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Abstract

Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic

Causal Networks, has come to dominate psychological studies of inference based on causal

relationships. The following causal networks—[X→Y→Z, X←Y→Z, X→Y←Z]—supply answers

for questions like, “Suppose both X and Y occur, what is the probability Z occurs?” or “Suppose

you intervene and make Y occur, what is the probability Z occurs?” In this review, we provide a

tutorial for how normatively to calculate these inferences. Then, we systematically detail the

results of behavioral studies comparing human qualitative and quantitative judgments to the

normative calculations for many network structures and for several types of inferences on those

networks. Overall, when the normative calculations imply that an inference should increase,

judgments usually go up; when calculations imply a decrease, judgments usually go down.

However, two systematic deviations appear. First, people’s inferences violate the Markov

assumption. For example, when inferring Z from the structure X→Y→Z, people think that X is

relevant even when Y completely mediates the relationship between X and Z. Second, even when

people’s inferences are directionally consistent with the normative calculations, they are often not

as sensitive to the parameters and the structure of the network as they should be. We conclude

with a discussion of productive directions for future research.
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Introduction

Most human judgments under uncertainty involve reasoning about causal relationships. For

example, a physician tries to infer which disease is the most likely cause of a patient’s

symptoms (effects). Then, the physician intervenes to alleviate the symptoms by changing

the causal dynamics within the patient. Or a corn futures trader forecasts the price of corn by

considering the consequences of various possible economic and geopolitical events (e.g.,
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Will a change in China’s trade policy influence the value of corn in North America?). And,

more personally, one commits to an exercise and diet plan because one believes that the

program will produce specific health benefits.

However, until recently, the role of causal reasoning in judgments under uncertainty has

been neglected in psychological research. One reason for this neglect has been the lack of a

good normative model for the reasoning process that underlies even simple everyday causal

inferences, such as in the examples above. In the past ten years, there has been a paradigm

shift in behavioral research on causal inference. The shift has been driven by the

dissemination of the Bayesian Probabilistic Causal Network approach to modeling causality

(henceforth referred to as “causal networks”). This approach provides prescriptions for

rational calculations for inferences on causal networks. The approach has its roots in

theoretical papers by Pearl (1988, 2000), Lauritzen and Spiegelhalter (1988), and Spirtes,

Glymour, and Scheines (1993/2000) in mathematics and statistics. It has been

communicated to behavioral scientists in books by Glymour (2001) and Sloman (2005), as

well as papers by many other researchers (Danks, 2009; Gopnik, et al., 2004; Rehder &

Hastie, 2001; Steyvers, Tenenbaum, Wagenmakers, & Bloom, 2003; Waldmann, 1996;

Waldmann & Martignon, 1998).

Our focus here is on deliberate and partly conscious reasoning about causal beliefs. For

example, when our car fails to start one morning, we engage in a deliberate, partly

verbalizable sequence of inferences based on our beliefs about what is causing what within

the car and its immediate environment: Could something about the weather – recent rainfall

– have interfered with the normal sequence of events that occur after we turn the ignition

key? Or could the gas tank be empty, the battery be dead, a fuse blown, or a wire chewed

through by a squirrel? Here we start from a single fact or set of facts (the car won’t start and

it rained last night), and then reason within a system of beliefs (about how the car works) to

update our beliefs about the world (rain probably caused a short). Our focus here is not on

how we obtain knowledge about how the car works, but rather on how we make inferences

or judgments about the car given our knowledge of how the car works.

Introduction to Causal Networks

Throughout this article we will refer to a stylized example about farming represented in

Figure 1. Imagine a farmer who grows cantaloupes and tomatoes. Both cantaloupes and

tomatoes are damaged by an early frost (F); they are effects of a common cause. In addition,

the tomato harvest (T) is hurt by the tomato fruitworm (W); however, this pest does not

affect the cantaloupe harvest (C). Finally, if a farmer has a poor tomato harvest, then he or

she is likely to reap a small profit from the tomatoes (P).

The graph in Figure 1 conveys the structure of the causal relationships. The nodes represent

variables that can take on multiple values. For example, uppercase F represents whether

there was an early frost or not. Lowercase represents the state of the node; f=1 denotes that

there was an early frost, and f=0 denotes that there was not. The causal relationships are

represented by arrows (or “edges”) between the nodes.
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A fully realized causal network also contains parameters. “Base rate” parameters capture the

probability of exogenous nodes, P(F) and P(W), which do not have any explicitly

represented causes. “Strength” parameters model how likely each cause is to generate or

inhibit each of its effects. When multiple causes influence the same effect (such as F and W

on T), a function must be identified to describe how these causes combine to produce T.

Once we know the structure and parameters, the normative theory of graphical causal

models prescribes how one should infer the state of one variable given the state of another.

For example, suppose we learn that a farm had a tomato fruitworm infestation. We would

infer that the farm probably had a poor tomato harvest, but we would not rationally infer

anything about the cantaloupe harvest. This sort of inference is often called an inference

from an observation; we observe the state of one variable and then infer another. We will

also discuss inferences from interventions, when we manipulate the state of one variable and

then infer the state of another (e.g., if we spray the tomatoes with a pesticide to prevent a

fruitworm infestation and then infer the tomato harvest). We also consider reasoning about

counterfactuals such as “What would the profit from tomatoes have been had the tomato

fruitworm infestation not occurred?” All of these questions can be interpreted as inferences

on the causal network in Figure 1.

So, what makes a graph and parameters of this type a causal network, rather than merely a

“probability graph”? It is simply the interpretation of the graph. If the graph is defined as

representing causal relationships, then it’s a causal graph. However, certain conventions of

these networks convey a distinctly causal interpretation. These include (a) the interpretation

of arrows as indicating temporal ordering on the variables, (b) the assumption that

interventions on the value of one node will be propagated only “downstream” to future

states of other nodes, and (c) the presumption that counterfactual inferences can be made

about “what would have happened” if the states of nodes had been otherwise than what they

in fact were. In sum, the causal interpretation of these graphs comes from how they are used

and what they represent, not from the probability calculus itself.

Three steps of causal inference—To clarify our focus we distinguish three steps of

causal inference: (i) learning the structure of the causal network; (ii) learning the parameters;

and (iii) making a judgment about one node given our knowledge about the other nodes. Our

review focuses on making judgments. However, all of the behavioral experiments “teach”

the structure and parameters to the human research participants in some manner. Because

learning the structure and parameters conceptually precedes making judgments, we provide

a brief overview of these prior types of learning.

Learning the structure of a causal network (i.e., which variables cause which other variables)

often occurs through explicit teaching (e.g., in a biology class or reading The Economist)

and deducing plausible causal pathways based on mechanistic hypotheses (e.g., rain water

could have caused a short in the car ignition system). Additionally, much of the recent

research on “causal learning” has focused on how people learn causal structures from

experience (e.g., Gopnik et al., 2004; Lagnado & Sloman, 2004, 2006; Rottman & Keil,

2012; Steyvers et al., 2003; see Lagnado, Waldmann, Hagmayer, & Sloman, 2007, for a

summary). For example, a parent might form beliefs about how to raise a well-behaved child
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by observing correlations between children’s behaviors and the behaviors of those children’s

parents. Of course, it is notoriously difficult to learn causal relationships from correlations

alone. A second way to learn causal structures is from “interventions”: a parent might try

various child-rearing habits to see which one works best. Finally, people also learn causal

structures from a variety of temporal cues. For example, a mother might infer different

causal relationships if she notices that after her son has a restless night he misbehaves,

versus the observation that after he misbehaves he sleeps poorly.

It is still unclear how successful we are at learning causal structures from experience.

Furthermore, we often have beliefs about what causes what (e.g., rain might have caused an

ignition short in my car) and can make judgments and decisions (e.g., I’ll wait to see if the

short is fixed after the water dries) without having to learn the causal structure through some

form of statistical induction from experience.

The second step is learning the causal strengths, i.e., the degree to which a cause influences

each of its effects (see Hattori & Oaksford, 2007, for a summary of 41 potential models).

Studies investigating learning focus on scenarios when there are one or more possible causes

(A, B, C) of a single effect (E) and the goal is to learn the strengths of the alternate causes.

Often these experiments do not distinguish whether participants learned about whether the

link A→E exists versus the strength of the link A→E; thus experiments about “causal

strength learning” and “causal structure learning” as well as “multiple cue learning” and

even “covariation detection” can overlap.

Earlier literature on causal strength learning often focused on “irrational” inferences like

illusory correlation (e.g., Jenkins & Ward, 1965) and how strengths could be learned

through associative mechanisms (e.g., Dickinson, Shanks & Evenden; 1984). However, the

recent trend has been to focus on rational explanations for patterns in causal strength

learning such as conditioning on alternative causes (e.g., Waldmann, 1996; Waldmann &

Hagmayer, 2001; Spellmann, 1996), accounting for ceiling and floor effects (Cheng, 1997;

Novick & Cheng, 2004), understanding the interaction between whether a link exists and the

strength of the link (Griffiths & Tenenbaum, 2005), and incorporating prior beliefs about the

likely strength of potential causes (Lu et al., 2008).

Regarding the current review, most of the studies that focus on judgment have simply told

experimental participants the causal structure rather than having them learn it from

experience. Participants learned the parameters by observing correlations between causes

and effects or from textual descriptions or prior knowledge (sometimes participants did not

have any specific quantitative knowledge of the parameters). Thus, even in controlled

experiments there may be questions about participants’ beliefs about the causal system (we

attend to these issues on a study-by-study basis in this review). Overall, our focus is on

people’s judgments given their causal belief system.

Simplifications and Limitations of Causal Networks—It is important to keep the

nature of the simplifications that are inherent in the causal network framework clearly in

mind, as this approach to human judgment depends upon accepting that such simplifications

do not drastically distort everyday habits of thinking about causal relationships. The causal
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network framework is very flexible and can be extended to loosen various assumptions.

However, the standard framework—the one that has been the primary focus in the causal

reasoning literature—makes the following assumptions.

First, the networks we review do not represent any temporal durations such as the length of

delay between a punctate cause and effect or the timing of a maximum effect (e.g.,

ibuprofen has its maximum effect at about 1 hour after ingestion). We note, however that

standard causal networks can be expanded to include temporal information (e.g., Buchanan

& Sobel, 2011; Rottman & Keil, 2012).

Second, the causal networks we review are acyclic; they cannot have any loops like

X→Y→Z→X or “bidirectional” relationships like X↔Y. In acyclic networks each variable

can be represented as a function of the variables that directly cause it, but if a variable

causes itself then this function is indeterminant. Standard networks can be “unfolded over

time” to account for causal loops (e.g., Griffiths & Tenbaum, 2009; Kim, Luhmann, Pierce,

& Ryan; 2009; Rehder & Martin, 2011).

Third, the networks considered in most applications are incomplete. Surely there are many

variables that could be added that precede, mediate, and/or follow the variables explicitly

represented in any network (e.g., other causes and effects of tomato fruitworms or small

profits).

Fourth, there are many “zero links” in the network, when in reality there are small causal

influences between relevant causal events. For example, in a realistic economic context, the

cantaloupe harvest probably has an impact on the market price of tomatoes, but this

influence is ignored in the Farming Scenario. This sparseness is also typical of all the

relevant behavioral research.

Fifth, an essential property of causal networks is the Markov Assumption. In reference to

Figure 1, this assumption says that when the state of T is known, and we infer P, F does not

provide any additional information about P. In other words, T completely mediates the

relationship from F to P. The Markov assumption greatly simplifies normative causal

inference because it identifies variables that can be ignored for certain inferences. The

Markov assumption cannot be relaxed or abandoned.

These limitations have led some philosophers and mathematicians to conclude that the entire

enterprise of modeling realistic situations with such graphs is futile (e.g., Cartwright, 1999,

2001, 2002; see also papers in Gelman & Meng, 2004). We still believe that the approach

helps us understand real causal systems and how ordinary people think about causality. But

not all readers will agree, and we want to be clear about the strong assumptions required to

believe that Causal Networks provide a useful tool for understanding causal cognition.

Simplifications and Limitations of Psychological Research on Causal
Networks—In addition to the limitations and simplifications of the normative causal

network approach, there are additional simplifications in the ways that causal inference is

typically studied in psychology experiments. First, although the variables in the example

network could be continuous, ordinal, or categorical, the majority of behavioral research has
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focused on binary causes and effects (e.g., the tomato harvest was good or poor, not number

of tons of tomatoes harvested). Second, although each causal relationship could be

generative or inhibitory, most of the existing research has focused on generative links. In the

farming example we represented Early Frost as causing a Poor Tomato Harvest, not

preventing a Good Tomato Harvest.

Third, when two or more causes influence one effect, the causes can potentially combine in

many different ways. For example, when causes are multi-valued they could produce the

effect additively, multiplicatively, or with any other function (Waldmann, 2007). However,

most research (which has focused on independent, generative, binary causes) has assumed a

particular “functional form” called the “Noisy-OR gate” (e.g., Cheng, 1997; Griffiths &

Tenenbaum, 2005; Novick & Cheng, 2004; Pearl, 1988; see Yuille & Lu, 2008 for other

functional forms). For example, one might believe that the probability of a poor tomato

harvest is determined by the union (as opposed to the intersection, or some other function)

of a frost or an infestation that successfully causes a poor tomato harvest.

Plan for this Review

Our focus is on how people make inferences and whether their inferences agree with the

normative calculations on causal networks. We first discuss whether people’s inferences

follow the Markov Assumption, which simplifies reasoning by identifying which nodes are

relevant for making a particular inference. The rest of the manuscript focuses on how people

make use of the parameters of the causal structures. We look at whether people’s inferences

go in the predicted directions, as well as how close people’s inferences come to the

normative calculations. We analyze these questions for a variety of different types of

paradigmatic causal structures including chains, common cause structures, one-link

structures, common effect structures, and diamond structures.

We finish by making some observations about the quality of human reasoning about causal

relationships. To foreshadow our conclusions, many aspects of human reasoning about

causal systems reflect the qualitative prescriptions of the normative model. When the

calculations imply the probability of an event should increase, usually judgments go up;

when they imply a decrease, they go down. But, there are some reliable anomalies. In

particular, people seem not to respect the Markov Assumption and their inferences tend to

be weaker than would be implied by the normative model. We also comment on the value of

comparing behavioral results to a normative model. Among other reasons, we submit that

the comparison is useful because it identifies potential pitfalls for human reasoning about

practical matters.

The Markov Assumption

The Markov Assumption identifies which nodes are relevant to an inference and which

nodes are irrelevant. Consider the chain in Figure 2, which is a sub-graph from Figure 1.

