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Abstract

The latest developments of pharmacology in the post-genomic era foster the emergence of new

biomarkers that represent the future of drug targets. To identify these biomarkers, we need a major

shift from traditional genomic analyses alone, moving the focus towards systems approaches to

elucidating genetic variation in biochemical pathways of drug response. Is there any general

model that can accelerate this shift via a merger of systems biology and pharmacogenomics? Here

we describe a statistical framework for mapping dynamic genes that affect drug response by

incorporating its pharmacokinetic and pharmacodynamic pathways. This framework is expanded

to shed light on the mechanistic and therapeutic differences of drug response based on

pharmacogenetic information, coupled with genomic, proteomic and metabolic data, allowing

novel therapeutic targets and genetic biomarkers to be characterized and utilized for drug

discovery.
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Introduction

Response to a drug is highly variable among individuals.1 Pharmacogenomics, attempting to

explain the interindividual variability in drug response due to genetic variants, has been

widely used as an approach to study and predict how an individual will respond to a

particular drug/dose combination.2,3 However, there is increasing recognition of the

limitation of using pharmacogenomic approaches alone to achieve this goal. First, in

addition to genetics, many other factors can play a role in the response to pharmacotherapy,

including metabolic, environmental, and developmental factors.4 It is unclear how all these

factors interact with genes in a complex web to determine drug efficacy and toxicity at the
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organ and patient level. Second, current pharmacogenomic studies are based on a direct

relationship between genotype and phenotype, neglecting the causal networks inside the

“black box” that lies between genotype and drug response.5,6 The paucity of knowledge of

the complex and subtle interconnectedness of signaling, transcriptional and metabolic

networks that guide the distribution and action of drugs would greatly limit our capacity to

tailor-make drugs for individual patients according to their characteristics.

We describe a dynamic framework to study the genetic architecture of drug response and

quantify drug reactions as a coordinated network of genes, proteins and biochemical

reactions. This framework incorporates pharmacokinetic (PK) and pharmacodynamic (PD)

models that are derived to understand how drugs modulate cellular reactions in space and

time and how they impact human pathophysiology into genetic mapping, allowing the

landscape of genetic actions to be characterized in a precise, predictive manner. The

integration of the “omics” data into this framework can study the pattern of gene expression

(regulation, inhibition and induction) and systematically screen the pathways that could be

involved in drug reactions. The results from this framework will facilitate the quantitative

prediction of the responses of individual subjects as well as the design of optimal drug

treatments that maximize therapeutic efficacy while minimizing the number and severity of

adverse drug reactions.

In recent years, personalized medicine has emerged as an important research focus in

medicine to provide knowledge about the delivery of the right drug at the right dose at the

right time for the patient.7,8 Our framework organizes systems biology into

pharmacogenomics, providing powerful tools for designing personalized medicine.

Mechanistic modeling of drug response

Over the past decade, there has been rapid growth of using DNA-based markers to identify

genes for drug response.1,9,10 If significant associations are detected between marker

genotype and drug-response phenotype through statistical tests, these markers are regarded

as the genetic variants that affect drug response. This approach, although simple and widely

applied in practice, cannot provide a mechanistic explanation about how the genes interact

with biochemical pathways to determine drug response at the level of human patients.

By viewing drug response as a dynamic system involving drug transport, drug metabolism

and drug targets, one mechanistic approach has been derived to map genes for each of these

components using PK and PD equations.11-13 This approach founded on biochemical

reactions can not only identify how genes interact with each other and with developmental

and environmental stimuli in a patient's body, but also quantify the dynamic effects of

individual genes and gene-environment interactions on various biochemical pathways and

reactions that contribute to drug response (Fig. 1A).

As a phenotype, drug response should include regulatory and genetic mechanisms between

genotype and phenotype. The “Central Dogma” of biology, DNA → mRNA → enzyme

(inactive) → enzyme (active) → metabolite(s) → metabolism → cellular physiology →
phenotype, subjected to continuous addendums and modifications in the recent past, is

thought to be a fundamental rule to the form and control of every aspect of a phenotype.
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Regulatory control is exerted to affect virtually all these levels. A second mechanistic

approach based on regulatory control has been developed,14 aimed to identify the “black

box” that lies between genotype and drug response through transcript abundance and other

intermediate molecular processes (Fig. 1B).

