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Abstract

Objectives—This article illustrates the use of applied Bayesian statistical methods in modeling

the trajectory of adult grip strength and in evaluating potential risk factors that may influence that

trajectory.

Methods—The data consist of from 1 to 11 repeated grip strength measurements from each of

498 men and 533 women age 18–96 years in the Fels Longitudinal Study (Roche AF. 1992.

Growth, maturation and body composition: the Fels longitudinal study 1929–1991. Cambridge:

Cambridge University Press). In this analysis, the Bayesian framework was particularly useful for

fitting a nonlinear mixed effects plateau model with two unknown change points and for the joint

modeling of a time-varying covariate. Multiple imputation (MI) was used to handle missing values

with posterior inferences appropriately adjusted to account for between-imputation variability.

Results—On average, men and women attain peak grip strength at the same age (36 years),

women begin to decline in grip strength sooner (age 50 years for women and 56 years for men),

and men lose grip strength at a faster rate relative to their peak; there is an increasing secular trend

in peak grip strength that is not attributable to concurrent secular trends in body size, and the grip

strength trajectory varies with birth weight (men only), smoking (men only), alcohol consumption

(men and women), and sports activity (women only).

Conclusions—Longitudinal data analysis requires handling not only serial correlation but often

also time-varying covariates, missing data, and unknown change points. Bayesian methods,

combined with MI, are useful in handling these issues.

The goal of this article is to illustrate the application of Bayesian statistical methods in

fitting a longitudinal model with multiple unknown change points, time-varying covariates,

and missing data, in the context of an analysis of adult grip strength using data from the Fels

Longitudinal Study (Roche, 1992). Low muscle strength is related to frailty in later life. A
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faster rate of increase in muscle strength early in life, higher peak strength, and a slower rate

of decline with aging can prevent or delay the onset of sarcopenia (agerelated decline in

muscle mass and strength) (Rolland et al., 2008; Yliharsila et al., 2007). Other studies have

examined the adult muscle strength trajectory using serial data (Frederiksen et al., 2006;

Harris, 1997; Kallman et al., 1990). The purposes of this analysis, however, are not only to

(i) investigate the longitudinal pattern of change in dominant hand grip strength (a measure

of muscle strength) during adulthood, by sex, controlling for body size and secular trends

but also to (ii) assess the significance of associations between that pattern and the following

risk factors: birth weight, infant growth rate, sports activity, smoking (ever and current), and

alcohol consumption (ever, current, and current amount). We seek to determine which of

these risk factors are significantly associated with the rate of change in grip strength during

early adulthood, with peak grip strength, and with the rate of change in grip strength during

old age. Birth weight and early growth rate are included as risk factors representing early

life events, which might impact adult muscle strength (Inskip et al., 2007; Kuh et al., 2002).

The remaining candidate risk factors represent lifestyle factors that might impact muscle

strength (Harris, 1997).

GRIP STRENGTH DATA FROM THE FELS LONGITUDINAL STUDY

The Fels Longitudinal Study, which began in southwestern Ohio in 1929, is the world's

longest ongoing longitudinal study of human growth, development, and body composition

changes over the lifespan (Roche, 1992). The data analyzed herein consist of serial dominant

hand grip strength measurements collected between 1985 and 2008 from 498 men and 533

women (age 18–96 years, born 1905–1989) participating in the Fels Longitudinal Study.

Participants were grouped into six birth cohorts by decade (pre-1940, 1940–1949, 1950–

1959, 1960–1969, 1970–1979, and 1980–1989) to adjust for secular trends. Participants born

before 1930 were grouped together with those born in 1930–1939 because of the small

number of participants born in any single earlier decade. Each participant had from 1 to 11

visits (median = 3) since 1985 for a total of 4,045 visits. See Table 1 for sample sizes by sex

and birth cohort.

Grip strength for the self-reported dominant hand was first measured in the Fels

Longitudinal Study in 1985 using a Lafayette Hand Dynamometer (Model 78010, Lafayette

Instrument Company, Lafayette, IN). After 2003, a JAMAR Hydraulic Hand Dynamometer

(Model 5030J1, JLW Instruments, Chicago, IL) was used. As grip strength measured by

these two devices is not exactly equivalent; we rescaled the older Lafayette measurements

using an orthogonal distance regression (Fuller, 1987) based on the data from 25 adults

measured with both instruments at the same visit (JAMAR grip strength = 0.983 × Lafayette

grip strength (kg) + 3.214 kg). Body weight (kg) and stature (cm) were measured according

to standard anthropometric methods (Lohman et al., 1988). Body weight was recorded to the

nearest 0.1 kg without shoes or any heavy clothing, and stature was measured to the nearest

