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1Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London,

Gower Street, London WC1E 6BT, UK

*Correspondence: arnd.roth@ucl.ac.uk (A.R.), m.hausser@ucl.ac.uk (M.H.)
http://dx.doi.org/10.1016/j.neuron.2013.12.029

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
SUMMARY

Defining the rules governing synaptic connectivity is
key to formulating theories of neural circuit function.
Interneurons can be connected by both electrical
and chemical synapses, but the organization and
interaction of these two complementary microcir-
cuits is unknown. By recording from multiple molec-
ular layer interneurons in the cerebellar cortex, we
reveal specific, nonrandom connectivity patterns in
both GABAergic chemical and electrical interneuron
networks. Both networks contain clustered motifs
and show specific overlap between them. Chemical
connections exhibit a preference for transitive pat-
terns, such as feedforward triplet motifs. This struc-
tured connectivity is supported by a characteristic
spatial organization: transitivity of chemical connec-
tivity is directed vertically in the sagittal plane, and
electrical synapses appear strictly confined to the
sagittal plane. The specific, highly structured con-
nectivity rules suggest that thesemotifs are essential
for the function of the cerebellar network.

INTRODUCTION

Neural circuits are the substrate for information processing and

behavior. However, little is known about the rules governing their

connectivity and the motifs they form in the mammalian brain.

Identifying such rules and motifs is important, because the fine

structure of connectivity influences activity patterns, information

processing, and memory storage in neural circuits (Denk et al.,

2012; Seung, 2009). Although the large-scale connectivity be-

tween brain areas is evidently structured, it has been proposed

that local connectivity between individual cells may be random,

andmostly governed by spatial constraints. In particular, cortical

connectivity has been proposed to result from nonspecific over-

lap between axons and dendrites, the so-called Peters’ rule

(Braitenberg and Schüz, 1991; Peters and Feldman, 1976).

Because the concept of randomly connected neural networks

constitutes one of the simplest assumptions, it has been widely

used for network models and theory (Markram, 2006).

However, evidence has recently emerged in favor of structured

local circuits. The C. elegans connectome has been shown to
contain small-world properties (Watts and Strogatz, 1998) and

specific functional motifs (Milo et al., 2002; Varshney et al.,

2011). Many brain areas reveal signs of structured connectivity,

in particular, in relation to their functional representation (Brigg-

man et al., 2011; Helmstaedter et al., 2013; Ko et al., 2011; Mai-

sak et al., 2013; Takemura et al., 2013). Connectivity inferred from

neural activity at a scale of hundreds of neurons also suggests

small-world properties (Yu et al., 2008) and the presence of

hub neurons (Bonifazi et al., 2009). Other approaches for probing

functional connectivity in a sparse manner also provide evidence

for specific organization. These studies have investigated con-

nectivity between principal cells of the same type (Ko et al.,

2011; Perin et al., 2011; Song et al., 2005), where nonrandom fea-

tures and clustering are present, and between different types of

principal cells, where cortical layer specificity governs connectiv-

ity (Kampa et al., 2006; Lefort et al., 2009; Yoshimura et al., 2005).

The connectivity between interneurons and principal cells has

also been explored especially in the neocortex, where the large

diversity of interneuron types suggests functional diversity.

These studies generally report a cell-type-specific organization

between cortical layers (Jiang et al., 2013; Kätzel et al., 2011;

Yoshimura and Callaway, 2005; Yoshimura et al., 2005), but a

dense nonspecific local connectivity (Fino and Yuste, 2011;

Packer and Yuste, 2011). The connectivity from excitatory to in-

hibitory cells (Bock et al., 2011; Hofer et al., 2011) suggests that

cortical interneurons sample their excitatory inputs randomly.

The available results thus indicate that interconnectivity of prin-

cipal cells is structured, whereas connectivity of interneurons is

unstructured. However, an important element remains to be

probed inmore detail: the higher-order connectivity among inter-

neurons. Recently, the interaction between the different types

of cortical interneurons and its functional implications have

attracted interest (Jiang et al., 2013; Letzkus et al., 2011; Pi

et al., 2013). Interneuron networks are known to share electrical

and/or chemical synapses in various brain areas (Bartos et al.,

2002; Galarreta and Hestrin, 1999, 2002; Gibson et al., 1999;

Landisman et al., 2002; Tamás et al., 2000), including in a cell-

type-specific manner (Blatow et al., 2003; Gibson et al., 1999;

Jiang et al., 2013; Koós and Tepper, 1999) and are thought to

underlie important features of network dynamics, such as syn-

chronization and oscillations (Bartos et al., 2007; Whittington

and Traub, 2003). However, quantitative information about the

connectivity motifs and network architecture of interneuron-

interneuron connections, in particular among interneurons of

the same cell type, is still lacking and is essential in order to fully

understand their operation (Buzsáki et al., 2004).
Neuron 81, 913–929, February 19, 2014 ª2014 The Authors 913

mailto:arnd.roth@ucl.ac.uk
mailto:m.hausser@ucl.ac.uk
http://dx.doi.org/10.1016/j.neuron.2013.12.029
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2013.12.029&domain=pdf


A

C

D E

B

Figure 1. Molecular Layer Interneurons Are Connected by Electrical and Chemical Synapses

(A) Simultaneous whole-cell patch-clamp recording from four molecular layer interneurons (MLI), filled with Alexa 488/594 and imaged with two-photon

microscopy.

