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Abstract

Multivariate pattern analysis (MVPA) is an increasingly popular approach for characterizing the

information present in neural activity as measured by fMRI. For neuroimaging researchers, the

searchlight technique serves as the most intuitively appealing means of implementing MVPA with

fMRI data. However, searchlight approaches carry with them a number of special concerns and

limitations that can lead to serious interpretation errors in practice, such as misidentifying a cluster

as informative, or failing to detect truly informative voxels. Here we describe how such distorted

results can occur, using both schematic illustrations and examples from actual fMRI datasets. We

recommend that confirmatory and sensitivity tests, such as the ones prescribed here, should be

considered a necessary stage of searchlight analysis interpretation, and that their adoption will

allow the full potential of searchlight analysis to be realized.
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Introduction

Multivariate pattern analysis (MVPA) of functional MRI (fMRI) data has grown steadily

since its beginnings in 2001(Haxby, 2012). Following Raizada and Kriegeskorte (2010), we

illustrate the growth of the literature by showing the citation rate for several key MVPA

papers in Figure 1. Interest in MVPA spans disciplines. Advances have arisen from

synergistic interactions with the machine learning community, which has developed new

methods for addressing fMRI datasets and questions, as seen in the proliferation of relevant

articles (e.g. Cuingnet et al., 2011; Mitchell et al., 2004; Van De Ville and Lee, 2012) and
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1For concreteness, suppose that the searchlight analysis used a linear SVM to distinguish two types of stimuli, and that each
searchlight contained 50 voxels. A particular cluster of interest containing 100 voxels is found in the resulting information map. These
100 voxels could then be grouped together as a ROI, and evaluated with another linear SVM trained to distinguish the stimuli. Thus,
the second analysis involves linear SVM on the single group of 100 voxels corresponding to the ROI, rather than 100 different 50-
voxel searchlights.
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dedicated conference workshops (e.g. the International Conference on Pattern Recognition,

NIPS, Cosyne, etc.). Interest in the cognitive neuroscience applications of MVPA is just as

great (e.g. Heinzle et al., 2012; Tong and Pratte, 2012; Yang et al., 2012). The growing

popularity of MVPA within neuroimaging has been driven by multiple factors, including: a)

suggestions that it provides greater sensitivity and specificity than mass-univariate analyses

with generally complementary results (Haynes and Rees, 2005; Jimura and Poldrack, 2012;

Kamitani and Tong, 2005); b) the possibility of designing tests to address hypotheses which

cannot be addressed with mass-univariate methods (e.g. Knops et al., 2009; Quadflieg et al.,

2011; Stokes et al., 2009); and c) the intuitive appeal of a method which incorporates the

signal from multiple voxels at once.

Searchlight analysis (also called information mapping) is an MVPA method introduced as a

technique for identifying locally informative areas with greater power and flexibility than

mass-univariate analyses (Kriegeskorte and Bandettini, 2007a; Kriegeskorte et al., 2006).

Searchlight approaches are relatively unique, in that they were developed specifically for

fMRI analysis, addressing both the common localization goal (many fMRI studies aim to

identify small brain areas) and the spatial structure of the BOLD signal (adjacent voxels tend

to have similar activation timecourses). Searchlight analysis produces maps by measuring

the information in small spherical subsets (“searchlights”) centered on every voxel; the map

value for each voxel thus derives from the information present in its searchlight, not the

voxel individually. Note that the word “information” is not used here in its formal sense (as

in the field of information theory), but rather following its conventional use in the MVPA

application literature. Specifically, we use the word “information” to indicate that the

activity in a group of voxels varies consistently with experimental condition: a highly

informative voxel cluster can be used to identify experimental condition more accurately

than a weakly informative one.

Appealing aspects of searchlight analysis include its whole-brain approach (i.e., a priori

region specification is not needed), the ability to pool over subject-specific activation

patterns, and its minimization of the extremes of the curse of dimensionality associated with

whole-brain MVPA (the “curse” refers to computational difficulties which can occur when

there are more voxels than examples, see (Clarke et al., 2008; Jain et al., 2000); it is

minimized in searchlight analysis since relatively few voxels are typically included in each

searchlight). Additionally, searchlight analysis produces a whole-brain results map that is

superficially similar in appearance to the whole-brain significance maps produced by more

familiar mass-univariate analyses (based on the general linear model); thus, searchlight

analysis results are potentially easier to interpret.These appealing aspects, plus promising

early results, have led to a rapid increase in the number of studies using searchlight analyses

(note the rapid rise in citations for Kriegeskorte et al, 2006 in Figure 1, particularly in the

last few years). Its acceptance as a standard approach is reflected in its inclusion in recent

MVPA review and methodology articles (e.g. Bandettini, 2009; Mourao-Miranda et al.,