The mechanistic modeling of drug response capitalizes on specific modules which are linked

through mathematical models. Below, we show how these modules are modeled from

genetic, biochemical and engineering perspectives.

Genetic architecture modeling

Genetic architecture, the structure of the mapping from genotype to phenotype, builds and

controls a given phenotypic character and its variational properties.15 Traditional approaches

for linkage and association-based studies have been instrumental in the elucidation of the

genetic architecture of complex traits or diseases, such as cardiovascular diseases, metabolic

disturbances, diabetes, lipids, inflammation, and cancer. These approaches enable geneticists

to address several fundamental questions, i.e., what mode of actions individual genes exert,

additive or dominant; whether there are interactions (epistasis) among different genes; and

what is the pleiotropic effect of genes on different traits; what is the distribution of allelic

effects.16

Beyond these traditional descriptions, we need to integrate the molecular mechanisms

involved in pharmacogenomic effects into drug response. Quantitative genetic theory should

be refined to define the molecular effects of genes through mutations, insertions, deletions,

copy number variations and, more recently, epigenetic events, such as histone and DNA

methylation, and gene expression. In order to describe the pharmacogenetic control of drug

response, the genetic architecture should not be only regarded as a given set of genetic effect

parameters, but it should also reflect dynamic trajectories of genetic alteration over time and

space and environmental changes.

Kinetic Models of Drug Reactions

Traditional pharmacogenomics investigates the genetic control of drug response measured

as a static state of drug effect. However, when a drug is administered to a patient, it must be

absorbed, distributed to its site of action, interact with its targets, undergo metabolism, and

finally be excreted.17 This process, called pharmacokinetics (PK), influences the

concentration of a drug reaching its target, and it interacts with another process associated

with the drug target, called pharmacodynamics (PD), to determine drug response (Fig. 1A).

Since functionally important genetic variation also occurs in the drug target itself, or in

signaling cascades downstream from the target, the ability to take into account all of the

factors that can influence drug response in the cell would help to better understand the

mechanisms involved in the variation of drug response.

Previous work has modeled the genetic control of drug response by implementing

mathematical aspects of PK and PD processes into a genetic mapping framework.11-13,18

This so-called functional mapping model allows the detection of genes associated with drug

response at varying doses or over a time course. A more powerful approach to modeling

drug response is to treat its formation as a dynamic system in which various biochemical
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parts are linked through a system of differential equations (DE). Thus, by developing and

implementing innovative statistical methods for estimating DE parameters,19 we can test and

quantify the genetic and genomic control of biochemical pathways involved in drug

response.

Dynamic Models of Genetic Network

Current pharmacogenomic studies are based on a direct relationship between genotype and

phenotype through simple statistical models that are relatively opaque to biological

interpretation. Such “black box” approaches are less helpful in revealing regulatory and

genetic mechanisms between genotype and phenotype. As the cost of methods for measuring

mRNA, protein and other indicators continues to fall, it becomes reasonable to design

experiments that capture the dynamic processes of phenotypic formation across timescales.

With these data, the respective systems disciplines arise from the study of the transcriptome

(the set of RNA transcripts) and the metabolome (the entire range of metabolites taking part

in a biological process). Other omes (sets) that may also be of interest include: the

interactome (complete set of interactions between proteins or between these and other

molecules), the localizome (localization of transcripts, proteins, etc.) or even the phenome

(complete set of phenotypes) of a given organism.5 New models are needed to reconstruct

biological networks by incorporating interactome, localizome, and phenome related to drug

response. Coupling with DNA polymorphism information, these models are capable of

mapping quantitative trait loci (QTLs) that control transcriptional (eQTL), proteomic

(pQTL), and metabolomic (mQTL) expressions20 and their interaction networks among

these different types of QTLs.