(B) Testing for functional connections reveals an inhibitory chemical connection between cells 1 and 4 and an electrical connection between cells 3 and 4.

(legend continued on next page)
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Molecular layer interneurons in the cerebellum play an impor-

tant role in regulating cerebellar output andmotor learning (Jörn-

tell et al., 2010). They are interconnected byGABAergic chemical

synapses (Häusser and Clark, 1997; Llano and Gerschenfeld,

1993) and by electrical synapses (Alcami and Marty, 2013;

Mann-Metzer and Yarom, 1999). The connections between

molecular layer interneurons have important functional roles:

the electrical connections can promote synchrony (Mann-Metzer

and Yarom, 1999), whereas the chemical synapses can delay

action potentials and affect the precision of spike timing in post-

synaptic interneurons (Häusser and Clark, 1997; Mittmann et al.,

2005). However, the level of overlap between the chemical and

electrical networks and their higher-level organization remain

unclear.

Here, we use multiple whole-cell patch-clamp recordings to

investigate the electrical and chemical connectivity of the inter-

neuron network in the molecular layer of the cerebellum. We

find that the structure of the network followsmostly random con-

nectivity predictions at the level of pairs of neurons but deviates

strongly from these predictions when probed at the level of trip-

lets and quadruplets of neurons. Chemical synapses preferably

form transitive connectivity motifs, such that if cell A connects

to cell B, and B to C, then cell A also connects to cell C. We

show that the observed connectivity is supported by a defined

spatial organization: electrical synapses are restricted to sagittal

planes, and the chemical transitivity is oriented in the sagittal

plane. These signs of structured connectivity have important

implications for the function of the network.

RESULTS

Overlap of Electrical and Chemical Networks in
Molecular Layer Interneurons
We used multiple simultaneous patch-clamp recordings (Fig-

ure 1A) to assess the connectivity among molecular layer inter-

neurons (MLIs) in rat cerebellar slices (P18–23). MLIs are

connected by GABAergic synaptic connections (Häusser and

Clark, 1997; Kondo and Marty, 1998), and by electrical coupling

via gap junctions (Alcami and Marty, 2013; Mann-Metzer and

Yarom, 1999). We therefore investigated the extent of overlap

between these two populations.

Electrical coupling between individual pairs of neurons was

quantified with long current pulses (Figure 1B), and the coupling

coefficient (CC) of the connection was determined (Supple-

mental Experimental Procedures available online). The postsyn-

aptic voltage response to a spontaneous action potential (AP) in

an electrically coupled presynaptic cell consisted of a spikelet

(0.30 ± 0.42 mV, n = 77; for CCR1%) followed by an afterhyper-

polarization (AHP; 0.46 ± 0.58 mV, n = 77), as observed between

other coupled cells with large AHPs (Galarreta andHestrin, 2002;

Vervaeke et al., 2010; Figure S1). In voltage clamp, the postsyn-

aptic current corresponds to the inverted, filtered presynaptic AP

(Figure 1C, left). The mean CC of electrically coupled pairs was
(C) Examples of the three types of connections observed in voltage clamp before

(>30 sweeps).

(D and E) Distribution of synaptic strengths across the population (gray) and for d

IPSC amplitude (at VC = �50 mV) for chemical connections (E).
7.13% ± 6.02% (n = 171), although it spanned a wide range,

with a few CCs being over 25% Figure 1D). The overall probabil-

ity of finding an electrical connection at the pair level was

pE = 0.42.

The presence of chemical synapses was tested by examining

the average synaptic current evoked in the postsynaptic cell by a

presynaptic AP (Figure 1B). Purely GABAergic chemical synaptic

connections were characterized by an outward inhibitory post-

synaptic current (IPSC) (when holding at �50 mV) that was

completely abolished by 10 mM gabazine (SR95531; Figure 1C,

middle). The mean IPSC amplitude was 11.2 ± 9.2 pA (n = 80;

Figure 1E). The overall probability of observing a chemical

connection was pC = 0.20, whereas the probability of a given

pair being connected with at least one chemical synapse (unidi-

rectional or bidirectional) was p = 0.36.

A significant proportion of MLI pairs were connected via both

chemical and electrical synapses, which we term ‘‘dual connec-

tions,’’ as found in other brain regions (Galarreta and Hestrin,

2002; Tamás et al., 2000). At such connections, the electrical

synapse can be detected using hyperpolarizing current pulses.

The postsynaptic response to a presynaptic AP will, however,

consist of a mixture of the GABAergic synaptic current and the

filtered electrically coupled AP. These can be disentangled by

applying gabazine, which blocks the GABAergic IPSC and iso-

lates the remaining electrical component (Figure 1C, right). In

contrast, a pure electrical response is unaffected by gabazine

application (Figure 1C, left). The distribution of synaptic

strengths for the electrical and chemical components of dual

connections was similar to that of the overall population (Figures

1D and 1E). The overall probability of dual connections was

pD = 0.12. These results show that the chemical and electrical

networks within the interneuron population of the cerebellar

molecular layer can overlap.

Distance Dependence of Electrical and Chemical
Connection Probability
We next examined how the probability of connections between

individual MLI pairs depends on the intersomatic distance, after

confirming that our estimate of connection probability is not

affected by the slicing process (Figure S2A). Over the distances

tested (%180 mm in the sagittal Dxy plane; %50 mm along the

transverse Dz axis; Figures S2B and S2C), the probability of an

electrical connection pE and chemical connection pC decreased

with both increasingDxy andDz (Figure 2A). Along the transverse

axis, the electrical coupling appears confined to a remarkably

narrow plane, withDz%30 mm (Figure 2B), whereas the chemical

connection is less strongly confined.