2006; Raizada and Kriegeskorte, 2010; Tong and Pratte, 2012), as well as in the most

prominent MVPA software packages (BrainVoyager QX 2.0, the Princeton MVPA Toolbox,

PyMVPA).
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Reflecting its potential and appeal, variations of the searchlight technique have been

developed. In the spatial domain, it has been extended to circular subsets on cortical surfaces

(Chen et al., 2011; Oosterhof et al., 2011; Oosterhof et al., 2010), rather than the original

volumetric spheres. Efforts have also been made to extend the technique to incorporate the

temporal domain (Fogelson et al., 2011; Rao et al., 2011). The first searchlight analyses used

the Mahalanobis distance as the similarity measure for information mapping, but a widely

adopted variation is to use machine learning algorithms, often support vector machines

(SVMs), instead (Haynes et al., 2007; Kriegeskorte and Bandettini, 2007b). In these

approaches, generalization accuracy of the classifier is used as a proxy for information

content. Group analysis is usually performed by combining individual subject’s maps with a

binomial or t-test at each voxel (with the null hypothesis that the group classification

accuracy is at chance level), creating maps of voxels with significant searchlights. Here we

primarily consider classification-based searchlight analysis, but much of the discussion

applies regardless of the precise implementation.

Searchlight analysis is a powerful and attractive tool for understanding neuroimaging data.

However, it has particular characteristics and limitations that can lead to serious

interpretation errors in practice, and so we recommend that straightforward confirmatory

and sensitivity tests (analogous to post-hoc tests after an ANOVA), such as the ones

described here, be considered a standard part of the searchlight analysis procedure. In the

following sections we describe two assumptions that often implicitly underlie the

interpretation of searchlight analysis results. Unfortunately, as we illustrate, these

assumptions do not always hold, and so may lead to distorted results. We then describe how

confirmatory follow-up tests can be used to guard against particularly harmful distortions,

using two hypotheses common in cognitive studies as illustrations. This manuscript is

accompanied by Supplemental Information containing examples (with code) and technical

details.

Assumption 1: Information is detected consistently

A fundamental aspect of fMRI is that information is not distributed uniformly across voxels

but rather has a three-dimensional structure: some groups of voxels (e.g. those

corresponding to a specific anatomical region) are more informative for a particular task

than other groups of the same size. Additionally, neuroimaging data contains information at

multiple spatial frequencies (Kriegeskorte et al., 2010; Op de Beeck, 2010). For example,

consider a cued finger-tapping task. The finger area of the primary motor cortex will be

highly informative at a very small spatial frequency while the premotor and somatosensory

cortices may be equally informative, but at a larger spatial frequency. The difference can be

imagined as the size of box required to enclose the minimum set of voxels capable of task

classification: a larger box is necessary to enclose the pattern in premotor or somatosensory

cortices than to enclose the pattern in the primary motor cortex.

The distribution of information is relevant for searchlight analysis because interpretation of

any particular map depends on whether the information can be detected equally across

spatial frequencies. In a simulation designed with equal power in all spatial frequency bands,

Kriegeskorte et al. (2006) showed that detection did not require a close match between the
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size of the searchlight and the informative area: a 4 mm radius consistently performed well.

When this finding holds, it simplifies searchlight analysis interpretation: the peak areas of

the map are the most informative voxels. However, if information is not present and

detected equally at all spatial frequencies, then searchlight analysis results will depend fairly

strongly upon the searchlight size; moreover, no single searchlight radius will be universally

optimal or sufficient.

Additionally, although the Mahalanobis distance may be consistently sensitive to

information across spatial frequency bands (Kriegeskorte et al., 2006), this property does not

hold for all information measures used with searchlight analysis, especially the linear SVM.

Training a linear SVM algorithm results in a set of weights; its decision function is a

weighted linear combination of the voxels (Norman et al., 2006). Two properties of the

linear SVM are particularly relevant when used in searchlight analysis: (1) It is sometimes

able to correctly classify when the searchlight contains a small minority of highly

informative voxels (intermixed with a majority of uninformative voxels), and conversely, (2)

It is sometimes able to correctly classify when the searchlight contains a large number of

weakly informative voxels.

Highly-informative voxels can be detected even when very rare

Since, as described above, linear SVMs are relatively resistant to the curse of dimensionality

(Jain et al., 2000), they can sometimes classify a dataset accurately even when only a tiny

minority of the voxels are informative. The degree to which this occurs varies depending on

dataset properties, but it happens often enough to be relevant in practice. For instance,

Supplemental Example 4 shows that introducing just five informative voxels from an actual

fMRI dataset into a group of two hundred random (uninformative) voxels is sufficient to

shift the median accuracy of an SVM from chance to 0.6. For an extreme example, a dataset

containing a single highly informative voxel and 200 random voxels is accurately classified

in Supplemental Example 5. Searchlight analysis generally includes fewer than 200 voxels

in each searchlight, increasing the likelihood that searchlights containing a single or only a

few informative voxels will be detected (see the “Detection of rare informative voxels”

section of the Supplemental Information for further discussion).