Implementing Systems Approaches

Systems biology studies the relationships among elements of a system, aimed to better

understand its emergent properties. A systems analysis can be applied to molecules, cells,

organs, individuals or even ecosystems. For instance, a system may include just a few

protein molecules that together serve a defined task (e.g., fatty acid synthesis), a more

complex molecular machine (e.g., a transcription complex) or a cell or group of cells

executing a particular function, such as an immune response.21 In each case, a systems

analysis describes all of the elements of the system, defines the biological networks that

interrelate the elements of a system, and characterizes the flow of information that links

these elements to an emergent biological process through their networks. A particular

response to medications emerges when the operation of networks is perturbed to some

degree. By comparing responsive and non-responsive networks, we can identify critical

nodal points (proteins) which, if modulated, are likely to reconfigure the perturbed network

structure back toward its non-responsive state.21 These nodal proteins are likely to represent

drug targets.

The detection and identification of nodal proteins in complicated networks is critical in

developing the solutions of the models. A system of differential equations can be

implemented to model the structure of regulatory networks involved in drug response.

Although previous work has utilized ordinary differential equations to model the change in

each gene's expression,22-24 these models are structurally too simple to capture the
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complexity of networks. Also, statistical issues on parameter estimation for differential

equations have never been adequately explored. Innovative statistical methods need to be

developed for estimating the mathematical parameters defining differential equations with

noisy measurements by combining a modified data smoothing method and the generalization

of profiled estimation. Also, these statistical methods should be expanded to handle non-

linear differential equations (including stochastic, delay, and partial types) that better

describe the complexity of regulatory networks.

Modeling dynamic systems of drug response

Functional Mapping

By incorporating PK/PD principles into a genetic mapping framework, functional mapping

provides a statistical tool for mapping dynamic genes.11-13 Functional mapping was founded

on finite mixture models, a type of density model that comprises a number of component

functions. According to the mixture models, each dose-response curve, fitted by a finite set

of measurements at L doses for subject i, arrayed by yi = (yi(C1), …, yi(CL)), where (C1, …,

CL) is a vector of dose level, is assumed to have arisen from one of a known or unknown

number of components, each component being modeled by a multivariate normal

distribution. Assuming that there are 3J genotypes, derived from J genes, contributing to the

variation among different curves, such a mixture model is expressed as

(1)

where ω = (ω1,…,ω3J) are the mixture proportions (i.e., genotype frequencies) which are

constrained to be non-negative and sum to unity; φ = (φ1,…,φ3J) are the component- (or

genotype) specific parameters, with φj being specific to component j; η are parameters

which are common to all components; and fj(yi;φj,η) is a multivariate normal distribution

(although other types of distributions can be substituted for the multivariate normal) with

mean vector uj = (uj(C1), …, uj(CL)) and covariance matrix Σ.

The unknown parameters being estimated include 3JL time-specific means, L(L+1)/2

variances and covariances and J gene positions. Functional mapping does not estimate all

elements of the mean vector and matrix directly. Instead, it estimates the biologically

relevant parameters (φj) that model the mean vector18 and parsimonious parameters (η) that

model the covariance structure. General approaches for covariance structure can be

parametric, nonparametric, or semiparametric.25 An optimal covariance-structuring

approach that best fits a specific data should be tested and obtained from model selection

criteria.

For drug response, genotypic means at a dose Cl can be model by the Emax function,18 i.e.,

(2)
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where E0 is the baseline, Emax is the asymptotic drug response, EC50 is the drug

concentration at which drug effect is the half of Emax, and H is the slope of drug response

curve. By estimating drug effect-related curve parameters φj = (E0j, Emaxj, EC50j, Hj) for

each genotype j, one can determine how a gene affects drug response and, further, how

individual patients respond to drug therapy based on their genotypes (Fig. 2). The

covariance (Σ) structure can be modeled by a statistical approach, which could be

parametric, nonparametric, and semiparametric. The best approach for the covariance

structure can balance the trade-off between model parsimony and flexibility through a model

selection procedure.