These results can be explained by the somatodendritic

morphology of MLIs: their dendrites are planar and follow the

sagittal plane, similarly to Purkinje cell dendrites (Palay and

Chan-Palay, 1974; Rakic, 1972; Sultan and Bower, 1998),

whereas their axons have a broader spatial distribution. To

quantify the difference between the spatial extent of axons and
and after gabazine (SR95531) application. Traces are spike-triggered averages

ual connections (black): coupling coefficient for electrical connections (D) and
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D

B Figure 2. Distance Dependence of Electrical

and Chemical Connection Probability

(A) Probability of electrical and chemical connec-

tions versus intersomatic distance in xy (sagittal

plane) between recorded pairs.

(B) Probability of electrical and chemical connec-

tions versus intersomatic distance in z (transverse

axis) between recorded pairs. Error bars indicate

SD based on bootstrap analysis.

(C) MLI filled with biocytin and imaged using

confocal microscopy after streptavidin-conjugated

Alexa 488 histochemistry (left; blue, DAPI), and its

reconstructed morphology (right).

(D) Superposition of 12 reconstructed MLI mor-

phologies in xy view (left) and yz view (right). Bottom

right, normalized density profile along the z axis.

Dendrites (green) are more strongly confined to the

sagittal plane than axons (black).
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Figure 3. Connectivity at the Pair Level Appears Mostly Random

(A) Comparing the predictions of random connectivity models to experimental

data. The uniform random prediction is based on the average unidirectional

connection probabilities (light gray). The nonuniform random prediction is

based on the intersomatic distance and the measured probabilities of con-

nections as a function of distance (dark gray).

(B) Probability of each type of connection between pairs: no connection,

electrical only, chemical only, dual, bidirectional, and bidirectional and elec-

trical, compared to the two predictions. For each connection type, the number

of observations in the experiment is given above the green bars.

Neuron
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dendrites, we reconstructed MLIs individually filled with biocytin

and imaged their structure using high-resolution confocal micro-

scopy (Figure 2C). Their morphologies were centered and

realignedwith respect to the sagittal plane and pial surface (Sup-

plemental Experimental Procedures; Figure 2D; n = 12 cells) and

used to generate a density map in the xy and yz planes. The

width of the normalized density map of dendrites and axons
along the z axis was estimated as 2s (dendrite) = 24.1 mm and

2s (axon) = 41.3 mm, respectively (Figure 2D, right). Thus, den-

drites are more segregated to the sagittal plane than axons,

which, given the dendritic location of electrical synapses be-

tween MLIs (Sotelo and Llinás, 1972), explains the tighter spatial

confinement of electrical coupling.

Connectivity at the Pair Level Appears Mostly Random
Is the connectivity between interneurons random on the level of

individual pairs? To answer this question, we first calculated the

overall probabilities for each type of connection between pairs in

the data. The probability of a pair having no chemical or electrical

connection was p = 0.340; electrical only p = 0.295; chemical

only p = 0.214; dual chemical and electrical p = 0.121; bidirec-

tional chemical p = 0.024; and bidirectional chemical with elec-

trical p = 0.005. To test whether these results are consistent

with the null hypothesis (‘‘connectivity is random’’), it was neces-

sary to generate synthetic connectivity data defined as random

and compare it to the real data. Any significant difference would

disprove the null hypothesis and show nonrandom features of

connectivity. We can formulate two sets of predictions for the

pairwise connection probabilities, both based on random statis-

tics. The first one only assumes that all chemical and electrical

connections are made independently of each other with the

average connection probabilities pE = 0.42 and pC = 0.20 (Fig-

ure 3A, top; Supplemental Experimental Procedures). It repre-

sents a simple model of locally uniform random synaptic

connectivity between pairs of cells. We name this first model

the ‘‘uniform random’’ model. The second, more complex model

also assumes that all connections are made independently of

each other, but the probability of a connection depends on the

intersomatic distance in xy and z (Figure 3A, bottom). We con-

structed the model of distance dependence using the distribu-

tions observed in the data (Figures 2A, 2B, S2D, and S2E). We

call this second model the ‘‘nonuniform random’’ model. In addi-

tion, we also tested two random models that include the

position of the cells in the molecular layer (ML) as a parameter

(Figure S3). The probabilities of the different connection types

between pairs predicted by the two models (Figure 3B; light

and dark gray bars) were compared to the data (green bars,

n = 420 pairs). For most of the connection types the ratio of

the predicted to the actual connection probability is not signifi-

cantly different from 1. The occurrence of fully connected (bidi-

rectional chemical and electrical) pairs is significantly lower

than predicted by both random models (p = 0.046 and 0.004

for the uniform and nonuniform random predictions, respec-

tively; though the difference is not significant when including

ML position in the random model, Figures S4A and S4B). The

occurrence of bidirectional chemical connections at the random

level is in contrast to excitatory connections between layer 5

pyramidal cells, where they are overrepresented (Markram

et al., 1997; Song et al., 2005; Perin et al., 2011). In addition,

the number of dual connections is at the level expected if electri-

cal and chemical synapses are formed independently of each

other. Thus, the fact that only small differences were observed

compared to the predictions appears to suggest that random

connectivity is an adequatemodel at the pair level for these inter-

neuron networks.
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Stronger Electrical Clustering Than Predicted by the
Random Connectivity Models
We next examined connectivity motifs involving more than two

neurons. To address this, we investigated the higher-order con-

nectivity among triplets and quadruplets of neurons and

compared the findings to the two random connectivity models.