0.1 cm without shoes. BMI (kg/m2) was then derived from body weight and stature. Birth

weight (kg) was obtained from birth records. Many of these adult participants were observed

during infancy, and two early growth rates (kg/year) were computed as the change in weight

from birth to age 12 months and the annualized change from birth to age 2 years. Sports

activity was self-reported on a scale of 1–5 using a Baecke Habitual Physical Activity
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questionnaire (Baecke et al., 1982). Both “ever” and “current” smoking and alcohol

consumption status (0/1) were obtained from self-report, as was current alcohol

consumption (categorized as none, occasionally, in moderation, or above moderation, where

we defined “moderation” as one drink per day for women and two drinks per day for men

and a “drink” as 12 oz. of beer, 4 oz. of wine, 1 oz. of hard liquor, or a single mixed drink).

Signed informed consent was obtained from all participants. All protocols and procedures

were approved by the Wright State University Institutional Review Board.

PLATEAU MODEL WITH UNKNOWN CHANGE POINTS

The term “plateau model” refers here to a piecewise linear model with a middle piece

constrained to be flat. This model can be written as

(1)

where yij is the dominant hand grip strength measurement for the ith subject's jth observation

time, t1 ≤ t2 are the two unknown change points, βL (the “lower slope”) represents the

population-average rate of change in grip strength from age 18 years to t1, β represents the

population-average peak grip strength (from age t1 to t2), βU (the “upper slope”) represents

the population-average rate of change after age t2, bLi and bUi are random subject-specific

deviations from the population-average slopes βL and βU, respectively, bi is a random

subject-specific deviation from the population-average peak grip strength β, and εij are

independent random errors distributed as N(0, σ2). In principle, it is possible to include

random subject-specific deviations from the change points t1 and t2, cohort-specific change

points, and/or cohort-specific lower and upper slopes; however, there was not enough

information in our data to estimate these as evidenced by a lack of convergence of the fitting

algorithm when attempting to do so.

In this model, serial correlation is modeled through random effects, with residuals assumed

to be conditionally independent. As we only have grip strength data over a 23-year period,

too few individuals have sufficient data both before t1 and after t2 to jointly estimate the

random slopes. Thus, the potential correlation structures for the joint distribution of the three

random effects are (i) bLi, bi and bUi independent, (ii) bLi and bi correlated and independent

of bUi, and (iii) bi and bUi correlated and independent of bLi. The Gibbs sampling chains (see

BAYESIAN JOINT MODEL FOR BMI AND GRIP STRENGTH below) only behaved

well with structure (i).

Model (1) can also be written as

The locations where the plateau begins and ends, t1 and t2, are unknown, resulting in a

model that is nonlinear in these parameters.
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The plateau model was extended to include secular trends by allowing the peak grip strength

to vary by birth cohort. The peak parameter β was replaced by βk, where k indexes the six

birth cohorts to produce cohort-specific estimates of peak grip strength. Figure 1 illustrates

the fit to the data for males and females and demonstrates the presence of an increasing

secular trend.

WHY A PLATEAU MODEL?

The use of a plateau model was motivated by two facts. First, when doing exploratory

plotting of the data, we fit smoothing splines to get an idea of what functional form would

be appropriate for the grip strength trajectory. Ignoring secular trends, the curve appeared

approximately quadratic. However, when fitting distinct curves to each cohort, it was clear

that there was a secular trend and that, within cohort, the fit was approximately linear. No

cohort was observed over the entire adult lifespan. Cohorts observed at younger ages had a

positive slope, cohorts observed during middle age had a slope near zero, and cohorts

observed at older ages had a negative slope. A plateau model with cohort-specific peak grip

strength is consistent with these exploratory plots; that is, it allows the population mean grip

strength to be constant over a period of time during middle adulthood. Second, the question

that originally motivated this analysis was “What risk factors influence the rate of decline in

old age?” and the plateau model provides a direct method of estimating the impact of each

risk factor as a parameter of the model, namely as an interaction between the risk factor and

the slope after the plateau.