In an application of functional mapping to map drug response, SNP haplotypes, derived

from the β1AR and β2AR receptor genes, were detected to alter patients' heart rate in

response to a drug called dobutamine.18 The study genotyped 107 patients for two SNPs

within the β2AR receptor gene and measured their heart rates in a response to different doses

of dobutamine, 0 (baseline), 5, 10, 20, 30, and 40 mcg/min. Race, age and gender were

considered as covariates.

Body mass is an important developmental factor for drug response. It can integrated with

functional mapping based on allometric scaling principles. Allometric scaling, described by

a simple power equation, provides a good predictor of a variety of biological variables

including metabolic rate, lifespan, growth rate, heart rate, DNA nucleotide substitution rates,

and length of aortas.26 It can also be used for the scaling preclinical evaluation of drug

metabolism and response.27 A power equation was used to model Emax in equation (2) by

Emax = αMβ, where α and β are the power coefficients that specify the allometry of Emax

over body mass (M).

This model was used to estimate and test haplotype effects on drug response modified by

this scaling law. Of four possible haplotypes (GG, GA, CG, and CA), derived from the

β2AR receptor gene, GG was found to be a risk haplotype that produced the best fit to the

data. The combination between risk haplotype GG (expressed as A) and other non-risk

haplotypes GA, CG, and CA (collectively expressed as B) forms three composite diplotypes

AA, AB, and BB. Our model produced the following results:

• With lighter body mass, the two homozygotes (AA or BB) respond to the dose of

dobutamine more rapidly than the heterozygote (AB).

• When body mass increases, the slope of the responsiveness is much larger for the

heterozygote than the two homozygotes.

• The power to detect a significant genetic effect on drug response is increased when

allometric scaling is incorporated (p = 0.002) than when it is not incorporated (p =

0.021).

It should be pointed out that functional mapping can be integrated with genome-wide

association studies (GWAS) to characterize a complete picture of the genetic architecture of

drug response. GWAS allows all SNPs and their interactions to be analyzed simultaneously.

Wang et al. Page 6

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Systems Mapping

Drug response is the consequence of interactions among drug, disease, and body (Fig. 3).

The interactions between drug and body can be quantified by pharmacokinetics (focusing on

how the body processes a drug, resulting in a drug concentration) and pharmacodynamics

(concerned with how the drug acts on the body, resulting in a measurable drug effect).

Through PK-PD modeling and simulation, a drug's absorption, distribution, and elimination

properties can be characterized. Differential equations and stochastic models, which provide

detailed descriptions of dynamic systems that include physically relevant units, can be used

to simulate the dynamic behavior of drug response and link the exposure of a drug and the

modulation of pharmacological targets, physiological pathways and ultimately disease

systems.28 For example, Wang et al.17 implement a system of ordinary differential equations

(ODEs) to quantify the flow of the drug in the body, its interaction with the disease, and its

pharmacological effect, which is expressed as

(3)

where time t is the independent variable, Q is the amount of drug in the digestive system, C

is the plasma drug concentration, V is the distribution volume, kA is the decay rate of the

drug, km is the Michaelis-Menten constant, Vmax is the maximum rate of the reaction, R is

drug response that can be viewed as blood pressure, body temperature or other

pharmacologic response, kin and kout are the zero-order and the first-order rate constant for

production and loss of an effect, respectively, and Emax and EC50 are the maximum effect of

the drug and the drug concentrations producing 50% of the maximum stimulation,

respectively.

By integrating these two systems of ODEs (3) into the mixture model (1), a new model,

called systems mapping, has been developed.19 Systems mapping is implemented with a

mathematical or statistical algorithm to estimate and test the PK and PD parameters,

allowing us to ask and address new hypotheses about the genetic control of drug response

and pleiotropic effects of individual genes on PK and PD processes. If two types of

environmental and developmental covariates, those that are discrete (such as gender, race,

and smoke/no smoke) and continuous (such as age, nutrient level, and body mass), are

incorporated, we will have power to quantify gene-gene interactions, gene-environment

interactions and gene-development interactions.