Suppose that we are trying to infer whether there will be a large or small profit from

tomatoes this year. If we know that there was an early frost, we would be likely to infer a

poor tomato harvest and thus a small profit. The probability of p=1 is higher given that f=1

than given f=0; P(p=1|f=1)>P(p=1|f=0).
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However, suppose that we already know that there was a poor tomato harvest (t=1) and later

learn that it was caused by an early frost (f=1). Given the poor tomato harvest we would

already have inferred that there is likely to be a small profit from tomatoes, and learning that

there was or was not an early frost does not change the inference about the tomato profit:

P(p=1|t=1) = P(p=1|t=1, f=1) = P(p=1|t=1, f=0). F is irrelevant to P once T is known. The

technical term for this relationship is that early frost and small profit from tomatoes are “d-

separated” by poor tomato harvest; profit is no longer dependent on frost once the mediator

(poor harvest) is known. These inference patterns are symmetric. For F→T→P, once T is

known, learning the state of P does not affect the inference of F.

More generally, the Markov Assumption states that a given node, conditional on all its direct

causes, is statistically independent of all other nodes that are not its direct or indirect effects.

(See Charniak, 1991, and Sloman, 2005, for gentle introductions to causal graphical models,

and Jensen & Nielsen, 2007, for a more technical introduction.) The Markov Assumption

becomes even more useful in structures with large numbers of variables because the Markov

Assumption may be able to label many of them as irrelevant for a given inference.

The common cause graph works much like the chain. If we find out that there was a poor

tomato harvest, we might infer that there was an early frost, and thus that there was also a

poor cantaloupe harvest. However, if we already know that there was an early frost, then we

would predict that there was a poor cantaloupe harvest regardless of whether there was a

poor tomato harvest or not.

For the common effect structure, neither F nor W have any direct causes in the network, so

they are unconditionally independent. Just because there was an early frost does not mean

that there was a fruitworm infestation, or vice versa. (In some modeling applications

exogenous causes like F and W are not necessarily assumed to be independent.)

Evidence of the Use of the Markov Assumption for Inferences

The Markov Assumption identifies which variables can be ignored for particular inferences,

simplifying the inference process. Rehder and Burnett (2005) provided the first

comprehensive test of the Markov Assumption. Here is an example of one scenario they

used involving a causal chain. Participants learned about Kehoe ants, which typically have

blood high in iron sulfate, which causes a hyperactive immune system, which causes thick

blood, which causes them to build nests quickly [I→S→T→Q], but participants were not

given the specific parameters of the causal model. Participants were then presented with an

ant with certain features such as [s=1, t=1, q=0] and were asked to infer the probability of I.

Whether T and Q are 1 or 0 should not affect the inference of I because S is known to be 1.

Rehder and Burnett (2005) found that participants systematically violated the Markov

Assumption. For the chain structure (see Figure 3), even when they knew the state of M1, if

M2 and E were present, then they were more likely to infer that C was present. There were

analogous effects for inferring E. For the common cause, even if they knew the state of C,

the states of E2 and E3 influenced participants’ inferences of E1. For the common effect

structure, if C2 and C3 were present (and the state of E was unknown), participants were

more likely to infer that C1 was present.
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In order to account for these violations of the Markov Assumption, Rehder and Burnett

suggested that their participants inferred that there was another feature, an unobserved

“mechanism” that was a direct cause of all other features, somewhat like a category essence

(see Figure 3, bottom row). With the unobserved mechanisms, all the features that were

previously independent are dependent because they are common effects of the unobserved

mechanism. For example, in the chain structure, even when the state of M1 is known, if M2

is present then the mechanism is more likely to be present, and thus C is more likely to be

present.

Explaining this violation of the Markov rule by assuming participants had “imported” an

unobserved cause into their mental representations leaves some open questions. First of all,

there is no direct evidence that people believe in this unobserved mechanism. For the case of

living kinds, it is plausible to hypothesize factors like DNA that might serve as underlying

causes of many causal features. But Rehder and Burnett (2005) also used other categories

such as Romanian cars (with features such as butane laden gas and lose fuel filter gaskets).

In one experiment they even used “skeletal” categories called “Daxes” and the four features

were simply labeled A, B, C, and D with no additional meaning. It is unclear what sort of

unobserved mechanism could be posited in these cases. Furthermore, Rehder (2006)

replicated these results in scenarios that did not involve categories (e.g., low interest rate →
small trade deficit → high retirement savings) as well as with a completely abstract domain

(e.g., Variable A → Variable B → Variable C). These experiments suggest that even if the

Markov violations can be modeled by adding an unobserved common cause to the structure,

it is not obvious why people would assume such a node.

In order to eliminate the unobserved category “mechanism” as a possible explanation for the

Markov violations, Rehder (under review) used nodes labeled as causes and effects that

were not features of a category (e.g., urbanization causes socio-economic mobility). Rehder

also wondered if people were inferring other direct causal relationships between the

variables based on their prior knowledge, which could lead to apparent violations of the

Markov Assumption. Thus, he also counterbalanced the nodes in a way such that

systematically inferred additional links between the nodes would not lead to violations of the

Markov Assumption. Yet, he still found persistent violations.

Rehder (under review) also tested the effects of deliberative reasoning versus more intuitive

judgments. In one condition he required participants to respond to the inference questions in

under 10 seconds, and in another he asked them to justify their inferences. There was no

consistent effect of the justification or speeded manipulations; if anything, it appeared that

justification led to more Markov violations. This pattern of findings suggests that Markov

violations are not merely due to a quick intuitive judgment such as associative reasoning.

Burnett (2004) conducted a number of similar experiments and also found significant

violations of the Markov Assumption. In addition, he found evidence that people’s

inferences fit a proximity heuristic: nodes that are closer to the inferred node are weighted

more, even when an intermediate node is known. For example, in the chain

C→M1→M2→E, when inferring C and the state of M1 is known, the state of M2 has a

larger impact on C than does the state of E.
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Mayrhofer, Hagmayer, and Waldmann (2010) tested the Markov assumption in a task in

which aliens read the minds of other aliens (see the following section for more details about

this study). One condition involved a chain C→M1→M2→E, such that Alien E read the

mind of Alien M2, who read the mind of M1, who read the mind of C. Participants inferred

that Alien E’s thoughts were almost entirely dependent upon M2 (and very weakly

dependent upon C and M1). This particular domain and chain structure (essentially the

“telephone game”) seems to emphasize to participants that only the direct cause is relevant

for any given inference.

Finally, Sussman and Oppenheimer (2011) conducted a study in which they told participants

causal relationships between three fictitious plumbing devices. On each trial, participants

were told integer values of two of the devices and their task was to estimate the value of the

third. They found that both for chains and common cause structures, people showed small

and probably non-significant violations of the Markov Assumption.

In sum, many studies using a variety of materials have demonstrated that people violate the

Markov Assumption. However, the authors of these reports believed that it was plausible

that participants imagined an additional unobserved variable that was a common cause or

inhibitor of the observed variables. Burnett (2004) even called violations of the Markov

Assumption “adaptive” if people believed that there are additional causal relationships aside

from those specified by the experimenter. Rehder and Burnett (2005) also pointed out that

the Markov Assumption could appear to be violated if people treat all the observed variables

as imperfect observations. This means that in realistic scenarios it is very difficult to rule out

all rational explanations for “apparent” violations of the Markov Assumption.

At the same time, a number of studies have used scenarios in which there is no compelling

reason why people would infer additional causal links. It is also notable that the Markov

violations always seem to be “positive.” For A→B→C, people essentially infer an

additional positive correlation between A and C above and beyond the correlation implied by

B. If people were really inferring additional unobserved links it is unclear why these links

would overwhelmingly be positive. Thus, some of these inferences seem to be true

violations of the Markov Assumption, in that there is no plausible adaptive reason for

inferring an unobserved common cause given the particular cover story. We summarize the

results of this section in Figure 4, and use the same notation presented in the Key of Figure 4

throughout the remainder of this review. Bold represents nodes that are being inferred.

Normal weight represents nodes with known states (0 or 1). Dashed lines represent nodes

with unknown states. Octagons (stop sign) represent nodes that are used even though they

should be ignored for the given inference.

Reasoning About Plausible Unobserved Links on Common Cause Structures [E1←C→E2]

So far we have framed the Markov Assumption as being normative. We have discussed

some potential explanations for apparent violations of the Markov Assumption. However, in

all the previous scenarios, if people had actually inferred additional unobserved links they

were doing so without good reasons. In the current section we discuss some situations in

which people seem to adeptly reason about the scenario to infer plausible unobserved links.
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In a standard common cause structure, E1←C→E2, we can conceive of the two effects as

having additional independent unobserved influences (see the Us in Figure 5a). Though

Figure 5a is the standard way to interpret common effect structures when we have no

additional information, there are some situations in which we might believe that the effects

would be correlated above and beyond what would be implied by C alone. Figures 5b and c

represent two such structures (see also the Feature Uncertainty Model in Rehder and

Burnett, 2005).

Mayrhofer, Hagmayer, and Waldmann (2010) investigated a social transmission scenario

and found that describing the nodes as either active or passive moderated whether people

interpreted the structure as having independent versus correlated errors. They used a cover

story about four telepathic aliens who could transfer their thoughts (either “por”=1 or

“tus”=0) through mind reading. In the “active” condition, one alien (cause; C) was described

as sending his thoughts to the effect aliens (Es). Participants inferred P(e2=1|c=1,

e1=1)>P(e2=1|c=1, e1=0). When C was described as the agent “sending” the message to E1

and E2, one could plausibly reason that something could cause an error in the transmission

of the message to both E1 and E2 (e.g., Alien C wasn’t concentrating hard enough). This

“sending” condition seems to imply correlated errors (e.g., Figure 5b or c). In contrast, when

the effect aliens were described as passively “reading” the mind of Alien C, there was a

smaller difference between P(e2=1|c=1, e1=1) and P(e2=1|c=1, e1=0). A plausible reason is

that if one effect alien misread the message, it should not have an impact on another alien’s

ability to read the message; independent errors like as depicted in Figure 5a.

Mayrhofer, Goodman, Waldmann, and Tenenbaum (2008) investigated another aspect of a

causal scenario likely to convey beliefs in unobserved correlated errors. They used the same

alien cover story, but now there were two different types of effect aliens, green and yellow.

When one yellow alien misread the message people tended to infer that another yellow alien

would also misread the message, but whether the green aliens correctly read the message did

not matter for inferring whether a yellow alien would correctly read the message. This

pattern can be interpreted as indirect evidence for two sets of correlated errors for the two

types of aliens.

Walsh and Sloman (2004; 2007) also investigated rational explanations for correlations

between effects of a common cause above and beyond the correlation implied by the cause.

They used realistic common cause scenarios [e.g., jogging causes increased fitness level and

weight loss]. When told that Tim did not lose weight, people often came up with

explanations that were common causes or disablers of both effects (e.g. jogging increased

Jim’s appetite, which caused him not to lose weight and prevented his fitness level from

increasing).

In sum, the studies in this section have identified a number of scenarios for which it seems

reasonable for people to use their own prior knowledge or information conveyed in the

description of the scenario to infer structures with correlated errors. However, the fact that

inferring such correlated errors was to be expected in these studies does not diminish the fact

that in the studies in the previous section there was no similar reason to infer correlated

errors, and thus no compelling reason to believe that the Markov Assumption did not hold.
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Beliefs about whether the Causes in a Common Effect Structure [C1→E←C2] are
Correlated

For common effect structures, C1→E←C2, the strict interpretation of the Markov

Assumption implies that the two exogenous causes, C1 and C2, are independent from each

other. Yet in practice, statistical causal modelers (e.g., LISREL) often allow for the

possibility that they are correlated. For example, imagine an economist considering three

economic indexes postulated to have the following structure: I1→I3←I2. The modeler

would likely want to test for the possibility that I1 and I2 are correlated rather than just

assume that they are independent. In this section we discuss situations in which people

believe that C1 and C2 are correlated, exploring how these beliefs are influenced by different

types of experience and whether people’s beliefs are consistent.

As already mentioned, Rehder and Burnett (2005) told participants a cover story involving a

common effect structure C1→E←C2. The participants treated C1 and C2 as correlated even

though there was no obvious compelling reason to do so. Von Sydow, Hagmayer, Meder,

and Waldmann (2010; Experiment 2) told participants the structure C1→E←C2. In a set of

learning trials participants observed whether each variable was present or absent; C1 and C2

were uncorrelated. Afterwards, participants inferred that C1 and C2 were independent,

P(c2=1|c1=1) = P(c2=1|c1=0). Thus, even if people tend to believe that C1 and C2 are

correlated, they can fairly quickly learn that that C1 and C2 are independent.

Hagmayer and Waldmann (2000) conducted a similar study. On a given learning trial,

however, participants saw either C1 and E, or C2 and E, so they could not calculate the

correlation between C1 and C2. At the end of the learning trials, participants judged P(c2=1|

c1=1) and P(c2=1|c1=0), which were converted into the correlation measure phi. The

correlations in two experiments were slightly positive (.16 and .24). Perales, Catena, and

Maldonado (2004) conducted a parallel study. In most conditions participants inferred

correlations close to zero, but in one condition with strong causal relationships about one

third of the participants inferred a substantial positive correlation.

The assumption that C1 and C2 are independent is particularly important for inferring the

causal strength of C1 on E when C2 is unobserved (Cheng, 1997). Suppose that C1 and E are

strongly correlated. If one believes that there are no other potential causes of E that are

correlated with C1, then one might infer that C1 is a strong cause of E. However, what if one

knows that there is another factor, C2, which causes both C1 and E? In this case it is possible

that C1 is not a cause of E at all and the correlation between C1 and E is an artifact of C2.

Thus, believing that other causes of E are independent of C1 is critical for inferring the

strength of C1.

Hagmayer and Waldmann (2007) and Luhmann and Ahn (2007; Experiment 3) examined

whether people believe that C1 is independent from an unobserved C2. On each trial people

observed C1 and inferred whether C2 was present or absent. Both of these studies found that

people judged C1 and C2 to be correlated. More importantly, the estimated correlation

depended on the learning conditions. In Hagmayer and Waldmann’s Experiment 1, when the

two causes were relatively weak, people thought that C1 and C2 were positively correlated;

when they were relatively strong, people thought they were negatively correlated. But
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Luhmann and Ahn (Experiment 3) found a different result: When C1 had a positive

influence on E, people inferred a positive correlation, but in the condition in which C1 had

zero effect on E, people inferred a negative correlation. These results are surprising because

there is no normative reason why changing the strengths should lead people to change their

inferences of the correlation between C1 and C2. Hagmayer and Waldmann (2007) also

asked people to make summary judgments of P(c2=1|c1=1) and P(c2=1|c1=0) at the end of

the learning trials. Unlike the trial-by-trial judgments, these judgments reflected a belief that

C1 and C2 were independent. It is surprising and unclear why these judgments were

inconsistent.

Until now we hedged about what people should infer about the correlation between C1 and

C2, proposing that people’s inferences should merely be consistent. However, Hagmayer

and Waldmann (2007, Experiment 2) conducted a study that normatively implies that C1 and

C2 are independent. On each trial participants chose whether C1 occurred or not, and then

inferred whether C2 would be present or not. Because participants chose C1 without

knowing C2 or E2, this intervention should be interpreted as cutting any links to possible

unobserved common causes. Yet, participants usually inferred that C1 and C2 were

negatively correlated. In sum, people’s beliefs about the relationship between C1 and C2 are

inconsistent, and in one instance go against the normative framework.