First, we counted the occurrences of each possible electrical

triplet pattern (Figure 4A). The recorded quadruplets were sepa-

rated into triplets for a total of n = 173 triplets. The intersomatic

distances measured for each configuration were used to predict

the probability of electrical and chemical connections for the

nonuniform random model. The occurrences predicted by both

random models were counted in the same way as for the data

(Supplemental Experimental Procedures). The ratio (data/

prediction) indicates the relative occurrence of each of the four

possible nonisomorphic patterns, compared to the two random

connectivity predictions (Figure 4A).

We found that the predictions of both random connectivity

models differ from the data. The uniform random prediction

shows large deviations compared to the data for most patterns

(p values: p1 = 0.003, p2 = 0.022, p3 = 0.0004, p4 = 0.0004), con-

firming that the model is insufficient to describe the statistics of

connections of theMLI network. The nonuniform random predic-

tion also deviates from the data but to a lesser degree, as the

occurrence of fully connected triplets (pattern 4) is correctly pre-

dicted (p values: p1 = 0.0004, p2 = 0.213, p3 = 0.0004, p4 = 0.202).

We separately confirmed that the fully interconnected triplets

(pattern 4) are indeed the result of direct connections and not

indirect electrical coupling (Figure S4E).

To characterize the electrical connectivity with a single mea-

sure and compare it to random connectivity models, we used

the clustering coefficientC.Cwasoriginally introduced as amea-

sure of the topological organization of networks andused to high-

light differences between small-world networks and random

networks, whose average C are significantly different (Watts

and Strogatz, 1998). C is usually measured for each node in a

network. Here, we calculate C for the recorded subnetworks of

triplets and quadruplets of MLIs and compute the average over

the configurations where C could be measured (Supplemental

Experimental Procedures). It should be noted that the average

C obtained in this way is not intended to represent the average

C of the whole network but is used to compare with C predicted

by random connectivity models, where it was also calculated for

subnetworks of triplets andquadruplets. For triplets,C effectively

measures the likelihood that if neurons A and B, and B and C are

connected, then A and C are also connected.

The nonuniform random model predicted a higher clustering

coefficient for electrical synapses, CE, than the uniform random

model. This is expected if the tested neurons are sampled

locally, as they were in the experiments (Figures S2B and

S2C). However, CE of the data significantly exceeds even the

nonuniform random prediction (Figure 4B; uniform random p =

0.0001; nonuniform random p = 0.0001). Thus, whereas the

nonuniform random model provides an improved prediction

compared to the uniform random model, it is still not sufficient

to accurately describe the connectivity of MLIs. The remaining

difference can be mainly explained by the underrepresentation

of triplets with two connections (Figure 4A, pattern 3, CE = 0),
918 Neuron 81, 913–929, February 19, 2014 ª2014 The Authors
highlighting the relevance of predicting the absence of connec-

tions in random connectivity models.

To further explore the importance of the absence of connec-

tions, we examined the anticlustering coefficient (AC), which is

calculated in the same way as the C but using the complement

graph (Supplemental Experimental Procedures). It measures

the likelihood that if neurons A and B as well as B and C are

not connected, then A and C are not connected either. We found

a higher ACE in the data compared to the nonuniform random

prediction (Figure 4B; uniform random p = 0.005; nonuniform

random p = 0.0001), which is due to the overrepresentation of

unconnected triplets in the data (Figure 4A; pattern 1, ACE = 1).

To summarize, the random connectivity models do not correctly

represent the clustering and anticlustering of the MLI subnet-

works because they do not correctly predict the absence of con-

nections in a triplet.

Finally, we investigated how CE and ACE are related to the

spatial arrangement of neurons in the network, in particular,

along the transverse axis, given that electrical connections

appear confined to an �20 mm thick layer (Figure 2B). For each

triplet, we used the dispersion in the transverse axis (the mean

ofDz for each connection; Figures 4C and 4D), and, as expected,

the uniform random prediction yields a constant CE and ACE

value. The CE for the data decreases rapidly with larger z disper-

sion of the triplet (linear fit, slope = �0.033/mm, y intercept =

0.79), which is predicted by the nonuniform random model

with a lower slope and a significantly lower y intercept

(slope = �0.025/mm, y intercept = 0.61; p = 1.9 3 10�6; Fig-

ure 4C). The ACE for the data increases with larger z dispersion

(slope = 0.011/mm, y intercept = 0.39), showing a significantly

higher y intercept than the nonuniform random model prediction

(slope = 0.012/mm, y intercept = 0.054; p = 1.5 3 10�10; Fig-

ure 4D). This shows that the nonuniform random model is not

sufficient to explain the spatial organization of electrical connec-

tivity, despite an improvement compared to the uniform random

model.

