by Gaussian
smoothing with 3 mm full-width half-maximum (FWHM)
and then averaged across subjects to create the initial study-
specific FA template. A second FA template was created by
performing a similar process, but using linear co-registra-
tion (degree of freedom: 12) to the first FA template map,
followed by blurring with a 3-mm FWHM Gaussian kernel.
The final template was created by averaging across subjects.
This process was iterated six times using nonlinear image
registration (FNIRT, FSL). Results were visually inspected
after each iteration for quality control (Supplementary
Figure S1). For analyses, each subject’s FA map was co-
registered to the study-specific template map by performing
a linear (FLIRT, dof 12) transformation followed by a
nonlinear (FNIRT) transformation. Individual subject FA
transformation information to study-specific FA template
was saved and used for the other measurement (RD, MD,
axonal diffusivity) normalization.

DTI Data Analysis

For statistical analysis, a permutation-based statistical
inference test with threshold-free cluster enhancement
(TFCE), using neighborhood voxel information to improve
statistical sensitivity. For multiple comparisons, a family-
wise error (FWE) correction (corrected po0.05, 10 000
permutations) was used with estimation of cluster size
(TFCE-FWE correction and randomize functions within
FSL; Bullmore et al, 1999).

VBM

The normalized FA, RD, MD, and axonal diffusivity map for
each subject was smoothed using a 5-mm FWHM Gaussian
isotropic kernel to remove possible error caused by
anatomical mismatching of like-brain regions.

TBSS

TBSS was performed using the same FA maps as used for
the VBM analyses. For TBSS, the aligned FA maps were

Table 2 Demographic and Clinical Characteristics of Participants

Healthy control (n¼ 54) MDD (All n¼134 matched n¼54) Statistics

F or v2 df p

All participants

Age (years) 34.42 (10.06) 38.49 (11.09) 0.6 186 0.4

Gender (males/females) 28/26 64 70 0.25 1 0.6

HDRS score 19.28 (3.47)

Duration of illness (years) 9.34 (10.38)

Age and gender matched

Age (years) 34.42 (10.06) 34.41 (8.9) 2.19 106 0.7

Gender (males/females) 28/26 28/26 0 1 1

HDRS score 18.74 (3.33)

Duration of illness (years) 7.77 (8.41)
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averaged to create a mean FA map. This mean FA map was
then thinned to create a mean FA skeleton representing
centers of tracts common to all subjects. FA values less than
0.2 were judged as noise and eliminated to reduce potential
confounds introduced by inter-subject variability and
partial volume effects (Smith et al, 2006; Smith et al,
2007). The aligned and threshold FA map of each subject
was projected onto the mean FA skeleton for the voxel-wise
statistical analysis. The same processing steps were applied
to RD, MD, and axonal diffusivity.

Voxel-Wise FA Analysis with MDDs and HCs

Voxel-wise cross-participant statistics were performed on
both VBM and TBSS (skelectonized) analysis using TFCE-
FWE. Age was used as a covariate and statistical results were
adjusted using general linear models. We performed three
sets of FA (MD, RD, axonal diffusivity) comparisons: (1)
between all 54 HCs and 134 MDD patients; (2) between 98
MDD patients who had never received antidepressant treat-
ment and 36 MDD patients who had previously received
antidepressant treatment; and (3) between an age- and
gender-matched subset (54 subjects per group) to account
for any potential effects because of minor mean age and
gender differences among the HCs and MDD patient group
(Table 2). In a post-hoc analysis, 20 subjects from each
group were randomly selected and compared with both
VBM and TBSS analysis; this was iterated 100 times using
different subsamples—this post-hoc analysis was performed
to assess for the ‘false positive’ rate in our sample using
samples sizes similar to previous analyses.

RESULTS

Voxel-wise statistics adjusted for age revealed no significant
differences in FA, MD, RD, and axonal diffusivity between
MDD and HC group for either the VBM or the TBSS analysis.
With a gradual decrease in statistical threshold, significant
FA differences began appearing in genu of corpus callosum
with a p-value of 0.15 (TFCE-FWE corrected). In addition to
full-group comparisons, the voxel-wise statistical analysis
of both the never- and previously treated subsets, and the
age- and gender-matched control subset, also found no
FA differences for either analysis. Finally, there was no
correlation between WM integrity measures and depression
severity nor illness duration across the depressed sample.

With the 100 interactive FA analyses using 20 subjects/
group selected randomly for each comparison, statistically
significant FA differences were identified for 10 of the TBSS
comparisons and 8 of the VBM comparisons (po0.05
TFCE-FWE corrected). The brain regions seen in these ‘false
positive’ results included a spatially diverse set of WM
regions. Of note, the genu of the corpus callosum was seen
in 8 of the 10 ‘false positive’ TBSS results and 7 of 8 ‘false’
positive VBM results (Supplementary Figure S2).