This behavior can cause distortions in a searchlight map. To illustrate, suppose that a cluster

of five highly informative voxels (capable of significant classification whenever included in

a searchlight) is surrounded by hundreds of truly uninformative voxels. Any searchlight

overlapping the five-voxel cluster will be significant, even if the majority of its voxels are

uninformative. As a result, some voxels in the results map will be categorized as significant,

not because they themselves are informative, but because they are at the center of a

searchlight that contains the informative voxels. Figure 2 (Supplemental Example 7) gives

examples of this occurrence in an actual fMRI dataset (see Supplemental Example 6 as

well): for instance, the voxel in the lower-left corner (at coordinates 1, 1) changes its

mapped classification accuracy from “uninformative” to “informative” when the starred

(actually informative) voxel is moved, despite there being no change the properties of the

(lower-left) voxel itself.
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A second issue is that the number of voxels marked as informative in a searchlight map will

tend to grow as the searchlight radius increases, even when the size of the truly informative

cluster stays fixed (Figure 3), so long as the curse of dimensionality does not dominate;

classifiers will vary in how many uninformative voxels can be added to the fixed

informative cluster before performance declines. This phenomenon, which has been termed

the “needle-in-the-haystack-effect”, was demonstrated as a formal proof in Viswanathan et

al. (2012). As an extreme example, Viswanathan et al. (2012) showed how all 147,000

voxels of a simulated volume would be classified as “informative” in a 3 voxel radius

searchlight map when the volume contained just 430 evenly distributed informative voxels.

Weakly-informative voxels can be detected when sufficiently numerous

Another property of linear SVMs relevant for their use in searchlight analysis is that they

can pool weak biases across many voxels, with the result that it is possible for a group of

voxels to be classified accurately while the individual voxels making up the group do not

yield significant classification, either singly or as subsets. This information “pooling” is

often a useful characteristic for fMRI data, which is sometimes structured as weak

information present in a large number of voxels. However, it can be troublesome for

searchlight analysis interpretation. For example, suppose that there is a large cluster of

voxels, each with the same small bias (i.e. a uniformly weakly informative voxel cluster).

Ten voxels from this cluster (a small searchlight) may not yield significant classification, but

thirty voxels (a larger searchlight) could produce a weakly significant classification, and

fifty voxels, a highly significant classification (Figure 4 and Supplementary Example 1).

This can be thought of as a case of discontinuous detection of information: at the extreme, a

voxel cluster can change from “uninformative” to “informative” upon the addition of a

single voxel (Supplementary Examples 2 and 3).

Discontinuous detection makes it possible for groups of weakly informative voxels to be

partially or entirely missed when mapping information. Continuing the example, with a

searchlight encompassing fewer than 30 voxels, the cluster will be classified as

uninformative because no single searchlight can include enough voxels to enable accurate

classification (Figure 5a). Larger searchlights could detect the cluster, but only when the

shape of the searchlight matches the shape of the cluster: a spherical searchlight could miss

an elliptical cluster (Figure 5b). An additional complication comes from assigning each

searchlight’s accuracy to its center voxel : large, weakly informative clusters will appear

smaller in the information map if the searchlight radius is less than the cluster diameter,

since only searchlights fully overlapping the cluster will be significant (Figure 5c).

Prior reports in the literature have documented the failure of weakly informative areas to be

detected in searchlight analysis, mirroring our experience that widespread, weakly

informative areas are common in fMRI datasets (see also Gonzalez-Castillo et al., 2012).

For example, Eger, Michel et al. (2009) found that searchlight analysis (linear SVM, 3-voxel

radius) identified no ROI voxels as informative, despite significant classification when using

the whole ROI. Likewise, Diedrichsen, Wiestler et al. (2012) report needing to expand their

searchlight size to achieve adequate sensitivity in one experimental condition (increasing
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from 80 to 160 voxels, with regularized linear discriminant analysis as the classification

algorithm).