Summary

The Markov Assumption greatly simplifies learning and reasoning with causal networks.

However, people appear to be unaware of the simplicity it affords. When making inferences,

people often use nodes that, according to the Markov Assumption, are irrelevant for the

particular inference. Furthermore, related research outside the focus of this review also

shows that people fail to capitalize on the Markov Assumption when learning causal

networks (Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003; Experiment 3; Fernbach &

Sloman, 2009; Jara, Vila, & Maldonado, 2006).

Normative Quantitative Inferences on Graphical Causal Models

The rest of this review focuses on quantitative inferences people make based on the structure

and parameters of the causal model. In the following sections we explain how to simulate

the functioning of a causal network. By understanding how a causal structure “works,” from

causes to effects, it is possible to make inferences—that is, to deduce the probability of any

variable in the network given information about the states of other variables.

Parameterizing a Structure: Modeling how Causes Combine to Produce an Effect

The first task required to make quantitative inferences on a causal network is to model how

each individual node is produced by its direct causes, otherwise known as the

“parameterization” of the model. We start with a one-link structure C→E. One common

way to conceive of C→E is with an additional alternative unobserved cause of E, which we

will call A; C→E←A. A represents the “causal background” or the likelihood of other

possible factors that we cannot directly observe generating E (and they are assumed to be

independent of C). A psychological explanation for adding A into the model is that if E ever
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occurs without C, then we must believe that some other cause produced E. We denote the

likelihood of A (a=1) generating E (e=1), or the “strength” of A as SA, which equals P(e=1|

c=0). (Metaphysically SA reflects both the probabilities of all the unobserved causes as well

as the strengths of all these unobserved causes. But because we do not know specifics about

the probabilities and strengths of all these unobserved causes, we use SA for simplicity.) The

two other parameters of the model are the base rate of C, P(c=1), and the strength of C

causing E, SC. C can cause E only when C is present.

According to this parameterization, E can be produced two ways: C can produce E, with the

probability [P(c=1)SC], and A can produce E with the probability SA. Thus, [1−P(c=1)SC] is

the probability that C fails to generate E, and [1−SA] is the probability that A fails to

generate E. Because we are assuming that C and A are independent, the probability of E

occurring is 1– the probability that C and A both fail to produce E (the probabilistic union of

either C or A generating E, see Table 1 Row 1). This is the Noisy-OR combination rule for

two independent causes (see Cheng, 1997; Pearl, 1988).

This same logic can be extended to cases with two or more generative causes, all of which

can independently produce E (Table 1 Row 2). To determine the union of any of the three

causes successfully producing E, one can calculate 1 minus the probability of all of the

generative causes failing to produce e=1.

What if C inhibits or decreases the probability of E on a C→E structure? The standard

function to represent an inhibitory cause is called “noisy-And-Not.” A can produce e=1 with

the probability SA. SC is the probability that C would inhibit e=1, so (1−SC) is the

probability that C fails to inhibit e=1. Thus, P(e=1) is the product of A generating E, and C

failing to inhibit E (Row 3 in Table 1). Rows 4 and 5 show other cases that can be

determined with the same logic (see Novick and Cheng, 2004).

From the formulas in Table 1 it is trivial to calculate conditional probabilities of E given

knowledge of the states of the causes. When a given cause is known to be present (or

absent), P(c=1) simplifies to 1 (or 0). For example, the following two conditional

probabilities are deduced from Row 1: P(e=1|c=1)=1− (1−SA)(1−SC) and P(e=1|c=0)=SA.

These conditional probabilities will be used in the next section.

There are other ways that multiple binary causes could influence an effect. For example,

P(e=1) could be determined by a simple sum of the strengths of the causes with cutoffs so

that P(e=1) cannot go above 1 or below 0. Or, analogous to a logistic regression, P(e=1)

could be determined by an S-shaped function over the sum of the strengths of the generative

and inhibitory causes. Behavioral research has almost exclusively focused on noisy-OR and

noisy-AND-NOT functions, so we do not consider these other possibilities any further.

So far we have discussed how to parameterize a structure with multiple causes of a single

effect. To parameterize a larger structure, each exogenous node needs a parameter to

represent its base rate, and each arrow needs a causal strength parameter. Additionally, if a

node ever occurs when its causes are absent, then it also needs an SA parameter. Figure 6

shows the parameters for five canonical causal structures.
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In sum, this section explains how the conditional probability of an effect given its causes can

be derived from causal strengths assuming a noisy-OR integration. It is also possible to

parameterize a structure at the level of conditional probabilities instead of going down to

causal strengths: C→E would be parameterized by P(e=1|c=1) and P(e=1|c=0). Either

parameterization works, although reasoning with causal strengths provides a deeper level of

analysis and is simpler to represent when there are multiple causes of a single effect.

From Conditional Probabilities to the Factorization and Joint Distribution

The previous section explained how to model the probability of an effect given its direct

causes. The second step for representing a causal structure is the joint probability

distribution, the probability that the variables in the network are each in a particular state.

For the farming example Early Frost (F) → Poor Tomato Harvest (T), the joint distribution

specifies the percentage of farms that experienced an early frost and a poor tomato harvest,

P(f=1, t=1), the percent of farms that experienced an early frost but a normal tomato harvest

P(f=1, t=0), and so on. Determining the joint distribution requires applying the

“factorization” of the network. The factorization represents the structure of the graph in

terms of conditional probabilities associated with each causal relationship in the graph. For

the C→E structure, the factorization is simply P(E,C)=P(E|C)P(C). For example, suppose

that C is generative and P(c=.1), SA=.2, and SC=.5, and thus P(e=1|c=0)=.2, and P(e=1|

c=1)=.6. Table 2 shows how to calculate the joint probability distribution for the four joint

states of C and E. The four joint probabilities are mutually exclusive and exhaustive, so they

sum to 1.

For more complicated causal structures, the factorization of the joint probability distribution

works in essentially the same way: the probabilities of each variable given its direct causes

are multiplied together (and for exogenous variables with no causes in the network the base

rate is used). Figure 6 shows how to calculate the joint probability for five canonical causal

structures.

Marginal Probabilities

Whereas a joint probability is the probability of all the nodes in a network assuming a

specific set of states, a marginal probability is the probability of a subset of the nodes in the

structure assuming a specific set of states. For example, on the C→E structure, one might

want to know P(e=1). P(e=1) can be calculated by summing P(c=1, e=1) and P(c=0, e=1)—

that is, Rows 1 and 3 in Table 2—which is known as “marginalizing” over C. Note that

certain marginal probabilities, such as this one, can also be calculated directly from the

parameterization in Table 1. Consider a marginal probability on a structure with three nodes

A, B, and C. The marginal probability P(a=1, c=1) can be obtained from the sum of the two

joint probabilities P(a=1, b=1, c=1) and P(a=1, b=0, c=1), effectively “marginalizing out”

B. In sum, marginal probabilities can be calculated by summing over joint probabilities.

Marginal probabilities are important for two reasons. First, they are inferences in their own

right. For example, on the chain C→M→E, one might want to know P(m=1) or P(e=1).

Second, marginal probabilities are important because they are often required when deducing

conditional inferences, which is explained in the next section.
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From Joint Probabilities and Marginal Probabilities to Conditional Inferences

A conditional inference is an inference of the probability of the state of one variable when

the states of some or all of the other variables are known. Suppose that we want to infer

P(c=1|e=1) on a C→E structure (perhaps the probability that a farm had an early frost given

that there was a poor tomato harvest). Equation 1, which involves an application of Bayes’

rule, provides the math. The derivation requires four steps; compare Equation 1 with

Equation 2, which shows the four steps used for any inference in this manuscript. The first

step is simply the definition of a conditional probability, which equals the joint probability

of the two variables (C and E) divided by the marginal probability of the variable that is

conditioned upon (E). The second step expands the denominator by marginalization. The

third step converts the joint probabilities into the factorization for the causal structure. The

fourth step uses the parameterization to convert the conditional probabilities into the

parameters. From the final product, it can be seen that P(c=1|e=1) increases as P(c=1) and

SC increase and as SA decreases.

This relatively simple math provides the basis for a wide variety of inferences across

different types of causal structures. (We make a suggestion when deriving inferences:

convert probabilities of the form P(a=0) to [1−P(a=1)] and P(a=0|b=1) to [1−P(a=1|b=1)].

But remember that P(a=1|b=0) ≠ [1−P(a=1|b=1)].)

Eq. 1. An Inference on a C→E

Structure

Eq. 2.

Canonical

Method of

Calculating

Inferences

Reasoning Based on Observed Frequencies

So far we have explained how to derive quantitative inferences from the structure and the

parameters of the network. However, in many instances in the real world (and in some

experiments), people experience the probabilistic relationships between the variables in a

network. In such cases participants may rely on memories of specific events rather than

reason on the structure itself.

Consider a scenario in which you are told that C→E, and then you observe whether C and E

are present or absent on 20 separate trials. For example, perhaps you observe 20 different

farms and note whether each farm had an early frost or not (the cause) and whether each

farm had a poor tomato harvest or not (the effect). One could theoretically tabulate the

frequencies of C and E to compile Table 2 and perform inferences on Table 2 without using

Bayes’ rule. For example, P(c=1|e=1) = P(c=1, e=1)/P(e=1) = Row 1/(Row 1 + Row 3).

However, the number of rows in the joint probability table grows exponentially with the

number of variables. The causal network framework greatly simplifies inference because the
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number of parameters (base rates and strengths) is often much smaller than the number of

rows in a joint probability table.

Reasoning about Interventions

So far all the inferences have involved situations in which a person learns about one piece of

information and then infers another (e.g., “What is the likelihood of a poor tomato harvest

given an early frost?”). Causal networks are also useful for modeling “interventions,” when

an actor intervenes on a causal structure to set a variable to a particular value and then infers

the effects of that intervention on other variables. The ability to distinguish interventional

versus observational inferences has often been cited as a hallmark of causal reasoning in

humans (e.g., Meder, Hagmayer, & Waldmann, 2008; Sloman & Lagnado, 2005; Waldmann

& Hagmayer, 2005), and even in rats (Blaisdell, Sawa, Leising, & Waldmann, 2006).

Pearl (2000) and Spirtes et al. (1993) presented a framework for understanding

interventions. The basic idea is that when an intervention sets a variable to a particular state,

it severs all the ties from other causes of the manipulated variable. The intervention

propagates to the effects of the manipulated variable but not to its causes. For example,

suppose that a jealous neighbor sprays a poison on the cantaloupes, ensuring a poor

cantaloupe harvest. This intervention can be modeled by cutting the link from F to C (Figure

7). Normally a poor cantaloupe harvest might be a sign that there was an early frost.

However, because we know that the cantaloupes were poisoned, we know that there is no

longer a relationship between an early frost and the cantaloupe harvest. Once the links to the

manipulated variable have been eliminated, all the inferences on the resulting structure are

exactly the same as explained above. This method of calculating the effect of interventions

is appropriate for “perfect” interventions – when the intervention completely determines the

state of the manipulated variable and the intervention is independent of the rest of the

network (Meder et al., 2010; Woodward, 2003).

In the next sections we discuss inferences on various causal structures. Note that the earlier

discussion of the Markov Assumption has already noted many inferences on causal

structures. Here we discuss the rest of the inferences for which empirical research exists.

Chain C→M→E

Here we discuss transitive and marginal inferences on chains. We skip consideration of

inferences about the state of the mediator given C and E, because no studies have provided

results on the quality of these judgments.

Inferring the Effect from the Cause: Transitive Causal Inferences

Probabilistic causal relations are transitive. On the chain causal structure, if C is known to

cause M, and M is known to cause E, then there should be a correlation between C and E. If

both links are positive or if both are negative, then the relationship between C and E should

be positive. However, if one link is positive and the other is negative, then the relationship

between C and E should be negative. Equation 3 shows how to derive the transitive

inference. We do not reduce Equation 3 all the way down to causal strengths because the
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present format in terms of conditional probabilities can be used regardless of whether the

links are positive or negative (e.g., P(e=1|m=1)<P(e=1|m=0)).

Eq. 3. A Transitive

Inference on a Chain

Baetu and Baker (2009) had participants learn the contingencies between C and M and

between M and E separately, and then asked about the relationship between C and E. They

found that people generally followed the normative pattern: a positive relation if both links

were positive or both were negative, otherwise a negative relation. However, their inferences

from C to E were weaker than predicted by Equation 3; i.e., the difference between P(e=1|

c=1) and P(e=1|c=0) was too small. Note that participants inferences’ were made on a −10

[“when C is 1 it perfectly prevents E from being 1”] to +10 [“when C is 1 it perfectly causes

E to be 1”] scale. We describe results on a 0.00 to 1.00 probability scale when we felt that

they could be transformed into a probability scale without a significant change in meaning.

Jara, Vila, and Maldonado (2006) examined the learning of chain structures in a “second

order conditioning” paradigm. Participants saw M paired with E and C paired with M. In one

set of experiments, participants inferred that C causes E even though they never saw C and E

appear together: they made the transitive inference. In a second set of experiments, after

participants learned the M→E and C→M relationships, they were subsequently presented

with a set of trials in which M occurred without E, which was intended to extinguish the

M→E relationship. Surprisingly, participants still inferred that C would cause E. Some

associative models predict that people would form a direct association between C and E,

contrary to the chain structure.

In another study, participants were told about the chain structure, worked through 192 trials

in which they observed C, M, and E, and lastly judged P(e=1|c=1) (Von Sydow, Hagmayer,

Meder, and Waldman, 2010; also see von Sydow, Meder, & Hagmayer, 2009). Normally if

the C→M and M→E links are both positive, then there will be a positive relation from C to

E. However, Von Sydow et al. created a set of stimuli in which there was zero correlation

between C and E even though the correlations between C→M and M→E were both

positive. Technically their stimuli violated the Markov condition; conditional on M, C and E

were negatively correlated. In this way, these experiments were designed to test whether

people rely more on the actual observed contingencies or on the transitive relationship

implied by a chain structure that is faithful to the Markov Assumption. Even though there

was zero correlation between C and E, participants inferred a positive correlation of about .

25 (in Experiment 1; .10–.15 in Experiment 2). These results show that people infer

transitivity, a conceptual property of causal Bayesian networks, even when the experienced

data do not support it.

These three studies suggest that people make transitive inferences from C to E and that these

inferences persist even when contradicted by data in which there is no correlation between C

and E. But, somewhat paradoxically, when there is a correlation between C and E in the

data, the transitive inferences are not as strong as would be predicted by the normative
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model. One explanation for this pattern of findings is that people’s transitive inferences are

based on their beliefs about the causal structure (i.e., that transitive inferences are warranted

by a chain structure), and are less sensitive to the experienced contingencies. Figure 8

summarizes these findings. Throughout the review diamonds represent parameters that are

not used as they should be (caution sign).

Marginal Probabilities

Rehder and Kim (2010) investigated how people infer the marginal probability of a mediator

and effect; P(m=1) and P(e=1). They presented people with chain structures and told

participants the strengths of the causal relationships. We used participants’ inferences of

P(c=1), combined with the strengths that they were given, to model P(m=1) and P(e=1).