Network Mapping

Gene regulatory networks play a pivotal role in every process of drug response, including

cell differentiation, cell cycle, metabolism, and signal transduction.29 By studying the

dynamics of these networks, we can better understand the mechanisms of altering these

cellular processes through medications and more precisely predict drug response. With the

aid of powerful computational tools, the following specific questions can be addressed: what
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is the full range of behavior for this system under different conditions? How does the system

change when certain parts stop functioning? How robust is the system under extreme

conditions?

Many models have been developed for regulatory network analysis. The Boolean network is

one of the most popular models, in which the level of gene expression is either 1 (on) or 0

(off) and the relationship among genes is represented by a Boolean function. This discrete

model provides a qualitative understanding of different functionalities of a given network

under different conditions, but it is too simple to capture the complexity of the network. A

more general and flexible model of regulation is based on a system of ordinary differential

equations (ODEs) that is originally used to model electronic networks in engineering(Fig.

4).22,23,30,31 These equations describe an instantaneous change in each component as a

function of the levels of other network components. For simple ODE systems, an analytical

solution based on the Hill and Michaelis– Menten functions can be formulated, whereas

larger networks, which are constructed by these functions and various linear and bilinear

functions, can only be solved by a numerical solution.

The ODE methods have been applied to model the regulatory network of Halobacterium

salinarum,31 human regulatory networks (mediating TLR-5–mediated stimulation of

macrophages) and several other microbial networks.32 The ODE approach provides detailed

information about the network's dynamics and, also, can generate predictions that may

subsequently be compared to cellular phenotypes.

Below, we show how ODEs can be used to model the regulatory network of drug response

by a system of differential equations. In drug discovery, we seek for a targeted perturbation

that can typically inhibit or activate function of biomolecules related to a disease.33 We

describe the pathways related to drug action as a system characterized by a particular type of

cell, its environment, its points of intervention (such as drug targets), time points of

observation (such as the phosphorylation state of proteins involved in signaling processes)

and a phenotypic change (such as cell death or growth) (Fig. 4). Mathematical models are

used to describe the regulatory network of the system in which nodes denote levels of

molecular activity and edges reflect the impact of one node on the time derivative of

another. As shown in Fig. 4, the time evolution of the system can be modeled by a first-

order differential equation

(4)

where the vector y(t) represents the activities of the system's components; the vector u(t)

represents perturbations of drugs on the components; and f is a linear or nonlinear transfer

function. In practice, y(t) can be the abundances of specific mRNAs or proteins, whereas u(t)

can be the concentrations of different chemical compounds to which the cells are exposed

(Fig. 4).33 Equation (4) can be linear differential equations for a system, but they can further

be modified by a nonlinear transfer function to reflect properties of the system that are not

explicitly modeled.
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The application of differential equations to the detection of drug targets can be made by

inferring functional interactions between pathway components, predicting phenotypic

consequences of drug combinations, and controlling the behavior of the system. By

incorporating systems modeling of transcriptome, proteome, protein-protein, protein-DNA

interactions into a genome-wide association studies, we will gain better insights into the

genetic architecture of drug response in which specific eQTL, pQTL, and mQTLs and their

interactions can be identified to better predict the efficacy of drugs. All this constitutes a

concrete step toward the active development of network-oriented pharmacology.

Future Prospects

Compared to their capabilities only a few years ago, new biotechnologies now hold the

potential to accurately and inexpensively produce terabytes of genotype, gene expression,

protein and metabolic data for complex traits, such as drug response. With various platforms

able to generate vast amounts of information, these advances demand an effective approach

to analyze and interpret the high-dimensional data by developing powerful computational

tools. The development of these tools should be based on solid biological relevance. Their

applications should be tested and validated by multiple experiments in which various data

are collected and analyzed. Only in this manner can the pace of groundbreaking discovery

be accelerated. First, we need to develop a warehouse of computational tools for mapping