Assumption 2: Spatial variation between subjects is small compared to the

searchlight radius

Most applications using searchlight analysis interpret results primarily based on group-level

aggregation of single-subject information maps, even though strategies for constructing and

interpreting these maps have not been fully explored. Methods for constructing group-level

maps often parallel those used in mass-univariate analysis: a t-test (for average accuracy

across individuals greater than chance) is conducted at every voxel independently, followed

by multiple-comparisons correction (Kriegeskorte and Bandettini, 2007a). Alternatively, the

individual maps are statistically thresholded and the group-level map is reported in terms of

the proportion of subjects with a significant searchlight at each voxel (Pereira and Botvinick,

2011). Permutation-based tests have also been proposed (Kriegeskorte et al., 2006), with

new techniques increasing their interpretability and computational tractability (Gaonkar and

Davatzikos, 2012; Stelzer et al., 2013). Some authors perform the searchlight analysis in

native space then normalize the individual maps to an atlas, while others normalize the

images first and then perform the searchlight analysis in atlas space (both of which can

introduce distortions). This proliferation of techniques reflects the importance placed on

group information maps in cognitive neuroscience applications of MVPA, and also the lack

of agreement regarding the best method for constructing them. All of these techniques rely

on a common assumption, however: that spatial variation in the information maps between

individuals is minimal compared to the searchlight radius. Group maps may be misleading if

this does not hold.

Spatial variation between individuals is not a concern unique to searchlight analysis but a

factor in all neuroimaging techniques. For example, smoothing is used during mass-

univariate analysis to help reduce the impact of inter-individual variability. However,

evaluating results when inter-individual variability is present is particularly complex in

searchlight analysis because of distortions that can occur when constructing individual

information maps, particularly distortions causing a mismatch between the actual

informative voxels and their appearance in the searchlight map (such as those shown in

Figure 3 and Figure 5). Since all methods of constructing a group information map involve

combining some version of the individual maps, distortions in the individual maps are

carried to the group level, where their effects may be magnified.

For example, spatial variation in the location of an informative cluster between individuals

may cause the cluster to be missed in the group-level map. In Figure 6a, weakly informative

clusters overlap in the individual maps, but since the individual searchlight mapping detects

only a mi nority of the informative voxels (as in Figure 5c), the individual information maps

do not overlap at the group level (Figure 6b green area), and so the cluster is missing from

the group information map.

At the opposite extreme, voxels that are uninformative in each individual when examined

separately can be identified as being informative at the group level. To illustrate that this can
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occur, suppose half of the individuals have a cluster of highly informative voxels towards

the left side of a ROI while the rest of the individuals have the same cluster of informative

voxels, but shifted towards the right side (Figure 7a). The group-level information map will

not identify the voxels corresponding to either cluster as informative but rather the voxels

between the two clusters, because this is where the individual maps overlap (Figure 7b).

While Figure 7 is a simple illustration contrived to show the problem, such an outcome can

occur in many actual situations. Figure 8 (Supplemental Example 9) shows an occurrence in

real fMRI data: The most informative voxel in the group information map (starred voxel at

left) has the lowest average accuracy when the voxels are tested for classification in a

univariate manner (i.e. as single voxels; Figure 8, right).

Beyond the Searchlight: Some prescriptive guidelines for interpretation

In the previous sections we described how searchlight maps can be distorted at the single-

subject level when information is not detected consistently (highly informative voxels can

appear disproportionately large in the searchlight map while weakly informative voxels can

be missed), and how, when these distortions are carried to the group level, their effects can

be magnified by spatial variation between individuals. The severity of these distortions is

intimately linked to both searchlight size (radius, shape) and classifier properties (such as

how quickly accuracy is degraded by the presence of noise voxels and its sensitivity to the

curse of dimensionality). As a consequence, it is critical that searchlight results be described

in terms of possible dependence on searchlight size and classifier parameters, and checked

for distortions before being interpreted as locating the most informative voxels.

As a general guideline, when only a single searchlight analysis is conducted, interpretation

must be cautious, restricted to the parameters and choices used in the particular analysis. We

do agree that a single-subject searchlight analysis indicates the amount of local information

at each voxel, but only as measured by a particular classifier and given a searchlight of a

particular size and shape. These caveats are necessary and relevant in practice. For example,

in the demonstration dataset included in the Supplemental Information (actual fMRI data), in

subject 12, voxel #13 was assigned an accuracy of 0.17 in the map made with a one-voxel

radius searchlight, but an accuracy of 0.67 with a two-voxel radius searchlight (chance

accuracy is 0.5). The same voxel exhibited the opposite pattern in a different individual

(subject 19): informative in the one-voxel radius searchlight map, but uninformative in the

two-voxel radius searchlight map (see Supplemental Figures 6 and 14). Thus, it is not

meaningful to describe the informativeness of this voxel in these individuals without

specifying a particular searchlight radius.

Precise descriptions are necessary to ensure that interpretation occurs within the correct

context. For example, authors sometimes describe information maps in terms of informative

brain regions, such as “searchlight analysis indicated that information about the effect of

interest was present in the inferior frontal gyrus.” While convenient shorthand, such

phrasing conflates spatial scales, implying that the region itself was shown to demonstrate

the effect, when what was found was that significant voxels in the local information map

were present within the region when using a particular searchlight. It is more precise to

convey the results by emphasizing the scale and type of information found, such as “analysis
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with a 6 mm radius searchlight found local information related to the effect of interest, with

significant searchlight centers located in the inferior frontal gyrus.”