TIME-VARYING COVARIATES

Adjusting for body size

To evaluate the association between risk factors and the grip strength trajectory, it is

appropriate to adjust for body size. Body size was measured as stature (height) (HT, cm) and

BMI = weight/stature2 (kg/m2), with BMI log-transformed to achieve a more symmetric

distribution and reduce the influence of values in the tail of the distribution on parameter

estimation. Both stature and BMI change with age (Chumlea et al., 2009; Sorkin et al.,

1999) so, if included in the model as covariates, these would be stochastic time-varying

covariates. It is well documented that the inclusion of stochastic time-varying covariates in

longitudinal data analysis requires care (Diggle et al., 2002; Fitzmaurice et al., 2004). One

issue is the interpretation of model parameters. In a longitudinal model, each time-varying

variable, including age (which is a nonstochastic time-varying variable—it changes

systematically with time), has a between-individual effect and a within-individual effect. In

our analysis, a between-individual effect represents the expected difference in grip strength

between individuals with different values of the covariate (e.g., individuals with different

HT), assuming all other covariates are equal (e.g., same age). A within-individual effect

represents the expected change in grip strength associated with a within-individual change in

the covariate (e.g., an increase in BMI), assuming all other covariates, including age, do not

change. The problem is that the time-varying variable age cannot be held fixed when a

covariate changes within an individual. Thus, the interpretation of the age-trajectory

parameters and the effects of stochastic time-varying variables are confounded.
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We prefer a model in which within-individual changes in grip strength over time are

represented entirely by the parameters of the age effects; in our model, these are the lower

and upper slopes. If we were to adjust for body size by including time-varying log(BMI) and

HT, then the estimated lower and upper slopes would not represent the expected change in

grip strength per year. To compute the expected change in grip strength per year in early

adulthood, for example, one would have to sum the lower slope, the product of the expected

change in log(BMI) per year and its parameter estimate [the estimated change in grip

strength per unit change in log(BMI)], and the product of the expected change in HT per

year and its parameter estimate. These expected changes in log(BMI) and HT are not

predicted by the model and would have to be based on additional longitudinal modeling. An

alternative is to adjust for body size by including time-invariant versions of log(BMI) and

HT. This results in these covariates having only between-individual effects and the lower

and upper slopes having the desired interpretation of the expected change in grip strength

per year.

Restricting to between-individual effects

To remove the implication of within-individual effects for stature and BMI, we limited the

effect of each to a between-individual effect by replacing each with a time-invariant within-

individual summary. If the observation times were balanced in age, then this could have

been done by using baseline values of stature and BMI, or stature and BMI at any commonly

observed age. However, in many studies, including the Fels Longitudinal Study, individuals

are observed at distinct times and often over nonoverlap-ping age ranges. Thus, baseline

values, and also mean values, are not comparable for covariates that systematically change

with age. As we have data from previous visits over the lifespan for these participants, we

used maximum stature and an estimate of BMI at age 45 years (an arbitrarily chosen age—

any age would do) to represent each individual's body size. The estimated BMI at age 45

years was obtained via a linear mixed model as shown in BAYESIAN JOINT MODEL FOR

BMI AND GRIP STRENGTH below. Maximum stature and BMI at age 45 were estimated

using all the data for each subject, not only visits since 1985 when grip strength

measurements began.

Note that for the other time-varying variables included in our analysis (smoking, alcohol

consumption, and sports activity), we do wish to imply that there are both between-and

within-individual effects. Thus, these risk factors were not replaced by time-invariant

summaries.

HANDLING MISSING UNBALANCED LONGITUDINAL DATA

An additional complication in any data analysis is missing data. Multiple imputation (MI) is

a generally applicable method for handling missing data under the assumption of

ignorability (Little and Rubin, 2002; Rubin, 1987). Methods exist for MI of balanced

longitudinal data as a special case of multivariate missing data (Schafer, 1997). However,

MI of unbalanced longitudinal data is more challenging. For our dataset, we have

observations over such a large age range that any attempt to round off ages to try to create a

balanced dataset for the purpose of MI is not feasible. Rounding off to the nearest year leads

to very sparse data, and rounding off to a multiple of years leads to large numbers of
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individuals having more than one observation at the same rounded age. When no time-

invariant covariates are missing, the multivariate linear mixed model can be used to impute

unbalanced longitudinal data (Liu et al., 2000; Schafer and Yucel, 2002). In our analysis,

however, there are missing time-invariant covariates (birth weight and two early growth

rates).

The imputation method we used was an ad hoc method of resolving these difficulties. An

imputation model is a model for prediction of missing data given observed data. The missing

data in our case consist of both time-invariant and time-varying covariates. Let X represent

the set of time-invariant covariates, Y represent the set of time-varying covariates, (Xmis,

Ymis) represent the missing data, and (Xobs, Yobs) represent the observed (nonmissing) data.

Then, the probability distribution function for the missing data given the observed data can

be written as f(Xmis, Ymis|Xobs, Yobs) = f(Xmis|Xobs, Yobs) × f(Ymis|Xmis, Xobs, Yobs). Thus,

imputation can be performed in two stages with imputation models corresponding to these

two factors. The difficulty is that, in the first stage, we need a model for time-invariant

covariates given time-varying covariates. For balanced longitudinal data, this could be done

by writing each time-varying variable as a set of variables, one for each observation time.