Overall, participants were sensitive to the qualitative predictions of the normative causal

network; however, they were not sensitive enough to the strengths. In one condition

(Experiment 2), if a cause occurred its effect would occur 75% of the time, SC=SM=.75, and

the effects would occur only if their causes occurred (i.e. SA=0). In this case, the marginal

probability of each successive node should decrease; however, the decreasing slope was not

as steep as the normative model implies. People inferred that P(c=1)=.78, P(m=1)=.73 and

P(e=1)=.67, but given their belief that P(c=1)=.78, the other two inferences should have

been P(m=1)=.58, and P(e=1)=.44. In sum, people were insufficiently sensitive to the

strengths.

Common Cause: E1←C→E2

Inferring the Cause from Effects: P(C|E1, E2)

Assuming positive causal relationships, the more effects that are present, the more likely the

cause is to be present. Rehder and Burnett (2005) confirmed that research participants

demonstrate this effect. However, there are no results yet on how close this inference is to

the normative calculations. In particular, consider a case in which C influences three effects,

all with the same strength. The difference in the likelihood of C being present when only 1

versus 2 of the effects are present should be larger than the difference between 2 versus 3 of

the effects. This pattern of reasoning is not apparent in Rehder and Burnett’s (2005)

experiments, although their experiments do not provide a strong test for this effect because

participants did not know the precise parameters.

Inferring One Effect from Another Effect: P(E1|E2)

Two effects of a common cause should in general be correlated (Equation 4). The reason is

simply that when the common cause C is present, assuming positive causal relations, then all

the effects are more likely to be present, but when the common cause is absent, all the

effects are more likely to be absent.

Eq.

4
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Waldmann and Hagmayer (2005) performed a study in which participants were given a

common cause structure and experienced a series of learning trials during which they

observed all three variables. At the end participants inferred P(e1=1|e2=1) > P(e1=1|e2=0),

reflecting transitivity. However, this is not surprising because out of the 20 learning trials, in

all but two, E1 and E2 had the same value. More impressive was that these inferences were

sensitive to P(c=1) and the causal strengths. However, one problem with this study for our

purposes was that participants experienced learning trials in which they observed C, E1, and

E2. Thus, it is possible that when they were inferring P(e1=1|e2=1), they were merely

making a direct inference from E2 to E1 rather than reasoning from E2 up to C and then back

down to E1.

Hagmayer and Waldmann (2000; see also Waldmann et al., 2008) conducted a similar study,

but on each learning trial participants either observed C and E1 or C and E2. They had to

infer the correlation between the two effects based on the causal model. At the end,

participants inferred P(e1=1|e2=1) and P(e1=1|e2=0), and later these were converted to a phi

correlation coefficient. This condition was also compared to a common effect structure,

C1→E←C2, in which participants learned about C1 and E or C2 and E, and later judged the

correlation between C1 and C2. Unlike a common cause, a common effect structure implies

no correlation between C1 and C2.

In Experiment 1,i people’s estimates of the correlation (r = .29) were much weaker than the

true correlation (r = .62) and were not significantly different from the common effect control

condition. In Experiment 2, the inferences also were quite low (r = .26) compared to the

normative value (r = .44)ii and, again, not different from a control condition. Perales,

Catena, and Maldonado (2004) reported a similar set of experiments. Their participants did

infer correlations between E1 and E2 and they gave higher correlations in the common cause

than in the common effect condition. However in some of the conditions, particularly those

with deterministic links, the inferred correlations were considerably lower than the

normative calculation (although they used an unusual correlation rating scale).

One final experiment tested this inference in a different way. Von Sydow, Hagmayer,

Meder, and Waldman (2010, Experiment 2; see also the discussion of transitivity in causal

chains above) told participants about the common cause structure and had them observe 192

learning trials of all three variables. Recall that even though there were correlations between

C and E1 and C and E2, there was zero correlation between E1 and E2 (i.e., the learning trials

violated the Markov condition). In contrast to the chain structure in which people inferred

transitivity, their judgments of P(E2|E1) for the common cause structure implied no

transitivity. In sum, these experiments suggest that people do not always believe that effects

of a common cause are correlated, even though causal Bayesian networks imply that they

usually are.

iHagmayer and Waldmann (2000) also collected a separate “implicit” measure that was closer to the normative value. However, this
measure again might not reflect pure reasoning from E2 to C and then to E1, because participants observed C and then predicted E1
and E2.
iiThis is a different value than the one cited in the original article because of a slight error in calculating ΔP.
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Inferring E1 after an Intervention on E2

Waldmann and Hagmayer (2005; Experiments 3 and 4) also had participants infer E1 after

an intervention on E2; P(e1=1|set e2=1) or P(e1|set e2=0). An intervention on E2 severs the

link from C to E2, so the only way to infer E1 is directly from C. Waldmann and Hagmayer

found that when C had a higher base rate, P(e1=1|set e2=1) was higher. This finding

suggests that people have an understanding of what an intervention means in terms of causal

structures and that they are able to perform inferences on the remaining causal structure.

Manipulating the strength of C on E1 also had some effect on the inference of E1.

However, participants did not answer these questions entirely normatively. First, when the

base rate of C and the strength of C on E1 were manipulated, the inferences did not change

as much as the normative model predicts they should change. Additionally, participants

predicted that E1 was more likely to be present when E2 was intervened upon and set to 1

compared to 0, even though the intervention implies that E2 is irrelevant for inferring E1.

Hagmayer and Sloman (2009) tested whether people would recommend an action

intervening on E2 to produce a change in E1. Surprisingly, there were some participants who

recommend such an intervention. However, as with all studies using real-world knowledge,

it is hard to know if these participants had additional beliefs, not explicit in the instructions,

that would justify such an intervention (e.g., perhaps they believed that there might be an

additional link E2→E1).

One Link C→E

In this section we discuss how people use the three parameters of a one-link causal structure,

P(c=1), SC, and SA, when performing various inferences.

Inferring E Given C

As can be deduced from Table 1 Row 1, P(e=1|c=1)=1−(1−SC)(1−SA). Fernbach, Darlow,

and Sloman (2011; Experiment 2) tested whether people are sensitive to SA using scenarios

involving generic real-world events. For example, the unpopularity of the mayor of a city

(C) could cause the mayor’s new policy to be unpopular (E), but a policy could be unpopular

for other reasons even if the mayor is popular (A). Participants were asked three questions

that defined the parameters of the one-link structure: the probability that a mayor of a major

city is unpopular, P(c=1), the probability that the mayor’s unpopularity would cause his or

her new policy to be unpopular, SC, and the probability that a new policy would be

unpopular even if the mayor is popular, P(e=1|c=0) = SA. Fernbach et al. then used these

three parameters to predict how participants would judge P(e=1|c=1), the probability of a

policy’s being unpopular given that the mayor is unpopular.

Fernbach et al’s (2011) participants’ inferences were mainly determined by the strength of

the primary cause, SC, and were not correlated with their beliefs about SA. Their inferences

of P(e=1|c1=1) were also 8 percent lower than the normative model (calculated using each

participant’s responses to the other three questions). Fernbach et al. attribute both of these

results to participants’ failure to consider the possibility that that A could produce E. An
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alternative interpretation is that unless A is explicitly mentioned, people interpret the

question P(e=1|c=1) to be asking for SC.

Of course, whenever real-world stimuli are used it is hard to know if participants have

additional causal beliefs not picked-up by the experimenters. Fernbach and Rehder (2012;

Experiments 1 and 2) tested the same phenomenon, but with artificial stimuli. For example,

they said that iodized helium (C) causes stars to be very hot (E). They also told participants

the strength of the causal relationship, Sc and the likelihood that some other factor caused

the same effect, P(e=1|c=0) = SA. When they manipulated both factors in a 2×2 design,

participants clearly made use of Sc but were not at all sensitive to SA.

Fernbach and Rehder (2012) also asked participants to estimate P(e=1|c=0). This should

have been extremely easy because participants were explicitly told the likelihood of some

other cause producing the effect; SA. However, they were insensitive to variation in SA. This

is odd given that participants literally had this piece of information right in front of them – it

was a parameter, not an inference. In sum, people appear to view SA as less relevant than it

is in reality for both P(e=1|c=1) and P(e=1|c=0).

Inferring the Effect

As shown in Table 1 Row 1, P(e=1)=1−(1−SCP(c=1))(1−SA). Fernbach, Darlow and Sloman

(2011; see description above) collected judgments of P(e=1), and we analyzed the results by

calculating what P(e=1) should have been given their participants’ average estimates of

P(c=1), Sc, and SA. Just as for the P(e=1|c=1) inference, their participants’ inferences of

P(e=1) were 9 percent lower than the normative model. This under-prediction might be

explained as a failure to consider the possibility that alternative causes could produce the

effect.

Rehder and Kim (2010; see also Fernbach & Rehder, 2012) also asked participants to infer

P(e=1). Overall, their participants were sensitive, but not sufficiently sensitive, to SA. For

example, in one condition (Experiment 2 in Appendix C) SC=.75 and SA was manipulated

between 0 and .75. Based on their beliefs of P(c=1), participants’ inferences should have

changed from .56 to .88, but they changed only from .69 to .79.

Inferring C Given E

Inferring a cause given knowledge of an effect is called a “diagnostic inference” as an

analogy to medical diagnosis in which a disease (cause) is sought to explain a set of

symptoms (effect). Equations 5 and 6 show these inferences, and the Table 3 shows the

directions of the influences of the parameters assuming positive strengths. [See Meder,

Mayrhofer, & Waldmann (2009) for a modified normative framework for inferring P(c=1|

e=1) when the causal structure is not known a priori.] In the following three sections we

separately evaluate the evidence of whether people are sensitive to the three parameters for

inferring P(c=1|e=1).
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Eq. 5

Eq. 6

Use of P(c=1)—When inferring causes from effects, people notoriously exhibit base rate

“neglect” or “underappreciation”; in other words, they fail to use P(c=1) to the extent

dictated by Bayes’ rule (e.g., Eddy, 1982; Kahneman & Tverskey, 1972; Bar-Hillel, 1980;

Koehler, 1996). In contrast, others have suggested that when people learn the parameters

from experience instead of being told the parameters, their inferences are closer to the

correct Bayesian calculation (e.g., Christensen-Szalanski & Beach, 1982, and Gigerenzer &

Hoffrage, 1995; see also the discussion above on reasoning based on observed frequencies).

Irrespective of this debate, the previous research on “base rate neglect” often involved

statistical dependencies and did not necessarily engage causal reasoning habits. Thus, we

rely on Meder, Hagmayer, and Waldmann’s (2009) Experiment 2, which involved explicitly

causal scenarios. Meder et al. taught participants a structure with four nodes and showed

them a series of learning trials allowing them to learn the parameters from experience.

Afterwards, participants estimated P(c=1|e=1). Even though the C→E link was part of a

larger causal structure, the rest of the structure is irrelevant for this particular inference.

In one condition for which P(c=1)=.30, SC=.35, and SA=.57, P(c=1|e=1) should be .35.

Participants’ inferences were right on target. However, in another condition in which

P(c=1)=.65, SC=.80, and SA=.24, P(c=1|e=1) should be .87; yet participants’ inferences were

only .51. Unfortunately for our purposes, all three parameters changed across the two

conditions prohibiting a clear analysis of P(c=1). However, in the second condition P(c=1|

e=1) was lower than P(c=1), which should never happen with positive causal relations. This

result reflects, at minimum, a misuse of the base rate.

Use of SC—Meder, Hagmayer, and Waldmann (2008, 2009) also examined the use of SC:

if SC>0, then P(c=1|e=1) > P(c=1|e=0). One trend across all their experiments is that

participants’ inferences were not nearly as extreme as predicted. For example, in one

experiment (Meder et al., 2008, Experiment 1), the normative probabilities were P(c=1|

e=1)=.95 and P(c=1|e=0)=.10. However, participants’ responses, converted to probabilities,

were P(c=1|e=1)=.76 and P(c=1|e=0)=.43. Thus, even though the direction of the effect was

correct, the estimates were “conservative.”

Fernbach and Rehder (2012; Experiment 1) told their participants the parameters SC and SA

and collected judgments of P(c=1|e=1). Both SC and SA were manipulated in a 2×2 to be

either strong or weak. Unfortunately, the third relevant parameter, P(c=1) was not provided

to participants. We analyze this study two ways. First we assumed a plausible value of

P(c=1)=.67. Comparing the conditions when SC was increased but SA was held constant, we

would only expect an increase of about .03 – .06 in P(c=1|e=1). However, participants
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inferences increased by about .20. Another way to analyze these data is to reverse-derive

P(c=1) using the normative model given the supplied values of SC, SA, and the participants’

average judgment of P(c=1|e=1) for one condition. Then the normative inference for P(c=1|

e=1) can be derived for the other condition. This analysis also shows that participants’

inferences varied too much based on the change in SC.

Fernbach and Rehder’s (2012) study also asked for inferences of P(c=1|e=0). The increase

in SC led to a decrease in estimates of P(c=1|e=0); this general pattern is normative.

However, both methods of analysis reveal that the inferences of P(c=1|e=0) changed too

little based on the change in SC. In sum, there does not appear to be a clear pattern of how

SC is utilized when inferring the state of a cause from an effect: there are complicated

patterns of over- and under-utilization of SC relative to the normative model.

Use of SA—Fernbach and Rehder (2012) told participants the parameters of the C→E

structure and they manipulated SA. In their Experiment 1, the manipulation of SA should

have produced differences in P(c=1|e=1) of about .12–.15, but participants inferred

differences of only about .06. Although this was a significant difference, it is about half as

much as is expected by the normative model.

Two studies have examined the impact of making the alternative cause A explicit when

inferring the cause. The idea is to provide a reason for the times when the effect occurs

without the observed cause. The standard task so far involves a C→E structure with an

implicit alternative cause; we have interpreted P(e=1|c=0) as SA. Two studies have reframed

the scenario as a common effect structure C→E←A, in which A is explicitly mentioned and

the parameters of A are provided to participants.

Krynski and Tenenbaum (2007; Experiment 2) used the standard mammography base rate

neglect problem (cancer causes a positive mammogram, but there can also be false

positives). Participants were told the parameters P(c=1), SC, and SA, and they inferred

P(c=1|e=1). In one condition the false positive rate SA was not explained; the possible

causes were implicit. In another condition the wording explicitly mentioned a second cause

of a positive mammogram result, a benign cyst.

The inferences were more normative in the condition in which the alternative cause was

explicitly mentioned. About 42% of the inferences in the “explicit” benign cyst condition

were right on target. In contrast, only 16% of the inferences in the “implicit alternative

cause” condition were right on target. Krynski and Tenenbaum (2007) interpreted this result

as showing that people have an easier time reasoning about explicit causes than about

fundamentally stochastic causes (the unexplained false positive rate). However, this

explanation is not entirely satisfying because it is unclear why people wouldn’t just infer an

additional cause for any one-link causal structure in which the effect occurred (positive

mammogram) without the observed cause (malignant tumor).