Moving beyond interpreting searchlight maps in isolation enables more general conclusions

to be drawn, inferences about information at scales other than that of a searchlight (such as

“information about the effect of interest was present in the inferior frontal gyrus” and “the

anterior portion of the prefrontal cortex was more informative than the posterior”). We

suggest that conducting straightforward tests after a searchlight analysis (analogous to post-

hoc tests after an ANOVA) can allow such inferences to be made with reasonable

confidence. Two inferences particularly relevant in applications will be described: first, that

a voxel cluster found in a group information map is itself informative, and, second, that a

particular significant cluster contains the most informative voxels in the local anatomical

region. This is not intended to be an exhaustive list of possible conclusions, but rather an

illustration of the type of additional evidence that can be used to support interpretations

drawn from searchlight analysis results, and why such evidence is necessary.

For convenience, in this section we will refer to the voxels identified as significant by the

searchlight analysis as the “cluster.” In some applications the cluster could be composed of

the searchlight centers only (as typical in searchlight mapping), while in others the cluster

could include surrounding voxels (all voxels included in the identified searchlights). We

refer to the anatomic region in which the cluster was found (and about which we want to

infer), as the “area.”

Testing the interpretation that a cluster of searchlight-detected voxels is itself informative

A searchlight analysis gives the location of a cluster of informative searchlight centers, but

additional tests are necessary to demonstrate that the voxels making up the cluster are

themselves informative. The key issue is to infer across spatial scales: we wish to describe

the cluster not only as the centers of informative searchlights of a particular radius (which is

accurate without additional testing), but that the cluster voxels themselves (usually the

searchlight centers) are informative. This claim requires additional evidence because it

refers to the group of centers rather than the searchlights, which were the unit of analysis. In

other words, we wish to change from making inferences about the searchlights to making

inferences about the particular group of voxels we identified in the searchlight analysis. We

propose that a general strategy for demonstrating that a cluster is informative is to explicitly

create a region of interest (ROI) from the cluster and then characterize the properties of that

ROI1. If the ROI made from the cluster is informative, then there is justification for

concluding that the cluster is itself informative.

This analysis is deliberately circular: the ROI is tested using the same data as the original

searchlight analysis. Despite the circularity, it is not guaranteed that the ROI will be

informative. For example, the cluster in the group searchlight map in Figure 7 is composed

entirely of uninformative voxels (see also Figure 8). Since the ROI may not be informative,
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even in a circular analysis (which should be the most favorable), the cluster should always

be tested for information, as a ROI, before describing it in any sense other than that of the

centers of searchlights. Stronger evidence for an informative cluster can be provided by a

noncircular analysis (constructing the information map from different data than those used

to test the resulting ROI).

While in many (perhaps most) cases the cluster will itself be informative in a circular

analysis, the severity of the interpretation error in the exceptions, combined with the ease

with which exceptions can be found (particularly in group analyses), leads us to recommend

that clusters identified in a searchlight analysis always be directly checked for

informativeness (as a ROI) before being described as informative themselves.

Conducting additional, complementary, analyses may allow confidence in the interpretation

to be strengthened even further. The most appropriate analyses will vary with dataset and

hypothesis, but sensitivity analyses are likely generally useful: how much does the cluster

change when the analytical choices are varied (e.g. searchlight shape, classification

algorithm)? Equivalently, how much does the information map change? For example, does

the particular highly informative cluster have a similar appearance across a range of

searchlight radii and shapes? If so, it is less likely to be a simple artifact. Nestor, Plaut et al.

(2011) followed this strategy, providing group information maps at three different radii,

which show that the t-values increase with increasing radius without greatly shifting the

location of the highest values.

In the case of group analysis, sensitivity analyses can also evaluate whether the cluster

depends on the inclusion of particular subjects. For example, group -level maps can be made

after leaving out each subject individually (Supplemental Example 8); the cluster’s

appearance should not rely on the inclusion of particular subjects. Similarly, providing

individual subject information maps (e.g. Diedrichsen et al., 2012) is also useful, allowing

the reader to evaluate the degree to which the group-level clusters are also found in the

individuals. Sensitivity to statistical technique can also be important: a robust cluster should

be similar over several methods of creating the group-level map (e.g. t-test, permutation

test).