For unbalanced longitudinal data, an approximation to this distribution is obtained by

replacing each individual's time-varying covariate vector by a single summary (e.g., within-

subject mean). Another difficulty is that, at the second stage, we have a model for

longitudinal data and so must account for the serial correlation. As an approximation to the

second stage of the model, we include these same summary values as additional covariates.

In this way, each observation from an individual is modeled as correlated to this single

summary value, thus inducing serial correlation in the imputation model.

Let Y* represent the within-individual summaries of the time-varying covariates. We

approximate f(Xmis, Ymis|Xobs, Yobs) as f(Xmis|Xobs, Y*) × f(Ymis|Xmis, Xobs, Yobs, Y*), where

Xmis in the second stage are the imputed values from the first stage. Thus, Stage 1 imputes

for missing time-invariant covariates given observed time-invariant covariates and time-

invariant summaries of the time-varying covariates, and Stage 2 imputes for missing time-

varying covariates given observed and imputed time-invariant covariates, observed time-

varying covariates, and time-invariant summaries of the time-varying covariates. Although

admittedly ad hoc, this method has the advantage of being implementable with commonly

available imputation routines for independent data such as SAS PROC MI (SAS, Cary, NC)

or the aregImpute function in the R (R Development Core Team, 2009) library Hmisc

(Harrell [with contributions from many other users], 2009). We used the default imputation

method implemented by aregImpute, predictive mean matching, which uses a flexible

additive model and handles both continuous and categorical variables (de Groot et al., 2008;

Little and An, 2004; Siddique and Belin, 2008; van Buuren et al., 2006).

A straightforward time-invariant summary for a time-varying variable is its within-subject

mean. However, as participants were observed over differing age ranges, these may not be

comparable across participants. In this analysis, two time-invariant summaries for each

longitudinal variable were included: the subject-specific means within each of two age

ranges (<45 years and ≥45 years).
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Specifically, the variables included in each stage of the imputation procedure model were as

follows. The Stage 1 imputation was performed on a dataset with one record per individual.

The time-invariant variables included in the model were birthday (years, e.g., 1/1/1960 =

1960.00), maximum stature, birth weight, infant growth rate from birth to age 1 year, and

infant growth rate from birth to age 2 years. The summaries of time-varying variables

included in the model were means before and after age 45 of the following variables:

log(BMI), grip strength, smoking (ever and current), alcohol consumption (ever and current

amount; current was excluded from the imputation as it can be derived from current

amount), and sports activity. Stage 1 was performed separately for males and females.

For the Stage 2 imputation, we stratified by sex and by age group (age <45 years and age

≥45 years) because we did not want to assume that the relationships between variables were

the same within these groups. Stage 2, for each stratum, was performed on a dataset with

one record per observation time (multiple records per individual), and the model included

the same time-invariant variables as in Stage 1 (with missing values for the kth Stage 2

imputation replaced by imputed values from the kth Stage 1 imputation), the time-varying

variables age, log(BMI), grip strength, smoking (ever and current), alcohol consumption

(ever and current amount), and sports activity, and, for each of these time-varying variables,

the within-subject mean over the same age range as the stratum being imputed (age <45

years or age ≥45 years). For both the time-invariant variables and the within-subject means,

each participant only has one value, and this value was replicated over all of that

participant's observation times.

This two-stage imputation procedure was repeated five times to produce five complete

datasets. The plateau model was then fit to each imputed dataset, and posterior inferences

were pooled with appropriate corrections to account for between-imputation variability.

In the grip strength dataset, only 198 men and 207 women had at least one visit with

nonmissing values for all the analysis variables (1,705 visits total). The variables missing

most often were sport activity, birth weight, and early growth rate (see Table 2 and note that

birth weight and early growth rate are time-invariant covariates; thus, their numbers of

missing values represent participants rather than visits). Despite the large number of missing

values for some covariates, using only five imputations led to relative efficiencies of at least

95% for all but one parameter in the final model and at least 99% for most. The one

exception was the interaction between birth weight and peak grip strength for males, which

had a relative efficiency of 91%.

BAYESIAN JOINT MODEL FOR BMI AND GRIP STRENGTH

The full specification of the Bayesian joint mixed model for BMI and grip strength is as

follows. For males and females separately, the natural logarithm of BMI was modeled as a

quadratic polynomial in age (centered at 45 years) with random effects and continuous

interactions between birthday (years, centered at January 1, 1960) and each polynomial

term. The random effects are modeled as multivariate normal with an unstructured

covariance matrix. This model can be expressed as
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The prior distribution for the random effects variance matrix S−1 was specified as a Wishart

(0.0001 I3×3, 3) distribution.