Fernbach and Rehder (2012; Experiment 2) performed a similar manipulation making the

alternative cause either implicit or explicit. Manipulating SA had no effect in the explicit
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condition, and the effect in the implicit condition was much smaller than expected. In sum,

multiple studies have found insufficient use of SA.

Common Effect: C1→E←C2

In this section we focus on common effect structures when there are only two causes, C1 and

C2, both of which are explicit in the model. This means that if both causes are absent then E

must be absent, because there is no alternative background cause A. In this case, still

assuming a noisy-OR gate with no interactions, then P(e=1) = 1− [1−P(c1=1)SC1]

[1−P(c2=1)SC2].

Discounting: P(C1| E) versus P(C1|E,C2)

Here we continue the discussion on P(c=1|e=1) that began in the section on C→E structures,

but now discuss this inference in relation to P(c1=1|e=1, c2=1). Assuming generative causal

relationships (which we assume for this entire section), P(c1=1|e=1)>P(c1=1|e=1, c2=1).

This inference is atypical: in most other structures the presence of one node increases the

probability of another node (again assuming generative causal links). Alternatively,

sometimes due to the Markov condition (“screening off”), one node is irrelevant to the

probability of another node. But for a common effect structure, the presence of C2 actually

decreases the likelihood of C1. This atypical reasoning pattern has been viewed as a key

aspect of causal reasoning (see Khemlani & Oppenheimer, 2010, for a review).

We explain this pattern of reasoning using the Farming Scenario. In this scenario, an early

frost and a tomato fruit-worm infestation are both sufficient to cause a poor tomato harvest;

F→T←W. Table 4 shows a hypothetical sample of 1000 farms for which 10% experience

an early frost and 10% experience a tomato fruitworm infestation.

Within the 190 farms that had a poor tomato harvest (Rows A–C), 100 of them had a tomato

fruit-worm infestation; P(w=1|t=1)=.53. But if we know that a farm had a poor harvest and

that it also had an early frost (rows A and B), only 10 out of the 100 had a tomato fruit-

worm infestation; P(w=1|t=1, f=1)=.10. This phenomenon has been known in Artificial

Intelligence (e.g., Pearl, 1988) as “explaining away,” and in psychology as “discounting”:

knowing that the farm had an early frost explains away or discounts the possibility that the

farm had an infestation.

More generally, the pattern of discounting can be conceived in the following way.

Observing that E is present increases the probability that C1 is present compared to its base

rate; P(c1=1)<P(c1=1|e=1). Subsequently observing that C2 is also present decreases the

likelihood of C1; P(c1=1|e=1)>P(c1=1|e=1, c2=1). If C1 and C2 are both sufficient to

produce E, then the probability of C1 falls all the way back down to its base rate; P(c1) =

P(c1=1|e=1, c2=1). However, if C2 is weak and is unlikely to explain the presence of E, then

the probability of C1 still remains higher than its base rate; P(c1=1)<P(c1=1|e=1, c2=1). See

Equations 7 and 8 for the normative calculations. We now discuss empirical results related

to discounting.
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Eq 7

Eq 8

The Prototypical “Discounting” Effect: P(c1=1|e=1, c2=1)<P(c1=1|e=1)—Morris

and Larrick (1995) defined discounting as the relationship between P(c1=1|e=1) and P(c1=1|

e=1, c2=1) and asked whether people discount normatively. There is a rich history of

research on discounting within social psychology. However, most of these studies did not

present people with all the parameters of the model, nor did they assess the parameters that

participants were intuitively using, so that a normative analysis is not possible. To answer

this question, Morris and Larrick (1995; pp 340–341) conducted a study using a classic

discounting scenario in which participants were told that they would read essays written by

other students about Castro’s regime in Cuba; half of the writers were randomly assigned to

write essays that were pro- or anti-Castro (Jones & Harris, 1967). In terms of the causal

structure framework, one of the potential causes, C1, was whether the writer’s personal

attitude was pro or anti-Castro. The second potential cause, C2, was whether the writer was

assigned to write an essay that was pro or anti-Castro. The effect, E, was whether the essay

was pro- or anti-Castro.

Participants first judged the following four parameters: P(c1=1), the prior probability of the

writer having a pro-Castro attitude, P(c2=1), the prior probability of a writer being assigned

to write a pro-Castro essay, P(e=1|c1=1, c2=0)=SC1, the probability that a person with a pro-

Castro attitude would write a pro-Castro essay even if he or she was assigned to write an

anti-Castro essay, and P(e=1|c1=0, c2=1)=SC2, the probability that a person with an anti-

Castro attitude would write a pro-Castro essay if he or she was assigned to write an pro-

Castro essay. After reading the essay, which was always pro-Castro, the participants rated

the probability that the writer had a pro-Castro attitude P(c1=1|e=1). Finally, participants

were told that the writer was assigned to write a pro-Castro essay, and the participants

judged again whether the writer’s attitude was pro-Castro, P(c1=1|e=1, c2=1).

Morris and Larrick (1995) found the normative discounting effect, P(c1=1|e=1) = .35 >

P(c1=1|e=1, c2=1) = .30. In fact, the inference of P(c1=1|e=1) was close to the normative

calculation of .36 based on participants’ own beliefs about the parameters. However, the

P(c1=1|e=1, c2=1) = .30 inference was numerically higher than the normative calculations (.

26), though not significantly so. Thus, it seems that participants did discount, though only

about half as much as they should have.

Fernbach and Rehder (2012; Experiment 3, “present” condition) told participants a

hypothetical scenario about a common effect structure, instructed them about SC1 and SC2,

and asked them to infer P(c1=1|e=1) and P(c1=1|e=1, c2=1). In one condition in which SC2

was strong, there is a slight trend for P(c1=1|e=1, c2=1)<P(c1=1|e=1). Yet in another
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condition in which SC2 was weak, there was a slight trend in the opposite direction.

Discounting should normatively be greater when SC2 is stronger, but it should never go in

the opposite direction so long as the two causes are independent (see the next section).

Unfortunately because participants were not told specific values for P(c1=1) and P(c2=1) we

cannot quantitatively compare these inferences to the normative model.

Rehder (under review) told participants about a common effect structure without the

parameters, and then had them choose which one is higher (or equal): P(c1=1|e=1, c2=1)

versus P(c1=1|e=1). Across two experiments participants were either more likely to choose

the former – the opposite of discounting – or there was not a significant difference.

In sum, relatively few studies that have examined discounting allow for comparisons to the

normative model. Out of those that do, discounting appears to be weak, and sometimes the

inferences go in the opposite direction of discounting.

A Related Discounting Effect: P(c1=1|e=1, c2=1) < P(c1=1|e=1, c2=0)—Several

studies have compared inferences of C1 when C2 is present versus absent. Hagmayer and

Waldmann (2007) and Luhmann and Ahn (2007; Experiment 3) presented participants with

a series of learning trials; on each trial they observed C2 and E and judged whether C1 was

present or absent. Fernbach and Rehder (2012; absent versus unknown conditions in

Experiment 3) and Rehder (2011; independent condition) told people the parameters SC1 and

SC2 and had them make judgments of P(c1=1|e=1, c2=1) and P(c1=1| e=1, c2=0).

For all these studies, participants’ inferences did exhibit the expected asymmetry P(c1=1|

e=1, c2=1) < P(c1=1| e=1, c2=0). Unfortunately, in all these studies P(c1=1) was not

identified, so quantitative comparisons to the normative model for P(c1=1| e=1, c2=1) were

not possible. There was, however, an unexpected pattern. Because there are only two

possible causes of E, P(c1=1| e=1, c2=0) should equal 1. In Hagmayer and Waldmann’s

study (Experiment 1), participants’ inferences of P(c1=1| e=1, c2=0) were close to 1, but in

Luhmann and Ahn’s study and Fernbach and Rehder’s study they were around 0.75. A

possible interpretation would be that participants inferred that there was another unobserved

cause of E. Inferring another unobserved cause could also dampen the standard discounting

effect P(c1=1|e=1, c2=1) < P(c1=1|e=1). However, if participants in these studies had

inferred unobserved generative causes, they should also have given higher ratings of P(e=1|

c1=1) than would be expected from the two known causes. At least in Fernbach and

Rehder’s (2012) study, this was not the case.

Sussman and Oppenheimer’s (2011) investigation involved three variables representing

plumbing parts (e.g., tightness of a clamp, amount of water flowing through a spout); they

also tested discounting. The authors found no discounting in Experiment 1; and in

Experiment 2, discounting was less than predicted by the normative model.

The Influence of SC2 on P(c1=1|e=1) and P(c1=1|e=1, c2=1)—Both P(c1=1|e=1) and

P(c1=1|e=1, c2=1) should decrease with higher values of SC2; the stronger that C2 is, the

more sufficient that C2 is to explain the presence of E, and thus the less that C1 is needed to

explain E. Fernbach and Rehder’s (2012) participants were told about the common effect
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structure and told the parameters SC1 and SC2. Participants’ inferences of P(c1=1|e=1, c2=1)

were lower when SC2 was higher (Experiment 3; Present condition). However participants’

inferences of P(c1=1|e=1) were not sensitive to SC2 (Experiment 2, explicit condition and

Experiment 3, unknown condition). But, these inferences cannot be quantitatively compared

to the normative model because two parameters, P(c1=1) and P(c2=1), were not known.

Discounting when two Causes Are Correlated—In the previous discussion of

discounting on a common effect model, C1→E←C2, the two causes were assumed to be

independent, in which case P(c1=1) ≤ P(c1=1|e=1) ≥ P(c1=1|e=1, c2=1). Here we consider

instances when the two causes are correlated (see Figure 15b), in which case these

inequalities do not necessarily hold. Instead of presenting equations, we explain discounting

with correlated causes using Figure 15. C1 and C2 could be correlated if there is an

underlying common cause or a direct link between C1 and C2; the inferences in Figure 15a

are derived assuming an additional link C1→C2 with the joint probability P(C1, E, C2)=P(E|

C1, C2)P(C2|C1)P(C1).

One easy way to think about discounting is to consider how the inference about C1 changes

after first learning that e=1, and again after also learning that c2=1. Thus, one should read

Figure 15a from left to right. The “independent” line in Figure 15a shows a typical

discounting pattern when the two causes are independent. Learning that E is present

increases the probability of C1. Then, learning that C2 is also present decreases the

probability of C1.

The “positive” line in Figure 15a shows how the pattern of inferences involved in

discounting is affected when the two causes are positively correlated. First, P(c1=1|e=1) is

higher when they are positively correlated compared to when they are independent. To

understand why, consider the common effect with correlated causes structure in Figure 15b.

Learning that e=1 increases the probability of C1 through the C1→E link, and it also

indirectly increases the probability of C1 through the C1—C2→E route. Subsequently

learning that C2=1 results in a smaller drop in the probability of C1 compared to the

structure with independent causes. The reason is that learning that c2=1 decreases the

probability of C1 through normal discounting (the “bottom” path C1→E←C2), but increases

the probability of C1 through the C1—C2 route.

Now consider how discounting is influenced by a negative correlation between the two

causes. Learning that e=1 increases the probability of C1 through the direct link C1→E, but

decreases the probability of C1 through the path C1—C2→E. This means that P(c1=1|e=1) is

lower compared to when the causes are independent (line Negative 1 in Figure 15). In fact,

if the C1—C2→E path is strong and C1→E is weak (Negative 2 line), then it is possible for

P(c1=1) > P(c1=1|e=1).

Subsequently learning that c2=1 results in a greater drop from P(c1=1|e=1) to P(c1=1|e=1,

c2=1), compared to when the causes are independent (compare the Independent versus

Negative 1 lines because they have similar parameters). Learning that c2=1 decreases the

probability of C1 through normal discounting (the “bottom” path C1→E←C2) and also

directly decreases the probability of C1 through the C1—C2 path.
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Morris and Larrick (1995; Experiment 2) tested whether people use the correlation between

C1 and C2 in a discounting task. Again, the participants read essays about Castro’s regime,

and they inferred whether the writer was pro-Castro (C1) given that the essay was pro-Castro

(e1=1), both before and after learning that the writer was assigned to write a pro-Castro

essay (c2=1). In the independent condition, writers were supposedly assigned to write pro or

anti-Castro essays randomly. In the positive versus negative correlation conditions, pro-

Castro writers were likely to be assigned to write pro-Castro essays (positive condition) or

anti-Castro essays (negative condition). Consistent with the normative standard, participants

discounted most strongly [P(c1=1|e=1) vs. P(c1=1|e=1, c2=1)] in the negative correlation

condition, least strongly in the positive correlation condition, and at an intermediate amount

in the independent condition.

However, one aspect of the results, not discussed by Morris and Larrick, was that across all

conditions and for both judgments of P(c1=1|e=1) and P(c1=1|e=1, c2=1), participants

tended to provide lower estimates compared to the normative standard. This under-

prediction resulted in some surprising patterns of reasoning. In the negative correlation

condition, participants’ average inference of P(c1=1|e=1) = .38 was lower than their

inference of P(c1=1) = .48 (we do not know if it was significantly lower); P(c1=1|e=1)

should have been .51. In the independent condition, the two inferences were essentially

equal, P(c1=1|e=1) = P(c1=1)=.48, even though P(c1=1|e=1) should have been .63. In the

positive correlation condition P(c1=1|e=1) > P(c1=1), although the difference was not as

large as expected. In sum, this experiment suggests that people are remarkably normative in

their overall pattern of discounting, but the inferences were biased to be low. These low

inferences might be explained by participants underweighting their own prior on C1 or by

their own strength of C1.

Summary of Discounting—A number of studies have demonstrated that people

sometimes discount the likelihood of one cause when another cause is known to have

occurred and is sufficient to explain the presence of the effect. People are even sensitive to

the correlation between the two causes. However, there are also a number of findings in

which discounting was considerably smaller than the amount implied by the normative

model, in which there was no discounting at all, or in which the inferences went in the

opposite direction of discounting. Clearly there are many remaining empirical questions

about discounting.

Use of the Base Rates in Diagnostic Judgments

Reips and Waldman (2008) conducted a study of diagnostic learning when there were two

diseases (causes) that both caused the same symptom (effect). Both diseases always caused

the symptom, so the diagnostic judgment P(c1=1|e=1) should perfectly reflect the frequency

of the diseases. Participants learned from experience that C1 was three times more common

than C2, and they could accurately report the base rates. Although their judgments of

P(c1=1|e=1) were greater than P(c2=1|e=1), the difference was not close to the expected 3:1

ratio. Similar to the results for the C→E structure, this result implies under-sensitivity to the

base rates.
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P(c1=1|e=0, c2=1) versus P(c1=1|e=0, c2=0) with Conjunctive Causes

So far we have only discussed scenarios in which C1 and C2 combine through a Noisy-OR

rule. Rehder (2011) investigated how people reason about probabilistic conjunctive causes;

when C1 and C2 are both present, the combination can cause E to be present, and there is

also another independent unobserved cause of E. In this case, P(c1=1|e=0, c2=1,) < P(c1=1|

e=0, c2=0). When the effect is absent, if c2=1, then C1 is probably absent (if it was present

then E would probably have been present). However, if c2=0, then c1 could be either 0 or 1.