Testing the hypothesis that a cluster contains the area’s informative voxels

If it has been demonstrated that a particular cluster of voxels is itself informative (as a ROI),

the researchers may wish to investigate whether those voxels are more informative than

neighboring ones, that is, that the cluster encompasses the most informative voxels in a

particular anatomical location. This type of claim is most relevant and tractable in cases

where the cluster is in a specific anatomic region of interest. For example, searchlight

analysis could identify a cluster in the left dorsolateral prefrontal cortex, and the researchers

want to investigate whether it contains all the informative voxels in the left dorsolateral

prefrontal cortex. This will of course not be proof that the most informative possible cluster

was found, as that would require exhaustive testing of all possible configurations;

conclusions will necessarily be restricted to a particular analysis protocol and dataset.
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We propose that virtual lesion and feature perturbation techniques provide a framework for

evaluating this type of claim: If the cluster contains the informative voxels, then the area

should be less informative when the cluster voxels are removed. Such a test can begin by

determining the accuracy of the entire area, including the cluster (i.e. a ROI-based analysis

of the whole area). The area should be found informative, since the cluster known to be

informative is present within it (although if the area is very large, or the classifier highly

sensitive to noise, this test may fail, necessitating a different approach). Then the cluster

should be removed and the classification of the area repeated (i.e. perform the ROI-based

analysis after “lesioning” the cluster). In some cases it may be appropriate to “lesion” after

dilating the cluster by the searchlight radius, to include all voxels participating in the

targeted searchlights.

Strong evidence that the cluster contains the most informative voxels is provided if the area

without the cluster contains little information, but the area with the cluster and the cluster

alone contain similar amounts of information (Figure 9a). If the area is still informative after

the cluster has been lesioned, it is improper to describe the cluster as the sole informative

location, despite the appearance of the searchlight map. Instead, the information could be

described in terms of the area as a whole (e.g. “weak information is widespread throughout

the dorsolateral prefrontal cortex, with fine-scale information (as measured by a 8 mm-

radius searchlight) found in a cluster centered at −38, 30, 30”), or additional analyses

conducted to clarify the spatial distribution of informative voxels.

Evaluating the accuracy of the cluster and area can be done at the either the individual or

group level, as relevant to the particular interpretation being drawn. In the case of group

analyses, the strongest evidence that a highly informative cluster had been detected would

occur if the cluster is more informative than the rest of the area not only at the group level

but also in a majority of the subjects individually.

This virtual lesion test is most stringent when the initial searchlight analysis and the follow-

up cluster and area analyses are carried out in independent datasets (such as from different

scanning days or groups of subjects). If the lesion analysis is performed using the same

dataset as the searchlight mapping the analysis will be circular (Kriegeskorte et al., 2009),

and so biased towards finding that the cluster is highly informative. However, even in a

circular analysis it is not guaranteed that the cluster will contain most of the information in

the area. In other words, removing (“lesioning”) the cluster identified in a searchlight

analysis from an area does not always reduce the area’s accuracy to chance, and will not

necessarily reduce the area’s accuracy at all.

For example, consider the small illustration summarized in Figure 9 and presented as

Supplemental Example 10. The same fMRI dataset was used for the searchlight mapping

and cluster-based analysis, so it is a circular analysis, biased towards supporting the claim

that the area’s information is contained within the cluster. At the most lenient threshold (t >

0, 68% of the area’s voxels in the ROI made from the informative cluster) we find support

for the claim that the most informative voxels in the area are in the cluster: the ROI

classifies more accurately than the ROI made from the non-cluster voxels (which are near

chance), and slightly more accurately than the area as a whole. But this does not hold when
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the thresholds increase in stringency: at a higher threshold (t > 1, 44% of the area’s voxels in

the ROI) the cluster classifies marginally less accurately than both the non-cluster voxels

and the area as a whole. Thus, at this threshold, the above-threshold voxel cluster, when

treated as a ROI, does not classify more accurately than the less-significant voxels: the

above-threshold voxels are only more informative in the context of the searchlight analysis.

In a more extensive analysis of this type (also circular) conducted in Etzel, Cole et al. (2012)

a similar pattern was observed: a cluster identified as significant via searchlight analysis

achieved an accuracy of 0.74 when tested as a ROI (p < 0.001), but when the cluster was

removed the remaining (putatively non-informative voxels) in the area classified at 0.69 (p <

0.01) as a ROI, not a significant difference. The 0.05 reduction in accuracy after lesioning

lends supports to the inference that the cluster is informative, but does not support the

inference that the cluster encompasses all of the area’s informative voxels; many voxels

outside the cluster must have also been informative for the area to classify significantly after

lesioning.

Discussion

Searchlight analysis is a powerful tool for neuroimaging data analysis, but has

characteristics that must be kept in mind for accurate interpretation, since it has the potential

to produce distorted results, including misidentifying a cluster as informative or failing to

detect truly informative voxels. We described why such errors are particularly troublesome

when information detection is discontinuous, especially when weak information is

distributed over a large number of voxels with spatial variability between subjects, as is

common in high-level cognitive tasks.