The model for the grip strength trajectory and its interaction with a single risk factor can be

expressed as

where subject i is in cohort k, logBMI45i is the estimated log(BMI) at age 45 for subject i,

and εij are i.i.d. N(0, σ2
ε). Here, βLRF, βRF, and βURF represent, for the dichotomous

smoking and alcohol risk factors, the differences in the lower slope, peak grip strength, and

upper slope, respectively, between those who do and those who do not engage in that

activity, assuming the same sex, birth cohort, maximum height, and BMI at age 45. For

continuous risk factors, such as birth weight, these three parameters represent the differences

in the lower slope, peak grip strength, and upper slope between groups of individuals who

differ by one risk factor unit (e.g., those who differ in birth weight by 1 kg), again assuming

the same values of the other covariates between groups.

Note that the observation times for the BMI measurements do not have to coincide with

those for the variables in the grip strength model. In fact, to improve the accuracy of this

predictive model, we used observations prior to 1985 to assist in the estimation of BMI at

age 45 years.

Prior distributions

For the grip strength model, the random effects bLi, bi, and bUi were assumed to be

distributed as multivariate normal with mean 0 and were modeled as independent but with

distinct variances. All the as yet unspecified model parameters were given vague but proper

prior distributions: the inverse of a gamma (0.001, 0.001) distribution for each variance

component, a uniform (25, 50) distribution for t1, a uniform (t1, 75) distribution for t2, and

with all fixed effects parameters (all the θs and βs) distributed as N(0, 10000). WinBUGS v.

1.4.3 (Gelman et al., 2004; Lunn et al., 2000) was used to estimate the joint posterior
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distribution of the model parameters via Markov Chain Monte Carlo. A Gibbs sampler

(Gelfand and Smith, 1990) was run with five chains, each with 5,000 iterations (including a

burn-in of 2,500 iterations). Mixing between the five chains was good under the assumptions

of independent grip strength model random effects and no dependence between the change

points t1 and t2 and covariates. When priors for t1 and t2 with larger ranges were used or

when t2 was not restricted to be larger than t1, there were occasional stretches in the

sampling chains, which produced unreasonable values (e.g., t2 < t1). Thus, these priors were

made more precise based on reasonable assumptions regarding the location of the plateau.

WinBUGS was run via R using the R2WinBUGS package (Sturtz et al., 2005). Example

code demonstrating the use of WinBUGS for fitting this model can be downloaded at

med.wright.edu/lhrc/fac/rn.html.

For datasets as large as ours, the time required to fit this joint model repeatedly in

WinBUGS for all the different combinations of risk factors considered was prohibitive.

Thus, we approximated this model by first fitting the model for BMI as part of the MI

procedure, resulting in five estimated values for BMI at age 45 for each individual, and thus

reducing the joint BMI-grip strength model to a model for grip strength only.

POSTERIOR INFERENCES

Combining posterior inferences over MIs

This Bayesian model was fit for each of the five imputed datasets. Then, the five posterior

samples were pooled to estimate the posterior distribution for each parameter. For a single

parameter, say β, the posterior density was approximated by a t-distribution. In particular, let

K = 5 imputations and let , where  is the average of the K posterior

means and

where  is the average of the K posterior variances, and B is the sample variance of the K

posterior means. Then, t can be approximated by a t-distribution with degrees of freedom

(Little and Rubin, 2002)

An approximate 95% posterior credible interval can then be computed for each parameter as

, where td,0.975 is the 97.5th percentile of a t distribution with d

degrees of freedom.

Posterior P-values

For the fixed effect parameters, a posterior P-value is calculated as P = 2P(td > |t|). When P

= 1, the posterior distribution for β is centered at 0. Alternatively, P = 0 would imply that
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the entire posterior distribution is to the left or to the right of 0. Each risk factor was checked

for significance individually, and significant factors were included in a final multivariable

model, along with significant interactions among risk factors, if necessary. “Significance”

was concluded for effects with a posterior P-value ≤ 0.10. The only exception to this

criterion was when a seemingly insignificant main effect was included for the sake of

interpretability of an interaction (e.g., the interaction between current drinking and the upper

slope as shown in Table 3).