Rehder (2011) presented participants with a common effect structure and a conjunctive

causes cover story, then told participants the causal strength parameters, and asked them to

infer P(c1=1|c2=1, e=0) and P(c1=1|c2=0, e=0). He found the predicted asymmetry.

Additionally, he found that the inferences of P(c1=1|e=0, c2=0) were low, despite the fact

that C1 was described as usually being present. This pattern probably reflects misuse of the

base rate of C1.

Inferring E from Multiple Causes: P(E|C1, C2)

Fernbach and Rehder (2012; Experiment 3, “present” condition) conducted a study in which

participants were told about a common effect structure, were told about the strength

parameters [SC1=0.6 and SC2=.25 versus 0.75], and were asked to infer P(e=1|c1=1, c2=1).

Although this inference was higher when SC2 was higher, the ifference was not as large as it

should have been. The normative model predicts .9 versus .7, a difference of .2, but their

participants inferred only a difference of about .07. People do not use the strength

parameters as strongly as they should.

Counterfactual Questions: P(c1=1| if e had been 0 instead of 1)

So far we have discussed inferences based on observations and interventions. Here we

discuss a third type of inference, counterfactuals. Counterfactuals involve first observing the

states of the nodes, and then asking a question about what would have been true if the actual

conditions had not all occurred. For example, suppose one year on the farm (Figure 1) there

was not an early frost nor an infestation and there was a good tomato harvest. A

counterfactual could be “What is the likelihood of a good tomato harvest if there had been

an early frost?”

One possible solution is to treat counterfactuals as observations; P(good harvest | early

frost). The problem with this interpretation is that it discards our knowledge that the farm

did not have an infestation. Pearl (2000) proposed that in many situations counterfactuals

can be interpreted as interventions. In this case the counterfactual would be interpreted as

P(good harvest | early frost, no infestation)

Consider a different counterfactual: “What is the likelihood of an early frost if there had

been a poor tomato harvest?” (Remember that we know that there was not an early frost nor

an infestation and there was a good harvest.) According to the intervention account, the

intervention is on the poor harvest, which would mean that we maintain the belief that there

was not an early frost nor an infestation. The potential problem with this account is that one
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might think the following: “if there had been a poor harvest, there is a decent chance that it

is due to an early frost.” The intervention account does not allow for reasoning “upstream.”

Hiddleston (2005) proposed another, more complicated, way to represent counterfactuals

that involves thinking about the possible minimal changes to the causal network in which

the counterfactual is true, but all the other nodes are “minimally” different from their actual

states. In contrast to the intervention account, a minimal change could involve changes in

nodes “upstream” of the counterfactual variable.

Rips (2010; see also Sloman & Lagnado, 2005) tested how people interpret counterfactuals

on a common effect structure. Across a variety of conditions, Rips found that none of the

strategies (observations, interventions, or “minimal-networks”) by itself could account for

all the results; he eventually proposed a modified version of the minimal-networks approach.

In sum, it is not yet clear exactly how people interpret counterfactuals, and there is still

expert disagreement on the normative interpretation of counterfactuals.

Conditional, “If … Then” Reasoning and Acceptability of Logical Arguments

There is a large literature on people’s inferences involving propositions stated in an “If …

Then” syntactic format (Evans & Over, 2004, provides an excellent introduction). Many

such sentences refer to causal relationships, and some philosophers and experimentalists

have proposed that conditional statements “If p, then q,” are often interpreted

probabilistically as P(q=1|p=1) (Evans, Handley & Over, 2003; Oberauer & Wilhelm, 2003;

Over, Hadjichristidis, Evans, Handley & Sloman, 2007; see Bennett, 2003, on “The Ramsey

Test”).

Furthermore, the logical rules of inference (Modus Ponens, Modus Tollens, Denying the

Antecedent, and Affirming the Consequent) can also be interpreted as probabilistic

inferences instead of logical. For example, consider the premise “If c=1, then e=1” (i.e.

C→E). “Affirming the consequent” is the inference “e=1, therefore c=1.” Logically this

inference is invalid; however, consider how this inference might be viewed from causal

structure perspective (Fernbach and Erb, in press; see Liu, Lo, & Wu, 1996; Oaksord,

Chater, & Larkin, 2000, for other probabilistic accounts). First, in instances when the

premise “If c=1, then e=1” refers to a causal relationship, C→E, one may extend the

structure with background knowledge and include P(c=1) and SC as well as other generative

or inhibitory causes of E to form a structure like that in Figure 18. Second, assessing the

acceptability of the inference “e=1, therefore c=1” could be interpreted as a request for the

inference P(c=1|e=1). Thereby, the four canonical forms of logical argumentation can be

reframed as conditional probability inferences. Table 6 maps between the logical and

probabilistic interpretations of these inferences and gives mathematical derivations of the

probabilistic inferences on the structure in Figure 18. For comprehensibility we talk about

these logical inferences as interchangeable with conditional probability notation, even

though many of the experiments actually had people judge the validity or acceptability of

the logical arguments.

Although not explicitly framed in terms of Causal Bayesian Networks, a number of studies

have examined the effect of manipulating various parameters of the causal structure, the
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number or strength of alternative generative or inhibitory causes, on the perceived validity

of logical arguments. We use SG and SI to denote the total likelihood of alternative causes

generating vs. inhibiting E. Higher SG reflects lower necessity and higher SI reflects lower

sufficiency of the C→E relation. There are four classic and robust findings (see *s in Table

6; e.g., Cummins et al., 1991; Cummins, 1995; Quinn & Markovits, 1998; De Neys,

Schaeken, & d’Ydewalle, 2003a). Increasing SI leads to 1) lower judgments of Modus

Ponens and 2) lower judgments of Modus Tollens. For example, given the conditional from

Cummins (1995), “If John studied hard, then he did well on the test,” it is possible to think

of many possible disabling conditions (e.g., the test was very hard), which lead to a lower

endorsement of Modus Ponens “John studied hard… therefore he did well on the test.”

Additionally, increasing SG leads to 3) lower judgments of Denying the Antecedent and 4)

lower judgments of Affirming the Consequent. These classic findings make perfect sense in

terms of inferences on a causal network, and Fernbach and Erb (in press) have proposed a

causal network framework to model such effects (although they used a slightly different

structure than Figure 18). (Note that these classic studies predicted no effect of SG on Modus

Ponens and Modus Tollens and no effect of SI on Denying the Antecedent and Affirming the

Consequent.)

This causal model account of conditional inference has a number of benefits. First, it

clarifies the features of the causal scenario that matter; the number, base rates, and strengths

of the alternative generative and inhibitory causes (Fernbach & Erb, in press). We group

these factors together as SG and SI. In addition, one’s belief in the integration function would

be critical, although here we are only discussing noisy-OR.

Second, this account makes many of the same predictions as those made in the classic

studies (e.g., Cummins, 1995, see the *s in Table 6). In fact, it explains why SI is predicted

to have no effect on Affirming the Consequent; it falls out of the equation in Row 4.

However, we note that some studies have found a positive effect SI (De Neys, Schaeken, &

d’Ydewalle, 2002, Experiment. 2; 2003b; Beller, 2006).

Third, this account makes three different predictions than the standard ones (see the arrows

in Table 6 not marked with an asterisk ). First, increasing SG should increase the acceptance

of MP, P(e=1|c=1). People sometimes ignore implicit alternative generative causes for

P(e=1|c=1) judgments (see the C→E section), and Fernbach and Erb (in press) did not

include them in their model, although two studies found this effect (Beller, 2006;

Thompson, 1994). Second, increasing SG should decrease the acceptance of Modus Tollens,

P(c=0|e=0). The effect is predicted to be small and the reason is quite complex. Normally

once it is known that e=0 then it is very likely that c=0. But the stronger SG is, then the more

likely that the alternative inhibitory causes were present, in which case it is less certain that c

must have been absent (Cummins et al., 1991; De Neys et al., 2002, Ex. 2; 2003b; Markovits

& Handley, 2005, Experiment 1; see also Cummins, 1995). Third, increasing SI should

increase the acceptance of Denying the Antecedent, P(e=0|c=0) (De Neys, Schaeken, &

d’Ydewalle, 2002, Ex. 2; Beller, 2006).

Our goal here is to point out how causal network models may be useful for explaining

conditional reasoning effects, with the benefits of a formal yet flexible framework. The
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research is still insufficient to provide a strong argument for or against the value of this

interpretation.

In a similar vein, Ali, Chater, and Oaksford (2011) have used a causal network framework to

model conditional reasoning comparing common cause vs. common effect structures. For

example, one of the common effect scenarios had two conditionals: “If I do not clean my

teeth, then I get cavities” and “If I eat lots of sugar, then I get cavities.” Then participants

were asked “I got a cavity… how likely is it that I did not clean my teeth?” P(c1=1|e=1), and

“I got a cavity and I ate lots of sugar… how likely is it that I did not clean my teeth?”

P(c1=1|e=1, c2=1). They found some of the effects predicted by causal structures such as

discounting, but they also found some effects that are inconsistent with causal structures

such as violations of the Markov Assumption, P(c1=1)>P(c1=1|c2=1).

In sum, there are some intriguing applications of causal networks to model the acceptability

of logical arguments and conditional reasoning. Although these approaches show promise,

these paradigms rely heavily upon the application of knowledge that people have about the

causal relationships as well as linguistic pragmatics, which pose challenges for assessing the

causal structure framework.

Diamond Structures

Diamond structures are unique in that there are two routes from the cause to the effect, and

both routes must be simultaneously considered when performing inference. We already

discussed a structure with two routes in the section on discounting when the two causes are

correlated. Here we use M1 and M2 to refer to alternative mediators of the two routes (see

Figure 19).

Reasoning about Both Routes Simultaneously

Meder, Hagmayer, and Waldmann (2008) investigated whether people take M2 into account

when inferring P(E|M1). To test this, they compared two inferences, when M1 is observed to

be present P(e=1|m1=1) versus when one intervenes and sets M1 to be present, P(e=1|set

m1=1). If M1 is observed to be present, then C and M2 are probably present, so P(e=1|m1=1)

should be very high. In contrast, when M1 is intervened upon and set to 1, the intervener has

no knowledge of the state of C or M2; the best estimate of M2 is its base rate. Thus, P(e=1|

set m1=1) should be lower than P(e=1|m1=1). Through the same logic, the opposite pattern

holds for observing versus setting m1=0. In sum, the following asymmetries should hold:

P(e=1|m1=0) < P(e=1|set m1=0) < P(e=1|set m1=1) < P(e=1|m1=1).

Meder, Hagmayer, and Waldmann (2008; Experiment 1) told participants about the diamond

structure and participants experienced a series of trials to learn the parameters. Remarkably,

participants’ answers to the inference questions reflected the predicted asymmetries. These

results suggest that their participants understood the difference between interventions and

observations, and understood that M1 and M2 would be correlated for observations but not

for interventions, and used both M1 and M2 to infer E. In follow-up experiments, Meder,

Hagmayer, and Waldmann (2009) also demonstrated that people’s inferences are sensitive to

the base rate of C and the strength of the causal relations.
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Even though these studies did demonstrate the basic normative patterns, the inferences

tended to be weaker (i.e., closer to the middle of the scale) than expected. For example, in

Meder et al., (2008, Experiment 1), the difference between P(e=1|m1=1) and P(e=1|m1=0)

and should have been .78 (when converted to a probability scale). However, participants

inferred a difference of only .37. This could have been due to underweighting the strength of

M1, or underweighting any of the three other causal strengths (Figure 19). Additionally, the

difference between P(e=1|set m1=1) and P(e=1|set m1=0) should have been .48, but

participants inferred a difference of only .15. This reflects an underweighting of the impact

of M1 on E (Figure 19).

Similar effects obtained in the 2009 study as well. Meder et al. (2009, Experiment 2)

examined how differences in the base rate of C would affect inferences of P(e=1|set m1=0).

When M1 is intervened upon and set to 0, the only possible cause of E is M2, and the

probability of E should be higher to the extent that the base rate of C is higher. The

manipulation of P(c=1) did produce a difference in the judgment of E, but the difference

was only about half as large as it should be (.15 vs. .30). In sum, these experiments

systematically demonstrate that people do use the parameters of a diamond model for

inferring E, but in every case they seem not to use them as much as expected by the

normative model.

Counterfactuals in Diamond Structures

Meder, Hagmayer, and Waldman (2009) asked another question that they called a

“counterfactual intervention.” In the standard “hypothetical intervention” question, the states

of the variables are not known before the intervention. However, in the counterfactual

intervention question, participants were told the state of M1 before it was manipulated such

as the following: “What is the probability of E given that you saw that M1 was absent and

then you intervened and made it present?” Because the state of M1 was known to be 0 before

the intervention, one can infer that C and thus M2 are probably also 0. In this way, the

counterfactual intervention question requires reasoning about both routes (M1-E) and (M1-C-

M2-E).

Meder, Hagmayer, and Waldman (2009) found that people’s inferences were only minimally

different comparing standard intervention questions and counterfactual interventions. This

lack of a difference could be interpreted as underweighting any or all of the causal strengths

along this route or just general confusion about the question.

Intervening on Causal Structures to Produce Desired Outcomes

So far our discussion has focused on inference for its own sake. But, inferences also serve

another purpose: they can help us identify interventions that produce desired outcomes

(Meder, Gerstenberg, Hagmayer, & Waldmann, 2010; Sloman & Hagmayer, 2006). We can

expand the standard causal network framework introduced in the introduction with utility

nodes to represent the desirability of various events. In fact, the “Profit from Tomatoes”

node in our Farming Scenario is essentially a utility node. Rationally, it would make sense to

choose interventions that maximize the utility over all the utility nodes in the network.
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Choosing an intervention to maximize the utility nodes of a causal network requires two

steps in addition to performing inferences. First, instead of inferring the value of one node

given an intervention, one must infer the value of all the utility nodes for a given

intervention and sum across them. Second, one must choose the intervention to maximize

expected utility. This decision may seem trivial, but given that people often exhibit

probability matching instead of maximization in choice paradigms, it is possible that they

will fail to maximize the utility of the network (Eberhardt & Danks, 2011).

Nichols and Danks (2007, Experiment 1) taught people a common effect structure

C1→E←C2, in which C1 was stronger than C2. Participants could intervene on either C1 or

C2 to try to produce the E, which was tied to a monetary reward. Not surprisingly, they were

more likely to intervene on C1. Out of the participants who intervened on C2, most of them

incorrectly believed that C2 was stronger than C1.

In a second experiment, Nichols and Danks taught participants about a chain structure

C→M→E. Intervening on M was more likely to produce E than intervening on C; however,

the “cost” of intervening on M was greater than the “cost” of intervening on C, making the

average expected payoff higher for C than M. Seventy-eight percent of participants

intervened on the variable that, according to their beliefs about the network, would

maximize their expected payoff. However, 15% of participants still chose interventions that

did not maximize expected payoff, according to their own beliefs about the causal structure.