Transitive Chemical Motifs Are Overrepresented
To explore the higher-order connectivity of the chemical

network, we next investigated individual chemical triplet patterns

to identify which motifs are over- and underrepresented, using

the same procedure as for the electrical triplets. In this case, it

requires distinguishing uni- and bidirectional chemical connec-

tions, but not isomorphic triplet patterns, leading to 16 possible

patterns (Supplemental Experimental Procedures; Figures 5A

and S5A). For three patterns (patterns 2, 4, and 10), we found

that the predictions of both random connectivity models were

significantly different from the data. The triplet with a single

connection or ‘‘directed edge’’ (pattern 2) is weakly underrepre-

sented (ratio = 0.7 for both uniform and nonuniform random

models; p = 0.0016 and 0.0064, respectively), the triplet with

diverging connections or ‘‘V-out’’ (pattern 4) is overrepresented

(ratio = 2.2 and 2.3 for the uniform and nonuniform random

models; p = 0.043 and 0.022, respectively). The ‘‘feedforward’’

(pattern 10) is highly overrepresented (ratio = 3.2 and 3.5;

p = 0.014 and 0.002, respectively).

Transitivity means that if there is a connection from cell A to

cell B, and from cell B to cell C, there will also be a connection
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Figure 4. The Electrical Network Exhibits Clustering in the Sagittal Plane

(A) Probability of observing each of the four nonisomorphic triplet motifs of electrical connections (n = 173 triplets) compared to uniform random and nonuniform

random predictions.

(B) Average clustering C and anticlustering coefficient AC of triplets and quadruplets for electrical connections compared to both predictions.

(C) Average clustering coefficient of triplets versus their mean z dispersion for the data and for the two predictions (linear fits).

(D) Average anticlustering coefficient of triplets versus their mean z dispersion for the data and for the two predictions (linear fits).
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Figure 5. The Chemical Network Exhibits Transitive and Clustered Motifs across Sagittal Planes

(A) Probability of observing each of the 16 nonisomorphic triplet motifs of chemical connections (n = 173 triplets) compared to uniform random and nonuniform

random predictions. Motifs that did not occur in the data are presented at the bottom.

(B) Probability of observing transitive patterns (marked t in A) and intransitive patterns, compared to predictions.

(C) Average clustering and anticlustering coefficients of triplets and quadruplets for chemical connections compared to uniform random and nonuniform random

predictions.

(D) Average clustering coefficient of triplets versus their mean z dispersion for the data and the two predictions (linear fits).
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from A to C. Because a preference for transitive connectivity has

been reported in other complex networks (Holland and Lein-

hardt, 1970; Milo et al., 2004), we tested this hypothesis in the

MLI network and therefore grouped the patterns according to

their property of transitivity (Bang-Jensen and Gutin, 2008;

Supplemental Experimental Procedures; Figure S5A). Indeed,

we found that intransitive patterns tend not to be observed in

the data (e.g., the ‘‘three-loop’’ pattern 11, and the ‘‘mutual in’’

pattern 7), or appear to be underrepresented (the ‘‘three-chain’’

pattern 6, ratio = 0.5 compared to prediction of the nonuniform

random model), whereas transitive patterns (e.g., the feedfor-

ward pattern 10, and the ‘‘regulating mutual’’ pattern 14) tend

to be overrepresented (ratio = 3.5 and 6.3 compared to the pre-

diction of the nonuniform random model). We therefore divided

the observed patterns into two groups: transitive and intransitive.

By this definition, patterns 10, 12, 14, 16 are transitive, and pat-

terns 6, 7, 8, 9, 11, 13, 15 are intransitive (Figure 5A). Patterns 1,

2, 3, 4, 5 are excluded, as the property is not applicable due to

the low number of connections. We observed significantly

more transitive and significantly fewer intransitive patterns com-

pared to both predictions (Figure 5B; uniform random: p = 0.0001

and 0.0016, respectively; nonuniform random: p = 0.0001 and

0.0026, respectively). This result highlights that random connec-

tivity models are not sufficient to describe the connectivity of

the MLI network, in particular, with respect to their transitive

property.

To confirm the large deviation of the data compared to both

models, we next calculated the average chemical clustering

coefficient CC and anticlustering coefficient ACC for triplets

and quadruplets, treating bidirectional and unidirectional con-

nections identically. We observed a higher clustering coefficient

CC in the data than predicted by both random connectivity

models (Figure 5C; p = 0.0020 and 0.0023, respectively). The

values of CC for the uniform random and nonuniform random

predictions are similar due to the weak distance dependence

of the probability of chemical connections (Figures 2A, 2B, and

S2). We also found that ACC was not correctly predicted by

the random connectivity models (Figure 5C; p = 0.0012 and

0.0028, respectively). Together, these results indicate that the

chemical connections are more clustered than predicted by

the random connectivity models.

We next investigated the relationship between CC and the

dispersion of patterns along the transverse axis. Interestingly,

we found that CC increased at larger z dispersions (Figure 5D;

linear fit, slope = 0.037/mm). This behavior strongly differs from

both random connectivity predictions, which exhibit a mostly

constant CC (p = 3.33 10�5). This result means that the neurons

in the triplet patterns with high CC values can be on different

sagittal planes distributed across the transverse axis. In conclu-

sion, the chemical network has more clustered and transitive

features than both random connectivity models predict and

shows signs of spatial specificity.

Structured Overlap between Electrical and Chemical
Networks
After demonstrating the existence of structured features in the

electrical and chemical networks, we investigated the overlap

of the two networks. Because the number of potential individual
mixed triplet patterns is very large (n = 128), we instead per-

formed a common neighbor analysis (Perin et al., 2011). This is

a method for investigating higher-order connectivity, and, in

this case, the relationship between different connection types.