Estimated grip strength trajectory

Results for the final models, by sex, are shown in Table 3 including, for each parameter, the

posterior mean and standard deviation, an approximate 95% credible interval, and the

posterior P-value. On average, grip strength increases during young adulthood and does not

plateau until approximately age 36 years for both men and women (t1, the first change-

point). Grip strength begins to decline earlier in women (age 50 years) than in men (age 56

years) (t2, the second change-point). The posterior probability that t2 is earlier for women

than for men is 0.9837 (see Fig. 2). Men, however, decline in grip strength at a faster rate

relative to their peak. The posterior probability that βU divided by the average (over cohorts)

peak grip strength is steeper for men than for women is 0.9856.

Secular trend in peak grip strength

Also, there is an increasing secular trend in peak grip strength, with the estimated peak for

the 1980–1989 cohort extrapolated assuming that, in the future, their rate of change remains

the same and that they attain their peak at t1. The posterior probabilities of each cohort

having a higher peak than its preceding cohort range from 0.83 to almost 1 and are shown in

Figure 3. Note that this increasing secular trend is not attributable to concurrent secular

trends in body size as this model is adjusted for body size.

Influence of risk factors on the grip strength trajectory

The last nine rows of Table 3 contain estimates for the risk factors and their interactions

included in the final models, by sex and controlling for body size and secular trends. For

males, higher birth weight and never smoking were associated with a higher young

adulthood rate of increase in grip strength, and higher birth weight was associated with

higher peak grip strength, as well. An interaction between current drinking and ever

smoking was significantly associated with the later adulthood rate of decline. The order of

the rates of decline for the four combinations of ever smoking and current drinking was

difficult to interpret, and there are likely unmeasured confounders that are causing

potentially counterintuitive results. For example, for men who currently do not drink, having

ever smoked was associated with a significantly slower rate of decline in grip strength after

t2 (−0.57 + 0.42 = −0.15 kg/year). For women, current drinking was associated with higher

peak grip strength, sport activity was positively associated with the young adulthood rate of

increase in grip strength, and, for those who currently drink, sport activity levels were

associated with higher peak grip strength.

These data arise from an observational study, and these significant associations cannot be

said to be causal. However, the finding that males with lower birth weight tend to have
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lower adult grip strength, even after adjusting for adult body size, is supported by previous

research (Inskip et al., 2007; Kuh et al., 2002; Yliharsila et al., 2007). Figure 4 illustrates the

estimated mean grip strength trajectories for males with birth weights one standard deviation

below the mean (2.87 kg, dashed line) and one standard deviation above the mean (4.07 kg,

solid line).

Figure 5 illustrates the between-imputation variation in the posterior density for the

parameters corresponding to the interactions between birth weight and the lower slope (left

panel) and between birth weight and peak grip strength (right panel) as well as the

computation of the posterior P-value for each. In each panel of Figure 5, the thin black lines

represent single imputations, whereas the thick black line represents the t-approximation to

the posterior pooled over all five imputations; the area of the shaded region (P) is equivalent

to the posterior P-value. Because of the large proportion of missing birth weights (see Table

2), there is noticeable variability in the location of these posterior densities, particularly for

the interaction effect between birth weight and peak grip strength. Nevertheless, this

variability is small enough that significant associations between birth weight and the grip

strength trajectory were still detectable.

DISCUSSION

We have illustrated the application of Bayesian statistical methods to handle a complex

longitudinal analysis involving a model with multiple unknown change-points, time-varying

covariates, unbalanced observation times, and missing response and covariate data.

Unknown change-points turn a linear model into a nonlinear model. Although a nonlinear

mixed model can be fit in SAS PROC NLMIXED (Littell et al., 2006) or the R function

nlme (Pinheiro et al., 2009), these programs cannot directly handle the joint modeling of a

time-varying covariate and response as specified here. Within the Bayesian framework, such

a model is handled easily with a few more lines of code in WinBUGS (although with large

datasets, this adds considerably to the computation time). The new PROC MCMC in SAS

v9.2 can also handle the plateau model as specified here with independent random effects.

The BMI model, however, with correlated random effects, would require additional

programming in SAS as the current version of PROC MCMC does not allow multivariate

distributions (Chen, 2009) as would be required for the prior distribution of the random

effects covariance matrix.

Additionally, it is straightforward to combine posterior inferences over MIs to handle

missing data. Although not illustrated to its full potential here, posterior inferences are

extremely powerful in their ability to handle nonlinear functions of the model parameters.