We suggest that the natural role for searchlight analysis is to be part of an analysis protocol,

not used in isolation. Searchlight analysis not accompanied by additional evidence supports

inferences about the collections of searchlights analyzed, but not about the regions defined

by clusters of voxels defined by searchlight centers. Clusters of significant searchlight

centers are frequently described as defining a region of the brain that contains information,

but that inference is not warranted based solely on the searchlight analysis.

As a concrete example, consider a hypothetical article (but representative of many currently

published in NeuroImage and other journals) in which a searchlight analysis classifying a

task was run at the individual level, after which a group-level results map was statistically

generated. In the results section the authors write that they used “multivariate pattern

analysis to determine the voxel clusters that contain significant information about the task”

and present both “the resulting map of second-level analysis t-values” and a table listing the

coordinates and sizes of four significant voxel clusters. The discussion and interpretation

focuses on the anatomical regions in which the four clusters were found, beginning with an

explanation that they “used MVPA to identify brain regions that predict participant task

performance,” and followed by discussion of the potential task-related processing taking

place in the regions.

We would consider the presented evidence insufficient to support the conclusions being

drawn in the article, as it does not show that the brain regions predicted task performance,
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but rather that, at the group level, the centers of searchlights capable of such prediction fell

inside those brain regions. While this may seem a fine distinction, it is a crucial one: it is

possible that the voxels falling within the brain regions would not actually predict

participant task performance if tested directly, outside of the searchlight analysis.

Confirmatory analyses are necessary to demonstrate that the brain regions can indeed predict

task performance. At minimum, a circular ROI-based analysis of each cluster would, if

capable of classification, demonstrate that the cluster voxels themselves are informative.

More convincingly, ROIs could be defined anatomically or in independent data (such as by

holding each subject out of the searchlight analysis in turn, performing the ROI-based

analysis on that subject using clusters defined on the other subjects). If the confirmatory

tests fail, the conclusion that the regions predict participant task performance should not be

made. We would recommend that an article making claims like this should not be accepted

until confirmatory tests like the ones described above have been conducted.

While no set of confirmatory and sensitivity tests will be universally applicable, we propose

that following a searchlight mapping with ROI-based analyses on detected voxels is

straightforward and will identify the most serious distortions. Here we focused on issues that

arise when linear SVMs are used with volumetric searchlights, as this combination is

currently in wide use. Yet, similar issues stemming from discontinuous information

detection are likely to apply to other linear classifiers as well; the detection characteristics of

any metric should be explored before it is used in searchlight analysis. Nor are the issues

unique to a particular searchlight shape; any technique (including surface-based) that assigns

the searchlight’s accuracy to its center voxel is susceptible to map distortions (see

(Björnsdotter et al., 2011; Tianhao and Davatzikos, 2011; Zhang et al., 2012) for possible

alternatives).

Searchlight approaches are often thought to be the preferred MVPA technique when

conducting group analyses, because they provides a degree of spatial abstraction by

combining local information maps across individuals at the level of the searchlight, rather

than of single voxels (Kriegeskorte and Bandettini, 2007a). However, any distortions that

occur in the individual information maps can lead to misleading or incomplete group-level

maps, particularly in cases when large variation is expected between subjects, and/or when

information is diffusely distributed and weak, such as with high-level cognitive tasks. This

problem is not unique to searchlight analysis, as spatial variation between individuals causes

difficulties in nearly all fMRI techniques, including the mass-univariate GLM. While

smoothing mitigates some of the effects of misalignment in mass-univariate analyses, the

distortions in searchlight analysis are discontinuous, harder to predict and control, and so

present a special challenge. One possible outcome is that searchlight analysis in individuals

can detect highly informative clusters of voxels matching the searchlight size much more

readily than mismatched or less informative clusters. Carried to the group level, only areas

with consistently-located, highly informative clusters of that particular size will survive

statistical thresholding, leading to an impression that the information is distributed much

more focally than it is in actuality. This parallels the distortions that occur in univariate

group analyses when there is low statistical power (Yarkoni, 2009), in the sense that many

informative areas are missed, but those that are found appear (artifactually) to be extremely

strong and focal. The greater sensitivity of searchlight analysis to focal information is
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compatible with the tendency in fMRI research to describe small brain areas with specific

properties; the “localizationist view” (Gonzalez-Castillo et al., 2012). Expanding our search

space beyond focal information, such as by using the strategies described in this paper, will

provide a more complete picture of the brain activity that is measured by fMRI BOLD

signals, hopefully leading to a more accurate and powerful understanding of brain function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Searchlight analysis is a promising MVPA method widely used in fMRI

research.

• Violation of assumed properties potentially leads to misleading information

maps.

• Voxels significant in searchlight accuracy maps may not themselves be

informative.