genes and their interactions with other factors involved in drug response. The flow of a drug

through the body (pharmacokinetics) and its pharmacological reactions (pharmacodynamics)

are modeled by a system of differential equations. These physiologically meaningful

equations are incorporated to quantify the temporal-spatial pattern of genetic actions for

drug response and understand the mechanisms of how genes interact with developmental

and environmental factors to determine drug efficacy and toxicity. Since proper statistical

inference of dynamic genetic effects depends on robust modeling of longitudinal covariance

structure, parsimonious and flexible approaches for the covariance structure of longitudinal

and repeated measures data will enhance the efficiency of the models.

Second, we need to devise a systems approach for understanding the genetic network of

drug response by integrating genetic, genomic, proteomic, and metabolic data. A network of

genetic and metabolic control should be constructed for drug response with the “omics”

data. The nodes and edges are linked through a system of differential equations (DE) of high

complexity under fundamental biological principles. Powerful mathematical algorithms can

be implemented within a statistical model framework to solve the DE parameters that define

the network and the perturbation of the system. A quantitative framework can be formulated

to test biologically interesting hypotheses about the interacting pattern of biological parts for

a system and the dynamic behavior of the system.

Our hope is to use an increasingly growing amount of complete genome sequences for

engineering new biotechnological solutions to the design and discovery of new drugs.

Although in principle it is possible to re-engineer new processes by selectively combining

otherwise distinct biochemical capabilities, this will very much rely on our profound

understanding of how the proteins encoded in each individual genome dynamically assemble

into biological circuits through interactions with the environment. To achieve this goal, we

Wang et al. Page 9

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



need powerful computational tools for systems approaches to understand how a simple

genetic change or environmental perturbation influences the behavior of an organism at the

molecular level and ultimately its phenotype and how we can enable re-engineering of

cellular circuits for the system through quantitative alterations. To this end, computational

approaches will be coordinated and implemented with experimental data to construct a

predictive gene regulatory network model for drug response.
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Figure 1.
Kinetic modeling of drug response. Upper panel (A): Causal effects of genetic,

developmental and environmental factors and their interactions on the outcome of drug

response. All these effects operate through PK and PD reactions. Lower panel (B):

Intermediate steps linking signaling, transcriptional and metabolic networks involved in the

distribution and action of drugs.
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Figure 2.
Different drug response curves determined by Eq. (2). The x- and y-axis is the concentration

of a drug and its effect, respectively. The differences in the curve shape of drug response are

determined by parameters (E0, Emax, H), although all curves have the same EC50 value. Our

model can detect such shape differences among different genotypes.
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Figure 3.
Drug response as a system with interactions between the drug, disease, and body through

PK-PD processes. Thus, translational research in drug discovery and development could be

considered to be divided into three broad disciplines – translational physiology,

pharmacology and pathology. Mechanism-based PK-PD modelling, by quantitatively

combining system and drug-specific physiological, pharmacological and pathological

properties, has the potential to facilitate translational research. Adapted from ref 28.
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Figure 4.
Phenotypic changes by the perturbation of a drug. In the left panel, perturbations and their

points of action are shown. Small inhibitory RNAs alter gene expression; natural protein

ligands and small compounds act, e.g., on receptors, transporters or enzymes. Genetic

alterations have diverse functional effects. Perturbations can be natural or investigational.

Observations (readouts) typically focus on a phenotype of interest, such as growth or

differentiation, and on observation points that are both practical and informative, such as

transcripts, protein levels or covalent modifications, e.g., phosphorylation. In the right panel,

models for studying drug response are demonstrated in which all key system variables are

represented as real number variables, the combinatorial perturbations ui as well as their

targets, internal variables, observation points and phenotypic outputs yi. Inputs (upper layer,

squares) affect the different dynamical variables of the system (circles), some of which can

be observed (lower layer, squares). The model represents a processing system that relates the

input to the output through the interacting dynamical variables. Representation of coupled

perturbations (nonlinear effects) is a key requirement of the modeling method. Adapted from

ref 33.
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