It examines the effect of a common connected neighbor on the

probability of connections of a given pair. We compared three

probabilities: first, measured between pairs that have a common

neighbor; second, measured between all other pairs (with no re-

corded common neighbor); and finally, predicted by the nonuni-

form random model, based on the distance between the pairs

with common neighbor (and predicted by the nonuniform

randommodel with ML position; Figure S6). The first comparison

(pairs with common neighbor and all other pairs) offers an

assessment of the higher-order structure within the data without

the use of an explicit model of connectivity, but only under

the assumption of independent connection probabilities. To

simplify, we restricted the pair probability types to three: no

connection, electrical connection, and chemical connection.

First, the presence of an electrical common neighbor (Fig-

ure 6A, n = 137) led to a higher probability of an electrical connec-

tion and a reduced probability of no connection compared to the

other pairs (c2 test, p = 7.39 3 10�30 and 1.11 3 10�11, respec-

tively) and to the nonuniform random prediction (Monte Carlo,

p = 0.0003 and 0.0003, respectively). This is consistent with

the results shown in Figures 4A and 4B and confirms the prefer-

ence for electrical clustered connectivity without the use of an

explicit model of connectivity. Next, we examined the effect of

a mixed (electrical and chemical) common neighbor on the pair

connection probability (Figure 6B, n = 37). To test this indepen-

dently of the preference for clustered electrical and chemical

connectivity (Figures 6A and 6C), we excluded pairs with a com-

mon electrical neighbor and a common chemical neighbor from

this analysis (the pairs can share a neighbor with one electrical

and one chemical connection only). The presence of a mixed

common neighbor resulted in a significantly lower probability

of an electrical connection and a significantly higher probability

of a chemical connection compared to other pairs (c2 test, p =

0.016 and 0.003, respectively) and to the nonuniform random

predictions (Monte Carlo, p = 0.0012 and 0.0296, respectively).

This provides the first indication that the overlap between electri-

cal and chemical connectivity is more structured than predicted

by the random connectivity model. We then examined the effect

of a chemical common neighbor, first disregarding the direction

of the chemical connections (Figure 6C, n = 92). We observed an

excess of chemical connections in these pairs compared to the

other pairs and to the random model prediction (c2 test, p =

1.39 3 10�5 and Monte Carlo, p = 0.0020), confirming the pref-

erence for fully connected chemical triplets, including the

transitive ones seen in Figure 5A. Finally, we investigated the

particular case of a common chemical neighbor in a chain

configuration (Figure 6D, n = 11). This resulted in an underrepre-

sentation of electrical connections compared to other pairs

(c2 test, p = 0.030; compared to the nonuniform random predic-

tion p = 0.061). This result provides a second indication that the

overlap between electrical and chemical networks is structured

at the level of triplets of MLIs.

We next devised an independent way to obtain connectivity

information from cells that were not directly recorded by
Neuron 81, 913–929, February 19, 2014 ª2014 The Authors 921
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Figure 6. Common Neighbor Analysis Reveals Structured Overlap between Electrical and Chemical Networks

(A–D) Connection probability between pairs sharing a common (electrical and/or chemical) neighbor, compared to other pairs and to the nonuniform random

prediction.

(A) Pairs sharing an electrical neighbor (n = 137).

(B) Pairs sharing a mixed neighbor (electrical and chemical; n = 37).

(C) Pairs sharing a chemical neighbor (any direction; n = 92).

(D) Pairs sharing a chemical neighbor in a chain configuration (n = 11).
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measuring common synaptic inputs to a pair. This allows us to

examine the configuration of diverging chemical connections

made onto a pair of recorded neurons. The level of synchrony

of IPSCs has been used previously as a measure for the likeli-

hood of two neurons sharing a presynaptic partner (Sippy and

Yuste, 2013; Vincent and Marty, 1993). We recorded sponta-

neous inhibitory input in simultaneously recorded pairs of MLIs

in voltage clamp and estimated the level of synchrony using
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the normalized cross-correlogram of their IPSC trains (Figure 7A;

Supplemental Experimental Procedures). We found no differ-

ence in the level of synchrony between pairs of neurons sharing

an electrical connection and those that did not (t test, p = 0.95,

n = 36 and 50, respectively; Figure 7B). However, we found a

significantly higher level of synchrony between pairs that

were connected by a chemical synapse (t test, p = 0.00054,

n = 18 and 68, respectively; Figure 7B). This result provides
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Figure 7. Functional Assay of Overlap between Electrical and Chem-

ical Networks

(A) Spontaneous IPSCs recorded in MLI pairs in VC =�50 mV. The peak of the

normalized cross-correlogram (bin = 1ms) defines the level of IPSC synchrony.

(B) Level of IPSC synchrony between pairs with (n = 36) and without electrical

connections (n = 50). Higher IPSC synchrony is observed between pairs with

chemical connections (n = 18) than without (n = 68).
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independent confirmation of the presence of transitive patterns

(10, 14) in the chemical network.

Feedforward Motifs and Their Spatial Organization
Although transitive connections are a signature of the chemical

network (Figures 5B and 7B), it appears that the feedforward

pattern (10), in particular, is a preferred motif of this network (Fig-

ures 5A and 8A; n = 13 cases). It is characterized by an origin

neuron (1) sending two diverging connections, an intermediate

neuron (2), and a target neuron receiving two converging con-
nections (3). The transitivity of the feedforward (FF) motifs

appeared to follow a top-to-bottom orientation in the ML, with

the origin neuron being closer to the pia. To quantify this, the

position in the ML of each recorded MLI was measured and

normalized relative to the PC layer and pial surface (Figure 8B;

Supplemental Experimental Procedures; Figure S7A). We ob-

served that the positions of the origin and the intermediate

neurons are located significantly higher in the ML than the target

neuron (paired t test, p = 0.0008, p = 0.026, respectively, n = 11).