• Critical follow-up analyses are prescribed to support and justify interpretations.
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Figure 1.
Pattern-information fMRI is still a rapidly growing field, particularly searchlight analysis

(note the rapid increase in papers citing Kriegeskorte et al, 2006). This figure follows Figure

2 in Raizada and Kriegeskorte (2010), but uses the actual citation counts after 2008. The

number of citations for each paper and year was obtained via Scopus (www.scopus.com) on

9 January 2013.
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Figure 2.
Influence of a single highly informative voxel on the searchlight map of a single subject

from an fMRI dataset (complete version is Supplemental Example 7). a: Original searchlight

accuracy map. The center voxel (starred) is highly informative individually. b: Searchlight

maps after moving the highly informative voxel to the indicated locations. The most

informative cluster of voxels in the searchlight accuracy map shifts to match the location of

this voxel: this single informative voxel causes multiple voxels to be marked informative in

the searchlight map.

Etzel et al. Page 18

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Illustration of how the representation of a highly informative voxel (yellow square)

increases in the information map of a single subject (right, green circle) with increasing

searchlight radius (left, red circle). While the actual informative voxels are the same in a and

b, the number of voxels marked informative in the map increases with the searchlight radius.
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Figure 4.
Example of discontinuous information detection by a linear SVM, showing that accuracy

increases from chance as the number of voxels increases; complete version is Supplemental

Example 1. The simulated dataset has 500 voxels, all equally informative (constant bias),

two classes, and four runs, with accuracies averaged over four leave-one-run-out cross-

validation folds. Additional voxels are added to each successive subset, such that the two-

voxel subset has voxels #1 and #2, the three-voxel subset has voxels #1, #2, and #3, etc. The

inset shows the result of adding the first fifty voxels in greater detail. As the inset shows, at

less than 20 voxels the SVM tends to suggest an absence of significant information (~50%

classification accuracy); however, as the subsets increase past 20 voxels the classification

accuracy rapidly increases in a discontinuous manner.
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Figure 5.
Illustration of how informative voxels may be missed in a single-subject searchlight analysis

when information is not detected with equal power in all spatial frequencies. The yellow

areas represent informative voxels while the red circles represent the searchlight. Assume all

cluster voxels are required for significant classification. a. The cluster will not be detected

because the searchlight is too small. b. The cluster will be not detected because the

searchlight shape does not match the cluster shape. c. The cluster appears smaller in the

information map since only searchlights containing the entire cluster are significant.
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Figure 6.
Illustration of spatial variability between subjects causing informative clusters to be missed

at the group level. a. Half of the subjects have the cluster of informative voxels (yellow) on

the left side of the ROI while the other half have the cluster on the right side; all cluster

voxels are required for significant classification. The searchlight (red circle) is large enough

to encompass the informative voxels, but neither appears significant in the group

information map. b. Information maps for each subject group (green) do not overlap despite

overlapping informative clusters (yellow).

Etzel et al. Page 22

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
Illustration of how searchlight analysis (red circle) can produce a group information map

misaligned to the informative clusters when spatial variability across subjects is present. a.

Suppose half of the subjects have the cluster of informative voxels on the left side of the

ROI (yellow) while the other half has the cluster on the right side of the ROI. The group

map will locate the informative voxels between the two clusters (green), where no subjects

had informative voxels. b. Information maps for each subject group, showing how the

overlap of the subjects’ maps results in the distorted group map.
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Figure 8.
Instance of group map distortions in fMRI data; complete version is Supplemental Example

9. The most informative voxel (starred) in the group information map (left) has the lowest

mean accuracy, as determined by single-voxel classification (right). Maps for each of the six

subjects making up the group are shown at the top of the figure.
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Figure 9.
Relationships between ROI accuracy and the statistical threshold applied to the searchlight

map. a. Hypothetical information map resulting from a searchlight analysis (lighter shades

indicate more accurate classification), with the area of interest outlined in green. Many

voxels are considered part of the informative cluster at a lenient statistical threshold (left,

marked by blue dots). Only the most significant voxels are included in the informative

threshold at a stringent statistical threshold (right). b. Possible relationship when the above-

threshold ROI contains the area’s informative voxels. The ROI’s accuracy increases as the

statistical threshold becomes more stringent, since only the most informative voxels are

retained in the cluster. The accuracy of the below-threshold ROI (i.e. the voxels not in the

cluster) is near chance at lenient thresholds, but may increase at stringent thresholds if some

moderately-informative voxels are no longer included in the above-threshold ROI. c.

Schematic of an actual relationship observed in a circular analysis of an fMRI dataset, see

Supplemental Example 10. The above-threshold ROI’s accuracy is slightly below that of the

non-cluster voxels at the stringent statistical threshold, indicating that the voxels outside the

cluster are approximately as informative as the cluster voxels.
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