Although output from SAS PROC MIXED or SAS PROC NLMIXED can be sent to PROC

MIANALYZE to combine inferences over MIs, this becomes more difficult for nonlinear

functions of the model parameters. Bayesian posterior inference handles such a problem

automatically; the posterior distribution of a nonlinear function of parameters is easily

estimated as the empirical distribution of the realizations of this nonlinear function over the

joint posterior sample of the model parameters.
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In a longitudinal analysis of the adult dominant hand grip strength trajectory, we found that,

on an average, men and women attain peak grip strength around age 36 years but women

begin to decline sooner (age 50 years for women and 56 years for men). Once they begin to

decline, however, men lose grip strength at a faster rate relative to their peak. Also, we

found increasing secular trends in peak grip strength for both men and women that are not

attributable to concurrent secular trends in body size. Regarding the evaluation of risk

factors, after adjusting for body size, we found significant associations between the grip

strength trajectory and birth weight (men only), smoking (men only), alcohol consumption

(men and women), and sports activity (women only).

It is important to note the assumptions implicit in the model we have presented. No cohort

was observed over the entire adult age range. For younger cohorts, we have no information

about the rate of change in grip strength at older ages, and, for older cohorts, we have no

information about the rate of change in grip strength at younger ages. This is a problem

inherent to the study design. That is, for a given birth cohort, the age range over which the

grip strength trajectory is unobserved corresponds to either (a) calendar years during which

measuring grip strength was not yet part of the Fels Longitudinal Study protocol or (b) ages

not yet attained. The analysis presented here assumes that the early adulthood and later

adulthood rates of change in grip strength do not differ between birth cohorts. Secular trends

(that is, differences in mean grip strength between cohorts over an age range at which they

were all observed) are therefore modeled as differences in cohort-specific intercepts. In the

plateau model, these intercepts correspond to the cohort-specific mean peak grip strengths.

For younger cohorts, the interpretation of the intercept as the peak grip strength requires an

extrapolation under the assumption that the future trajectory will have the same rate of

change and will peak at the same time as older cohorts.

An additional assumption is that the beginning and ending ages of the plateau are common

to all cohorts. For the present analysis, estimation of the change-point t1 is based mostly on

data from the 1950 and 1960 cohorts, and estimation of t2 is based mostly on data from the

1930 and 1940 cohorts. As the youngest cohorts continue to age, we may find in the future

that they reach their peak at a different age and/or that they begin to decline at a different

age than did older cohorts.

Our method of handling missing data, MI, depends on the assumption of ignorability (Little

and Rubin, 2002). In our analysis, this assumption is equivalent to the assumption that the

data are “missing at random” (MAR); that is, the missing data values for a variable can be

predicted based on the relationship between that variable and the remaining variables using

the cases where they are jointly observed. If that relationship is different for the missing and

nonmissing values, then the missing data are “not missing at random” (NMAR), and MI

could potentially lead to biased parameter estimates. The MAR assumption, however, is not

testable using observed data. To assess the impact of potential departures from MAR, one

could use a sensitivity analysis (Carpenter et al., 2007; Daniels and Hogan, 2008). The

results in the final models (Table 3) that would be most sensitive to a departure from MAR

are those relating to sports activity and birth weight, as they have the largest proportions of

missing values among the risk factors included in the final models.
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In summary, longitudinal data analysis requires handling not only serial correlation but quite

often also time-varying covariates and missing data (both for time-varying and time-

invariant variables). The analysis presented here provides an example of how to handle these

issues as well as the estimation of unknown change points, in the context of a Bayesian

model for unbalanced longitudinal data.
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Fig. 1.
Grip strength vs. age trajectories, by sex (assuming BMI at age 45 is 25 kg/m2, all

continuous covariates at their sex-specific means, and all categorical covariates at their

reference levels). The black lines represent estimated trajectories by birth cohort plotted over

the range of ages observed for each cohort. From left to right, the lines are therefore in the

birth cohort order 1980–1989 to 1905–1939.
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Fig. 2.
Posterior distributions of the ages (years) at which grip strength begins to decline (t2) for

females (solid line) and males (dashed line).
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Fig. 3.
Posterior mean peak grip strength vs. birth cohort, by sex. Vertical bars indicate 95%

posterior credible intervals. The probabilities shown are posterior probabilities of a cohort's

mean grip strength being larger than that of the preceding cohort. Peak grip strength for the

1980–1989 cohort was extrapolated assuming that, in the future, their rate of change remains

the same and that they attain their peak at t1.
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Fig. 4.
Grip strength vs. age trajectories, by birth weight (males, assuming birth cohort 1950–1959,

BMI at age 45 is 25 kg/m2, all other continuous covariates at their sex-specific means, and

all categorical covariates at their reference levels).
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Fig. 5.
Posterior densities for the effects of birth weight on the lower slope (left panel) and on peak

grip strength (right panel), by imputation. “P” represents the posterior P-value.
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TABLE 1