Moreover, this ‘‘top-to-bottom’’ arrangement applies to transi-

tive patterns, as the ML positions of their three neurons have

different means (one-way ANOVA, p = 0.0002, n = 14; Figure 8C;

Supplemental Information). In contrast, we found no direction-

ality along the transverse axis: the absolute depth in the slice

of the three neurons shows that individual triplets were either

confined to a sagittal plane or distributed across sagittal planes

without a consistent sequence (Figure 8D).

These results suggest that the position in the ML plays an

important role in determining the connectivity of MLIs. Although

classically MLIs have been divided into basket and stellate cells,

our data support the accumulating evidence suggesting that

these cells constitute a single population with a continuum of

morphological properties with their position in the ML as main

parameter: their dendrite length becomes gradually shorter the

higher the interneuron is located in the ML (Figures S8A and

S8B; Rakic, 1972; Sultan and Bower, 1998). The main axon

generally maintains the same vertical position in theML, whereas

short collaterals run perpendicularly along the transverse and

sagittal planes (Figures S7C and S7D). Together, these morpho-

logical arrangements explain the preference for chemical con-

nections projecting downward in the ML (Figures S7B, S7D,

and S8E) and may contribute to the high occurrence of feedfor-

ward patterns (10) and absence of loop patterns (11). We found

that the underrepresentation of intransitive patterns can be well

predicted by a nonuniform randommodel including the ML posi-

tion information (Figures S5D and S5E). However, the overrepre-

sentation of transitive patterns remained beyond what can be

accounted for with ML position.

In summary, both the electrical and chemical networks display

clustered and structured features of connectivity. In both net-

works this higher-order connectivity exhibits a specific spatial

arrangement. This highlights how the functional connectivity of

the interneuron network results from an interplay between the

architecture of the ML and the specific connectivity motifs we

have identified.

DISCUSSION

Using multiple whole-cell patch-clamp recordings in cerebellar

slices, we provide evidence for structured features of electrical

and chemical connectivity between interneurons in the cere-

bellar molecular layer. Although the connectivity appears mostly

random at the pair level, we reveal nonrandom features of

higher-order connectivity for both electrical and chemical

networks. For the electrical network, we demonstrate higher-

than-predicted electrical clustering and anticlustering coeffi-

cients of triplet and quadruplet patterns, supported by the

confinement of electrical connections within the sagittal plane.
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Figure 8. Transitive Motifs in Chemical Networks Are Oriented in the Sagittal Plane

(A) Triplet recording from MLIs forming a feedforward motif. APs are elicited successively in each MLI, and the IPSCs recorded in voltage clamp (VC = �50 mV).

Traces shown are averages of more than 50 sweeps.

(B) Schematic showing the normalized positions of the neurons forming the feedforward pattern in the ML: the origin neuron (1) tends to be higher in the ML than

the intermediate neuron (2) and the target neuron (3).

(C) The positions of the neurons forming the transitive patterns (feedforward pattern 10 and regulating mutual pattern 14, n = 14) are significantly different

(one-way ANOVA).

(D) Positions of the neurons forming the transitive patterns along the transverse axis (n = 14, absolute depth recorded in the slice).
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For the chemical network, we show that transitive chemical

connectivity motifs are overrepresented, with feedforward (FF)

motifs being supported by a specific spatial arrangement along

the sagittal plane. Finally, we find that the electrical and chemical

networks are not independent at the pair and the triplet level.

Together, these results indicate that the connectivity of the inter-

neuron network is highly organized, which has important

implications for the structure of activity patterns in the network.
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Evidence for Structured Connectivity in the Interneuron
Network
The first evidence that neural networks are different from random

networks—and exhibit small-world properties—was provided by

Watts and Strogatz (1998) who used the clustering coefficient to

quantify network topology. High clustering coefficients have

been reported in the brain of C. elegans (Varshney et al., 2011;

Watts and Strogatz, 1998) and extrapolated for the cortical
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pyramidal cell network (Perin et al., 2011). Our results provide

evidence for higher-than-expected clustering in a network of

only interneurons, for both electrical and chemical connectivity.

The high degree of clustering in the electrical patterns

compared to random connectivity models provides strong evi-

dence that gap junction networks exhibit clustered features in

the vertebrate nervous system, as they do in C. elegans (Var-

shney et al., 2011). Although electrical connections are wide-

spread in the mammalian brain (Bartos et al., 2002; Galarreta

and Hestrin, 1999; Gibson et al., 1999; Koós and Tepper,

1999; Landisman et al., 2002; Venance et al., 2000; for review,

see Connors and Long, 2004), the presence of clustered motifs

in a single cell type has not previously been tested directly.

Nevertheless, the dense interconnectivity mediated by gap junc-

tions (Fukuda, 2009), the spatial organization of electrical

coupling (Alcami and Marty, 2013; Amitai et al., 2002), and the

segregation by cell type observed for interneurons in the cortex,

striatum, and cerebellum (Blatow et al., 2003; Gibson et al., 1999;

Hull and Regehr, 2012; Koós and Tepper, 1999) suggest that

clustered electrical connectivity may be a general feature of

interneuron networks in the mammalian brain.