Hagmayer and Meder (2008; 2012, Meder & Hagmayer, 2009) investigated a similar

phenomenon with the structures in Figure 20. The square nodes represent possible

interventions, the P node represents an outcome to be maximized, and the plus signs denote

the size of the outcome given that a given combination of nodes (A, and or B, and or C) is

active. In Hagmayer and Meder’s study (2012; Experiment 3) participants first learned the

causal structures (either Figure 20a or 20b) by activating L or W 100 times and observing

whether A, B, or C became active and the value of P. Afterwards, participants were told that

the A node was removed from the network, and they had 10 opportunities to activate L or W

in order to maximize P.

Those who believed the structure to be the one in Figure 20a almost always chose W;

intervening on L would have no chance of producing P now that A was removed from the

network. However, participants who believed the structure to be the one in Figure 20b only

chose L 55% of the time, even though they understood that L still had a higher expected

value than W. In sum, people’s beliefs in the causal structure did have a large influence on

their choices, but they also did not choose interventions that would fully maximize the

outcome according to their own beliefs. Probability matching is a likely explanation.

These initial studies suggest that, for the most part, people use their beliefs about causal

structures to choose actions that will increase payoffs. We speculate that when people

confidently believe in a causal structure, they tend to maximize instead of probability match

(e.g., Taylor, Landy, and Ross, 2012). But, in the real world, where people often choose

interventions with incomplete knowledge of the relevant causal system, the probability

matching habit emerges.
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General Discussion

In this review we focused on studies in which people are given a causal structure, learn the

parameters, and then make inferences. We started with a review of behavioral studies that

examined violations to the Markov Assumption. We then catalogued various inferences that

can be made on chain, common cause, one link, common effect, and diamond structures.

Finally, we discussed how people decide to intervene on causal structures in order to

produce a desired effect. In this General Discussion, we first discuss the uses of a normative

rational analysis. Then we summarize and reorganize key results into two sections based on

(a) violations of the Markov Assumption and (b) conservative inferences or under-use of

parameter information. We also discuss possible approaches to a more descriptive, semi-

rational model.

The Uses of the Normative, Rational Analysis

The present review was motivated by the relatively recent invention of a normative model

for representing and calculating the implications of a system of causal relationships.

However, there is no consensus on the value of normative, optimal, rational models in the

behavioral sciences. Indeed, the very nature of a normative analysis is a matter of dispute.

So, we provide a brief discussion that clarifies our own views on this knotty bundle of

questions.

What is an optimal, rational model?—Scientific, mathematical, and philosophical

analyses produce models of real world situations that can be used to guide actions to achieve

goals in an optimally efficient manner. In some cases, the goals are implicit (e.g., logical

truth-maintaining coherence; precise forecasts of the operations of a mechanical system),

and in others the goals are stated as part of the model of the situation (e.g., to trade-off

expected risk and returns at a designated rate in an investment). Such normative models are

evaluated with reference to their accuracy or their usefulness in achieving outcomes in

objective physical, biological, or social realities. Some examples of normative models that

have been used in the behavioral sciences are elementary logic, probability and other

mathematical theories, utility theories and Game Theory in the von Neumann-Morgenstern

tradition, “ideal” models for identifying sensory stimulus events, and physics laws of

mechanics. For all of these normative models there is close to unanimous consensus among

experts that the models are accurate descriptions of the relevant domains of reality. The

Bayesian Causal Networks framework is a new candidate for a normative model to represent

objective causal systems.

Normative models can be contrasted with descriptive or psychological models that attempt

to explain and predict behavior by proposing psychological mechanisms. Some theorists

believe that normative models are closely related to psychological-descriptive models (e.g.,

many economists assume that a “rational man” model provides a good description of the

actual behavior of economic agents; many behavioral ecologists believe that optimal models

are the best descriptive models for the behavior of foraging animals; cf. Krebs & Davies,

1993). But, most psychologists believe that there are significant differences between the

predictions of normative models and actual behavior.
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The first conceptual challenge facing behavioral researchers who want to use normative

models is to specify the application of a normative framework to a behavioral task. In many

cases the identification of an optimal model is not obvious, so alternate rational models must

be entertained (see disputes in Jones & Love, 2011, and discussion in Holyoak & Cheng,

2011). Examples in the present context include maximizing the total payoff versus

maximizing the probability of a payoff when choosing an intervention (e.g., Nichols and

Danks, 2007), whether people interpret the scenarios used in typical experiments to be

atemporal or temporal (Rottman & Keil, 2012), and whether people intuitively believe that

causes combine using noisy-OR or some other function. Even in the highly constrained

environment of a psychology experiment, there is always the potential for ambiguity about

the scenario, task, goals, and relevant prior knowledge. In sum, claiming a model as optimal

or rational for a particular task requires justification and often requires making simplifying

assumptions about the task.

The special difficulty of defending a normative model for causality—Identifying

a normative framework for causal reasoning is particularly challenging because of its rich

and diverse nature. We talk (and think) fluently about many different domains of causality

including biological, mechanical, psychological, and social causation: “The fruitworm

infestation caused the poor tomato harvest”; “the icy highway caused the traffic accident”;

“Jill’s intelligence caused her to get a perfect score on the SAT test.” We can comprehend

the meaning of causal statements despite a lack of understanding as to how they occurred

(e.g., “God caused the Red Sea to part”; “Fossil fuel emissions cause global warming,”

“Smoking causes lung cancer”). We think about causal processes that unfold at many

different time frames and orders of magnitude, and we fluently reason about both single

cause-effect instances and statistical regularities.

Many find the Causal Networks formalism to be a useful normative framework of objective

causation. However, there is still much controversy about using Causal Networks as a

foundation for conceptualizing causation. First, there is less acceptance of its status as a

normative model than for other popular normative systems (e.g., elementary mathematics,

logic, probability, and mechanics). Second, Causal Networks are only a couple of decades

old, and still changing at a higher rate than older, more established normative systems.

Third, there is more disagreement on metaphysical assumptions concerning objective

causation, than there is on referents of the other normative systems.

Uses of a normative analysis with no claims about its psychologically
descriptive validity—Several useful applications of normative models involve no claims

about relationships between the normative and psychological-descriptive theories (cf.

Garner, 1974, pp. 192–193). Normative frameworks provide a language to describe

experimental tasks and goals, to specify at least one procedure for performing a task, and to

determine standards for accurate or optimal performance. For example, Morris and Larrick’s

(1995) analysis of discounting provided a language to discuss discounting [as the

relationship between P(c1=1), P(c1=1|e=1), and P(c1=1|e=1, c2=1)]. Their analysis also

clarified the “objectives” that were underspecified in the previous attribution theory

literature; depending on the causal structure and parameters P(c1=1|e=1, c2=1) should
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sometimes be greater than, equal to, or less than P(c1=1). Differences between the normative

“answers” and human performance are often consequential. Knowing when humans are non-

optimal may be useful in practical endeavors and to guide the design of remedial procedures.

In the case of the present review, we believe it is important to know what kinds of errors

people are likely to make when they reason intuitively or analytically, even in a controlled

experimental setting, about what’s causing what and how to use causal knowledge to bring

about desired outcomes.

A closely related approach is to keep normative and descriptive accounts separate, but to

pursue a research program to map the two levels onto each other. The most commonly cited

inspiration for this research tactic is David Marr’s three-level framework (1982), which

distinguished between a Computational Level (a functional analysis, often a normative

model, including the actor’s goals), an Algorithmic-Representational Level (the descriptive-

psychological model), and an Implementational Level (a neural-biological model)—and

which promoted formal mappings between adjacent levels.

Normatively-inspired descriptive models—Many behavioral researchers go a step

further and use normative models as an inspiration for psychological-descriptive theories or

principles (see Anderson, 1990; Anderson & Milson, 1989 as exemplars). They first

complete a normative analysis of the task and then use that analysis (with samples of

behavioral data) to guide the invention of a descriptive model. The most commonly

mentioned justification for this interaction between the two types of models is to note that

humans are selected by evolution and shaped by learning to excel at tasks that are important

to our survival, so that many of the normative principles are likely to be “wired-in”

genetically or learned from individual experience as an adaptive strategy.

When applying a rational framework to empirical results, it is often found that human minds

are bounded or lazy in ways that prevent them from performing the optimal calculations

required for “full rationality” (Gigerenzer, Todd, & The ABC Research Group, 1999;

Kahneman, 2003; Payne, Bettman, & Johnson, 1993; Shah & Oppenheimer, 2008; Simon,

1955). The notion that informal causal inference would follow shortcuts is especially

plausible when one thinks though all of the calculations that would be necessary for a

sufficient model of the optimal computation (Fernbach & Rehder, 2012; or see the complex

equations in this article). Because the application of Causal Network models is so new, there

are no full-fledged general proposals for the manner in which the rational model should be

adjusted to be more descriptive. In the following sections we cite some proposals for parts of

the problem.

The normative model is the descriptive model—The most extreme approach is to

say we don’t need a descriptive model because we can predict behavior from only the

normative model. No one so far has explicitly proposed this claim for causal reasoning,

although some researchers have come close, by emphasizing the correspondences between

Bayesian networks and participants’ judgments (e.g., Krynski & Tenenbaum, 2007; Sloman

& Langado, 2005; Waldmann & Hagmayer, 2005). Yet we believe that most researchers

expect there will be some reliable differences between normative and descriptive accounts

(Jones & Love, 2011, and commentary). Our review refutes the strong claim with several
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examples of consistent discrepancies between human judgments and the implications of

well-defined causal networks.

In the next sections we discuss the two main deviations from the normative model:

violations of the Markov Assumption and conservative or weak inferences. We also discuss

possible modifications to the normative model to make it more descriptive.

Summary of Main Results

The studies we have reviewed almost all had the goal of examining whether an experimental

manipulation produced a significant effect in the direction predicted by the normative

model. We also looked for patterns of the quantitative fit of the normative model, such as

conservative biases where the inference was “in the right direction” but was too weak. We

emphasized systematic patterns across experiments rather than deviations in particular

means in single experiments. However, because many of these inferences have been studied

in only one or two experiments and often those experiments were not designed to investigate

the particular comparison we were interested in, some of our conclusions are educated

judgment calls. We discuss these findings in terms of the farming example used in the

introduction, reprinted in Figure 21.

Violations of the Markov Assumption—The Markov Assumption specifies which

nodes should be ignored for a particular inference, which simplifies reasoning. However,

many studies found violations of the Markov Assumption. For example, if one knows that

there was a poor tomato harvest (T), learning about an early frost (F) should not have any

impact on inferences about profit (P), yet it did. Likewise, if one knows that there was an

early frost on the farm (F), learning that there was a poor cantaloupe harvest or a good

cantaloupe harvest (C) should not have any bearing on whether there was a poor tomato

harvest (T). Yet it did here, too. Burnett (2004) also found bigger violations for closer

variables (e.g., F would have a bigger effect than C on inferring P even when the state of T

is known).

Some of these violations can be explained through alternative accounts that justify the

apparent deviation with a rational or adaptive interpretation such as imagining additional

nodes in the network or additional causal relationships outside those specified by the

experimenter (e.g., Burnett, 2004). Back to the farming example, perhaps observing that

there is a poor cantaloupe harvest is a sign that there was not enough rain, a variable not

represented in the network, which might also cause a poor tomato harvest. Everyday causal

systems are more complex than those in the experiments. Because of this complexity, some

skeptics of the Causal Networks approach for engineering and data mining have argued that

the Markov Assumption is unrealistically restrictive (Cartwright, 1999; 2001; 2002).

A more philosophical justification derives from the probabilistic nature of causality in these

experiments. When a cause occurs and an effect does not (or vice versa), one interpretation

implies that there must be an additional (generative or inhibitory) cause(s) that also

influences the effect (Rottman, Ahn, & Luhmann. 2011). More fundamentally, if people act

as if we live in a Laplacean world (i.e., if we know the state of everything in the universe

then it is possible to perfectly predict the future), any contradiction between the causes and
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the predicted effects implies that there must be unknown factors. A person who conceives of

causal relationships in this manner would certainly interpret an experimenter’s description of

a small set of probabilistically related events as a subset of all relevant events. Believing that

there are unobserved causes is not a problem for the causal network framework per se. But it

is a problem if these unobserved relationships result in additional correlations between

observed variables. Admitting this possibility undermines the validity of the experimental

tests of the causal network framework, and it also challenges the validity of the framework

in all applications.

Our view is that there are enough violations of the Markov independence condition, in cases

where “importing” additional causal links was highly implausible or unjustified, to force the

conclusion that humans reliably violate the principle. As noted before, it is also informative

that these additional correlations have always been found to be positive; there is no reason a

priori why they would not be negative.

There are several potential explanations for these patterns of reasoning. First, some people

may engage in associative reasoning (e.g., Rehder, under review). Associative style

reasoning implies that people don’t distinguish the direction of causal relationships (such as

the difference between a common cause and common effect structure). Processes like

second-order conditioning could potentially explain why people think that screened-off

variables are still relevant. Alternatively, Hagmayer and Waldmann (2002) developed a

constraint-satisfaction model of causal learning and reasoning. A characteristic of this model

is that it is easy to learn individual causal relationships but harder to understand entire causal

structures and the conditional and unconditional independencies (e.g., the difference

between common cause vs. common effect structures). A related approach is to propose

reasoning “locally” on subsets of the graph or single causal relations at a time (e.g.,

Fernbach & Sloman, 2009; Kruschke, 2006; Waldmann, Cheng, Hagmayer, & Blaisdell,

2008). In sum, these persistent violations warrant considering non-normative consistency-

seeking explanations.

Conservative Inferences—Another result that has been reported in many different

studies is that people made less extreme inferences than are implied by the parameters of the

causal networks. “Base rate neglect” is the most obvious example of an under-sensitive

inference. Consider the one-link structure: early frost → poor cantaloupe harvest. One

would expect the probability of an early frost given a poor cantaloupe harvest to be higher

than the prior probability of an early frost, although this was not always observed (Meder,

Hagmayer, & Waldmann; 2009).

Consider the chain structure: early frost → poor tomato harvest → small profit from

tomatoes. What is the chance of a small profit given an early frost? For analogous questions,

Baetu and Baker (2009) found that transitive inferences are not as strong as they should be.

Rehder and Kim (2010) asked their participants to infer the marginal probability of small

profit from tomatoes. Although participants’ inferences were influenced by the appropriate

parameters (the base rate of early frost and the strengths of the causal links), they were not

as sensitive as they should have been.
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Consider the common cause structure: poor cantaloupe harvest ← early frost → poor

tomato harvest. During years in which there is a poor (vs. good) cantaloupe harvest it is

likely that there would also be a poor (good) tomato harvest. In analogous situations in

which people separately learned about the two causal relationships, they did not fully

understand the extent to which effects of a common cause were correlated (Hagmayer &

Waldmann, 2000; Perales, Catena, & Maldonado; 2004).