Sample size by sex and birth cohort

Males Females

Birth cohort Age range (years) Subjects Visits Age range (years) Subjects Visits

1905–1939 46–96 86 347 46–92 100 409

1940–1949 36–68 83 352 36–68 86 422

1950–1959 25–58 101 381 25–58 102 424

1960–1969 18–47 88 331 18–48 104 439

1970–1979 18–38 86 331 18–38 78 316

1980–1989 18–27 54 139 18–26 63 154

Total 18–96 498 1,881 18–92 533 2,164
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TABLE 2

Number (proportion) of missing values by variable

Males Females

Variable Visits

Grip strength (kg) 48 (2.6%) 74 (3.4%)

BMI (kg/m2) 6 (0.3%) 8 (0.4%)

Sport activity index (1–5) 243 (12.9%) 272 (12.6%)

Has smoked (yes/no) 9 (0.5%) 9 (0.4%)

Currently smokes (yes/no) 17 (0.9%) 9 (0.4%)

Has drank alcohol (yes/no) 43 (2.3%) 37 (1.7%)

Currently drinks alcohol (yes/no) 66 (3.5%) 71 (3.3%)

Currently drinks alcohol (amount) 81 (4.3%) 78 (3.6%)

Participants

Birth weight (kg) 184 (36.9%) 217 (40.7%)

Early growth rate (kg/year from 0 to 1 years) 280 (56.2%) 311 (58.3%)

Early growth rate (kg/year from 0 to 2 years) 274 (55.0%) 308 (57.8%)
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TABLE 3

Posterior summaries of model parameters

Males Females

Effect Mean SD 95% Credible interval P Mean SD 95% Credible interval P

Start of plateau (t1) 36.37 1.47 (33.49, 39.24) <0.0001 35.80 1.72 (32.33, 39.28) <0.0001

End of plateau (t2) 56.03 3.08 (49.96, 62.11) <0.0001 49.82 2.17 (45.56, 54.08) <0.0001

Lower slope (βL) 0.54 0.06 (0.42, 0.66) <0.0001 0.25 0.04 (0.18, 0.33) <0.0001

Peak grip strength (βk) for birth
cohort

 1905–1939 47.88 0.96 (45.96, 49.81) <0.0001 28.90 0.71 (27.50, 30.30) <0.0001

 1940–1949 50.57 0.78 (49.04, 52.09) <0.0001 30.33 0.57 (29.21, 31.46) <0.0001

 1950–1959 52.21 0.71 (50.82, 53.61) <0.0001 32.08 0.53 (31.05, 33.12) <0.0001

 1960–1969 55.71 0.89 (53.91, 57.50) <0.0001 32.76 0.53 (31.71, 33.81) <0.0001

 1970–1979 57.74 1.00 (55.78, 59.71) <0.0001 34.02 0.69 (32.67, 35.37) <0.0001

 1980–1989 59.10 1.30 (56.54, 61.66) <0.0001 35.46 0.89 (33.68, 37.24) <0.0001

Upper slope (βU) −0.57 0.18 (−0.94, −0.21) 0.0019 −0.24 0.03 (−0.30, −0.18) <0.0001

Max stature (βHT)
a 0.37 0.05 (0.28, 0.47) <0.0001 0.26 0.03 (0.19, 0.33) <0.0001

LogBMI45 (βBMI)
b 5.80 1.81 (2.09, 9.51) 0.0034 4.38 1.03 (2.34, 6.42) <0.0001

Birthwt
a
 × lower slope 0.14 0.07 (0.01, 0.28) 0.0373 – – – –

Birthwt
a
 × peak 2.77 0.79 (0.90, 4.64) 0.0100 – – – –

Yet smoke × lower slope −0.10 0.05 (−0.20, 0.00) 0.0524 – – – –

Yet smoke × upper slope 0.42 0.20 (0.03, 0.81) 0.0332 – – – –

Curdrk × upper slope 0.20 0.19 (−0.17, 0.57) 0.2850 – – – –

Yet smoke × curdrk × upper
slope −0.38 0.21 (−0.80, 0.05) 0.0796 – – – –

Sport
a
 × lower slope – – – – 0.06 0.03 (0.01, 0.12) 0.0287

Curdrk × peak – – – – 0.73 0.26 (0.20, 1.26) 0.0092

Curdrk × sport
a
 × peak – – – – 0.80 0.22 (0.33, 1.26) 0.0020

a
Centered at the sex-specific mean.

b
Log(BMI45) is the estimated subject-specific value at age 45 years and is centered at log(25).
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