DISCUSSION

Despite previous reports of FA abnormalities in depression,
this large DTI study found no significant differences in FA
(RD, MD, axial diffusivity) between MDD patients and

controls using either VBM or TBSS. This included analyses of
a subset of age- and gender-matched subjects. In an explora-
tory analysis, differences in FA between the groups were only
seen when the threshold was decreased to a relatively low
level—and, even then, the findings appeared ‘noisy’. Taken
together, these results suggest that disrupted WM integrity
does not have a major role in the neurobiology of MDD.

These findings are not entirely inconsistent with prior
DTI studies in MDD. When reviewed in toto (Table 1), it is
notable that previous studies differ significantly in which
brain regions show FA abnormalities. In our post-hoc analysis,
where a series of smaller, randomly selected subgroups of
patients and controls were compared, about 10% of compari-
sons showed ‘positive’ FA differences despite no differences in
the full sample. Similar to the studies in Table 1, the sub-
sample analyses showing FA differences varied considerably
in which regions were identified. Interestingly, a region consi-
stently identified as showing FA differences between MDD
patients and controls in our post-hoc analysis was the genu of
the corpus callosum—a region identified in the previously
published reports (Cole et al, 2012; Korgaonkar et al, 2011).
Given with the well-known prefrontal distortion in DTI
images, it is possible that this region is especially vulnerable
to false positive findings in DTI analyses (Wu et al, 2008).

There are several strengths of this study that increase
confidence in these findings. First, this is the largest publi-
shed DTI study to date comparing MDD patients and
controls; therefore, these findings likely represent a better
estimate, compared with smaller studies, of reliable differ-
ences in WM integrity between MDD patients and controls.
Second, a study-specific DTI template was created using
the full sample (n¼ 188) with an iterative normalization
method, so that errors due to co-registration were reduced.
Third, a phase reversal distortion correction was applied to
the diffusion-weighted images to reduce errors related to
well-known frontal distortion in DTI images because of the
sinuses (Huang et al, 2008; Wu et al, 2008). Very few of the
past published studies have used such a correction that is
now relatively standard. Fourth, we utilized the most up-to-
date analytic methods to reduce possible errors because of
diffusion imaging acquisition and statistical comparison.
For instance, four non-diffusion (b0) images were acquired
during each scan session, then manually averaged to improve
signal to noise ratio. Sixty non-collinear diffusion directions
and isotropic voxels were used to improve angular
resolution and data integrity (anisotropic voxels in diffu-
sion acquisition can affect tensor modeling and artificially
alter FA values (Oouchi et al, 2007)). Finally, well-establi-
shed diffusion analysis methods were used to calculate FA
value, and a rigorous statistical threshold was applied.

Other possibilities exist for why previous reports have
identified FA differences in MDD patients vs controls while
this study did not. Samples selection differences may be a
significant contributing factor, although subjects in this
study were carefully evaluated to insure they met diagnostic
eligibility criteria using structured diagnostic instruments
and rating scales; it is therefore unlikely that they differed
significantly from other MDD subjects enrolled in earlier
studies. It is possible that subgroups of MDD patients
(treatment-resistant, late-onset, early trauma exposure,
familial, etc.) may be more likely to have WM abnormal-
ities, although this awaits verification; there were not
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enough patients with these various subtypes of depression
in this sample to assess this. Notable in our analysis is that
those contrasts showing positive differences could not be
attributed to a randomization bias of the study source of
either the MDD patients or the control subjects. In general,
prior studies used acquisition and analytic methods that
were not optimal compared with current standards. This
could introduce bias into the analyses increasing the
likelihood of a type I error. Finally, we did not have full
data on smoking status and history of hypertension for all
subjects—therefore, we were not able to assess the effect of
these variables on WM integrity between the groups.
However, this would only affect our results in a notable
way if controls had much higher rates of smoking and/or
hypertension, which seems unlikely.

Although this study found no regional differences in FA
between MDD patients and controls, this does not argue
against the continued use of diffusion imaging to assess
WM in the study of MDD. Despite these negative findings in
MDD, diffusion imaging remains a powerful tool in the
study of neuropsychiatric disorders, particularly in light of
oligodendroglia abnormalities in postmortem studies
(Harrison, 2002; Ongur and Heckers, 2004; Rajkowska,
2003). As the field progresses, improved acquisition and
analytic techniques may allow for the identification of WM
abnormalities between groups that are too subtle for current
approaches to distinguish. Further, it may be that certain
subgroups of depressed patients are more likely to show
WM abnormalities, such as patients with extreme treatment
resistance or late-onset depression. In addition, it may be
that the pathophysiology of depression does not involve the
integrity of WM per sé, but rather abnormalities in the WM
connections between brain regions involved in mood
regulation. To this end, structural connectivity analyses,
eg, those using various tractography approaches based on
diffusion-weighted data, may be more likely to identify such
abnormalities (Hagmann et al, 2008; Sporns et al, 2005).
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