Consider the common effect structure: early frost → poor tomato harvest ← tomato

fruitworm infestation. Learning that there was a poor tomato harvest makes an infestation

more likely, but subsequently learning that there was an early frost suggests that there was

not an infestation; the frost “explains away” the poor tomato harvest. Although “explaining

away” is considered to be a hallmark of causal reasoning, the existing research has found it

to be weaker than it should be, if present at all (Morris & Larrick, 1995; Sussman &

Oppenheimer, 2011; Rehder, under review). Fernbach, Darlow, and Sloman (2011) asked

participants questions analogous to “An early frost occurred; what is the probability that

there was a poor tomato harvest?” Participants tended to ignore the possibility that an

infestation could also cause a poor tomato harvest.

Because Figure 21 does not have a diamond, we modified it (Figure 22). Meder, Hagmayer,

and Waldmann (2008; 2009) asked participants questions analogous to, “What is the

probability of a small total profit given that there is a poor cantaloupe harvest?” implying

that there probably was also an early frost and probably also a poor tomato harvest. They

also asked the same question “… given that the cantaloupes were poisoned?”, which implies

nothing about an early frost or the tomato harvest. Both of these inferences were closer to

the middle of the scale than expected, which could reflect insufficient use of the parameters.

There are a number of possible explanations for conservative inferences that derive from

characteristics of the experimental tasks. First, it is possible that even though participants in

these experiments were told the causal structure, they did not accept the experimenter’s

statement of the causal structure. If people are uncertain about the causal structure they

might perform inferences over multiple possible structures (Meder, Mayrhofer, &

Waldmann, 2009; see Schum & Martin, 1982, for a related problem in law). However, many

of the studies we review used novel variables and it is not clear why participants would have

rejected the experimenters’ cover stories about the causal structure, especially when the

learning data also matched the causal structure.

Second, it is possible that people had not fully learned the parameters of the causal model; if

they had observed more evidence, their beliefs in the parameters might have been stronger.

Meder, Hagmayer, and Waldmann (2009) proposed that their participants’ parameter

estimates might have been influenced by a prior distribution (e.g., a uniform prior) that

could have pulled inferences towards the middle of the scale. However, other theorists have

argued that participants have non-uniform priors in mind. For example, Lu et al. (2008; see

also Yeung & Griffiths, 2011) suggested that people expect causes to be either strong or

non-existent, but not moderately strong. If people actually used these priors, then their

inferences would be more extreme than the standard analysis; yet, people’s inferences tend

to be more conservative.
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There are two other pieces of evidence suggesting that conservative inferences are not just

due to insufficient or pre-asymptotic learning of the parameters, or to averaging over

participants with extreme but different judgments. First, the standard observation of base

rate neglect (e.g., predictive value of breast cancer given a positive mammogram P(c=1|

e=1); Eddy, 1982) occurs even when people are explicitly told the parameters. Indeed, base

rate neglect has traditionally been found to be more extreme in situations in which the base

rates are explicitly stated, compared to when they are learned from experience (Christensen-

Szalanski & Beach, 1982; Koehler, 1996). Second, some of the studies found conservative

inferences even compared to participants’ own stated beliefs in the parameters (e.g.,

Fernbach, Darlow, & Sloman, 2011; Morris & Larrick, 1995). Thus, we conclude that

conservative inferences are caused by something more than insufficient learning of the

parameters.

Third, it is difficult to separate true conservative reasoning from methodological artifacts

associated with the rating scales used in all of the studies that ask for numerical ratings. It is

plausible that some of the conservative habits are merely response biases produced by using

response formats with a salient, “safe” or “compromise” midpoint. This artifact cannot be

evaluated without systematic variations of the response scale formats, tests on inferences

that involve different regions on the scales, and performance-contingent incentives.

Overall, some of the conservatism in judgments is likely due to general habits of caution.

But, we also believe that there are hints in the conservative patterns of inferences that

additional judgment habits are involved. We think it is unlikely that deliberate reasoning

processes exactly map onto the Bayesian calculations. We conjecture that anchor and

insufficient adjustment habits are plausible psychologically (cf. Lopes, 1987). The problem

with this interpretation is that it simply re-labels the observed results, without providing

deeper understanding, unless the anchoring process is further specified.

Let’s walk through a speculation on anchoring strategies. Consider inferences on the C→E

structure. Suppose the following causal parameters are provided via verbal-numerical

instructions [P(c=1)=.30, P(e=1|c=1)=.80, P(e=1|c=0)=.40], which imply P(e=1)=.52. What

are some of the plausible anchor values for inferring P(e=1)? (i) One anchor would be zero;

assume that E is not occurring and then adjust upwards for causal forces that increase its

chances of occurring [P(e=1|c=1)=.80 and P(e=1|c=0) =.40]. (ii) Another anchor could be

the salient value P(e=1|c=1)=.80; then adjust down towards P(c=1|e=0)=.40, or in the

opposite direction. (iii) Some people might anchor on a mid-point between P(e=1|c=0)=.40

and P(e=1|c=1)=.80, perhaps .60, and then adjust downwards given that P(c=1)=.30. Note

that these alternative anchoring strategies produce a range of predictions: anchor on zero,

which is likely to produce a low rating, vs. anchor on .80, which is likely to produce a high

rating. The predictions are blurred further by the plausible assumption that different

participants are likely to anchor on different parameters.

We can also speculate about psychological processes when the causal structure is learned

from samples, rather than declaratively through words and numbers. For an inference like

P(e=1), participants might assess the memory strength or frequency in memory of (e=1)

experiences, in which case the assessment is likely to be regressive with over-estimated low
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frequencies and under-estimated high frequencies (Attneave, 1953; Zacks & Hasher, 2002).

For an inference like P(c=1|e=1), participants could try to recall the percent of (c=1)

experiences out of the recalled set of (e=1) experiences.

This discussion makes it obvious that anyone who wants to make an empirical argument for

an alternative to the Bayesian calculation will have to be clear about the alternative

calculations that are proposed and increase the control and precision of the experimental

methods. In fact, we hope researchers proceed in this fashion, as we do not believe that the

humans’ explicit inferences about causal relationships are fully Bayesian. We also believe

that some kind of serial averaging process is the most likely candidate for an alternative

calculation, given the vast number of averaging results in the judgment literature and given

that averaging, for most parameter values in the research we have reviewed, produces

conservative final estimates.

We should also note a final complexity. One important aspect of the weak causal inferences

is that they seem to run against the Markov violations. Take the structure C→M→E. A

typical violation of the Markov assumption involves inferring P(e=1|m=1, c=1) > P(e=1|

m=1, c=0). The two judgments are too far apart, when they should be equal; C affects the

inference about E when it should have been “screened off” by the knowledge of the

mediator (M). In contrast, a standard too-weak transitive inference involves inferring that

P(e=1|c=1) and P(e=1|c=0) are too close together. The only difference between these two

sets of findings is whether the state of M is known or not. Recall that some researchers (e.g.,

Rehder & Burnett, 2005) proposed adding a “hidden mechanism” node to explain the

Markov Violations, but adding such a node would lead to overly strong rather than weak

transitive inference. The implication is that it is doubtful that there is a unitary rational

explanation for these two results.

A potential way to model these two findings is with a linear averaging approach. When

inferring E, M gets most of the weight but C still gets some weight. This approach could

potentially capture the fact that C is weighted too little for transitive inferences, but it is

weighted too much (it should have zero weight) when M is known. This approach might also

be useful for explaining how people infer M on the chain C→M→E or C on the common

cause E1←C→E2. There is not much research on how normatively people make judgments

like P(m=1|c=1, e=1), but it is likely that people use some sort of linear averaging instead of

a Bayesian likelihood ratio calculation (e.g., H. Anderson, 1996; Lopes, 1987).

Summary of Possible Psychological Processes Involved in Causal Inference

Here we summarize some of the judgment problems faced in causal inference and present

some potential cognitive process explanations; references appear in sections above.

Causal Structures are Complex—People may have difficulty understanding all the

dependencies and conditional independencies implied by structures with multiple variables

even if they understand each of the individual links. For example, explaining away and the

independencies implied by the Markov assumption are not necessarily intuitive. Constraint

satisfaction and associative reasoning strategies may provide some people with alternative

representations for the structures. “Local” reasoning on parts of the structure could also
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explain why people have difficulty understand properties of the structure that emerge when

reasoning about three or more nodes simultaneously.

Too much Information and Integration is Confusing—Performing the full Bayesian

calculations requires reasoning about many nodes simultaneously, understanding how

causes combine in complex ways (e.g., noisy-OR rule), and understanding how to use

multiple parameters for a single inference. Even though anchoring is more of a description

than a process model, it suggests a way to reduce complexity by focusing primarily on one

piece of information, and then sequentially adjusting for other pieces of information.

Too Much Uncertainty—When one is uncertain about the causal structure or strengths,

one might use “safe” defaults for judgments, such as the middle of the scale, or potentially

rely on base rates with little updating. Uncertainty can also be built into the normative

framework by integrating over possible structures or conditioning on sample size.

Limited Memory—When one experiences the probabilistic relationships between multiple

variables, the number of cells in the joint probability table (e.g. Table 2) required to

represent those experiences becomes very large. Focusing on the parameters instead of the

contingencies simplifies the reasoning process, although we do not know if people naturally

reason using the parameters or the raw experiences. Either way, memory biases could

impact the assessment of parameters or judgments based directly on a mental version of the

joint probabilities.

In sum, there are a variety of potential cognitive strategies and biases that could affect

inferences on causal structures. We hope that summarizing these possibilities will encourage

future research.

Conclusions

The Bayesian Probabilistic Causal Networks framework has stimulated a productive

research program on human inferences on causal networks. Such inferences have clear

analogues in everyday judgments about social attributions, medical diagnosis and treatment,

legal reasoning, and in many other domains involving causal cognition. So far, research

suggests two persistent deviations from the normative model. People’s inferences of one

event are often inappropriately influenced by other events that are normatively irrelevant;

they are unconditionally independent or are “screened off” by intervening nodes. At the

same time, people’s inferences tend to be weaker than are warranted by the normative

framework.

These conclusions do not sharply constrain the form of a descriptive model for causal

reasoning. At one end of the spectrum, some psychologists may want to ignore the

normative framework (although we hope they would be still consider its value as a model

for objective causation). Such a theorist might want to “work up” from the lower

implementational level such as associative networks or constraint satisfaction networks,

which can mimic many of the properties of normative Causal Networks but are not

committed to the strict normative calculus.
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Another option is to start with the normative Causal Networks and to relax some of the

assumptions. Some candidates for “relaxation” include (i) shifting from exhaustive

hypothesis spaces to attention-limited subsets of cognitively salient hypotheses; (ii)

considering alternative prior belief probability distributions (e.g., Lu et al., 2008); (iii)

limiting updating inferences to a subset of network nodes (presumably because of working

memory limits, attention limits, pragmatics, or proximity; e.g., Burnett, 2004); (iv)

conditioning confidence in experimentally-learned parameter values on sample size or

credibility to more realistically represent uncertainty about the network (cf. Winkler &

Murphy, 1973); and (v) experimentally verifying that the participants in experiments have

not added plausible nodes or links to the experimenter-defined causal system (e.g., Burnett,

2004).

Causal reasoning is one dramatic example of an exceptionally sophisticated system of

inferences that approximates many properties of normative belief systems. The research we

reviewed has shown that when the normative calculations of causal networks imply that the

probability of an event should increase, the judgments usually go up; when they imply a

decrease, judgments usually go down. At the same time, the experimental literature contains

some substantial and systematic discrepancies between human inferences and those of the

normative Causal Network framework. Empirical and theoretical research on these

discrepancies is an important frontier for our exploration of human cognition and human

nature more generally.
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Figure 1.
Farming Scenario
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Figure 2.
Three Prototype Causal Networks Embedded in the Farming Scenario
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Figure 3.
Causal Structures Investigated by Rehder and Burnett (2005).
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Figure 4.
Summary of Markov Assumption Violations.
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Figure 5.
Independent versus Correlated Errors on a Common Cause Network

Note: Dashed circles represent unobserved or unknown causal variables.
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Figure 6.
Parameters for Five Structures

Rottman and Hastie Page 55

Psychol Bull. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
Farming Scenario After an Intervention Poisoning the Cantaloupe
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Figure 8.
Summary of the P(E|C) Inference.
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Figure 9.
Summary of the P(E1|E2) Inference
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Figure 10.
Summary of the P(E1|set E2) Inference
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Figure 11.
Summary of the P(E|C) Inference
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Figure 12.
Summary of the P(E) Inference
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Figure 13.
Summary of the P(C|E) inference.
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Figure 14.
Summary of Discounting
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Figure 15.
Discounting when Causes are Dependent versus Independent; The Graph Plots P(c1=1) as

the States of E and C2 are learned
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Figure 16.
Summary of Discounting with Correlated Causes
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Figure 17.
Summary of the P(E|C1, C2) Inference.
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Figure 18.
Causal Structure for Conditional “If…then” Reasoning.
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Figure 19.
Summary of the P(E|M1) Inference
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Figure 20.
Choosing Actions to Maximize Payoff P.
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Figure 21.
Farming Scenario
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Figure 22.
Diamond Farming Scenario
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Table 1

The Probability of an Effect given different Combinations of Binary Generative and Inhibitory Causes,

Assuming Noisy-Or (Generative) or Noisy-And-Not (Inhibitory) Functions

Structure P(e=1)

One generative cause plus A 1−[1−SA][1−P(c=1)SC]

Two generative causes plus A 1−[1−SA][1−P(c1=1)SC1][1−P(c2=1)SC2]

One inhibitory cause plus A SA[1−P(c=1)SC]

Two inhibitory causes plus A SA[1−P(c1=1)SC1][1−P(c2=1)SC2]

One generative cause (C1) and one inhibitory cause (C2) plus A [1−[1−SA][1−P(c1=1)SC1]][1−P(c2=1)SC2]
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Table 2

Joint Probability Table for C→E

Joint Probability Factorization

P(c=1, e=1) P(e=1|c=1)P(c=1) = .6×.1 = .06

P(c=1, e=0) P(e=0|c=1)P(c=1) = .4×.1 = .04

P(c=0, e=1) P(e=1|c=0)P(c=0) = .2×.9 = .18

P(c=0, e=0) P(e=0|c=0)P(c=0) = .8×.9 = .72
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Table 3

Direction of Influence of Variables in Eqs. 5 and 6

P(c=1|e=1) P(c=1|e=0)

P(c1=1) ↑ ↑

SC ↑ ↓

SA ↓ -
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Table 4

Example Data for Discounting

Row Early Frost (F) Tomato Fruit-Worm Infestation (W) Poor Tomato Harvest (T) Number Of Farms

A 1 1 1 10

B 1 0 1 90

C 0 1 1 90

D 0 0 0 810

Psychol Bull. Author manuscript; available in PMC 2015 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rottman and Hastie Page 76

Table 5

Direction of Influence of Variables in Eqs. 7 and 8

P(c1=1|e=1) P(c1=1|e=1, c2=1)

P(c1=1) ↑ ↑

SC1 ↑ ↑

P(c2=1) ↓ -

SC2 ↓ ↓
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