We demonstrate that the interneuron chemical network also

exhibits higher-than-expected clustering, aswell as a preference

for transitive triplet motifs. The notion of transitivity is commonly

used in graph theory (Bang-Jensen andGutin, 2008), and various

complex networks have been proposed to favor locally transitive

patterns, such as social networks and the World Wide Web

(Holland and Leinhardt, 1970; Milo et al., 2002, 2004). We

show that when examining connected triplets, interneuron net-

works favor motifs exhibiting transitivity, such as feedforward

motifs. Previous studies of connectivity in other neural circuits

have also demonstrated the overrepresentation of the feedfor-

ward motif (Jarrell et al., 2012; Kampa et al., 2006; Milo et al.,

2002; Perin et al., 2011; Varshney et al., 2011) and the underrep-

resentation of the loop motif (Milo et al., 2002; Varshney et al.,

2011). Although transitivity was not specifically investigated in

these networks, it would be an interesting aspect to test, partic-

ularly given that transitivity of cortical connectivity has previously

been suggested based on sequential activity of cortical neurons

shown by analysis of spike time delays (Nikoli�c, 2007).

By simultaneously measuring both chemical and electrical

connectivity in the same neurons, we show that the chemical

and electrical networks established by MLIs overlap. Moreover,

by analyzing higher-order connectivity, we show these two net-

works have a structured overlap. Strong overlap between elec-

trical and chemical networks has been found in the C. elegans

connectome (Varshney et al., 2011), specifically for GABAergic

neurons. In mammalian interneuron networks, pairs of neurons

can be connected by electrical, chemical, or both types of syn-

apses (Blatow et al., 2003; Galarreta and Hestrin, 2002; Gibson

et al., 1999; Koós and Tepper, 1999; Tamás et al., 2000). This

specific overlap of both types of synapses is cell type depen-

dent, but there is as yet no experimental evidence for a

structured overlap among the same cell type. The structured

overlap between the electrical and chemical networks we

have observed suggests that the interactions between the two

types of connections may have important roles for the function

of the network.
Our results highlight the importance of probing more than

two neurons in the network in order to investigate network

connectivity. We observed connection specificity beyond

random connectivity models and structured overlap between

electrical and chemical networks at the triplet level, but only

weak signs at the pair level. Different types of structured

network architecture can have opposite consequences for

pair connectivity. For instance, a network with a high clustering

coefficient may deliver an excess of bidirectional connections,

as for the network of layer 5 pyramidal cells in neocortex (Mark-

ram et al., 1997; Song et al., 2005). On the other hand, a

network containing directed connectivity can result in the

underrepresentation of bidirectional connections, as between

excitatory cells of different cortical layers in barrel cortex (Lefort

et al., 2009), and the extreme case of synaptic chains may result

in the complete absence of bidirectional connections (Seung,

2009; Watt et al., 2009). Here, we find an intermediate situation,

where bidirectional connections are neither overrepresented

nor underrepresented despite clear signs of structured network

architecture.

What Are the Connectivity Rules?
Structured connectivity, deviating from random connectivity

predictions, can result from various factors. First, deviations

from random statistics may be implemented in practice by

spatial constraints, such as cell morphology. In the context

of the cerebellar circuit, the organization of the molecular

layer along sagittal planes characterized by parallel stacks of

Purkinje cell dendrites constitutes an important constraint on

connectivity. The confinement of electrical coupling to the

sagittal plane (Figure 2B) appears to be a consequence of this

organization combined with the planar morphology of MLIs

(Palay and Chan-Palay, 1974). Similarly, the gradual change in

MLI morphology along the vertical axis in the molecular layer

(Sultan and Bower, 1998; Figure S8) influences MLI connectivity

and appears to underlie the underrepresentation of loop motifs

(Figure S7D).

Second, developmental mechanisms are known to be strong

determinants of neural connectivity and general network topol-

ogy (Feldt et al., 2011). Aspects of connectivity may be hard-

wired, genetically specified, or controlled by gradients of specific

signaling molecules (Kolodkin and Tessier-Lavigne, 2011; Wil-

liams et al., 2010). Some of the connectivity motifs defined during

development can play an important role in ensuring the appro-

priate subsequent wiring of the circuit in the cerebellum (van

Welie et al., 2011).

Finally, experience and activity-dependent plasticity mecha-

nisms have long been thought to be critical in shaping

neural network architecture. Spike-timing-dependent plasticity

(STDP), in particular, has been proposed to lead to structured

connectivity. Modeling and theoretical studies argue that com-

mon STDP rules give rise to and maintain feedforward motifs

and structures, while eliminating loops (Kozloski and Cecchi,

2010;Masuda and Kori, 2007; Ren et al., 2010; Song and Abbott,

2001; Takahashi et al., 2009). Incidentally, the increased occur-

rence of triplet motifs in C. elegans, which according to our

nomenclature are transitive, can be robustly obtained from an

STDP-driven network (Ren et al., 2010).
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Functional Implications
Structured connectivity can influence network dynamics and

encourage correlated activity between individual neurons (Hu

et al., 2012; Pernice et al., 2011; Trousdale et al., 2012). The

effect of connectivity on the temporal structure of population

activity is particularly interesting for interneuron networks, which

can exhibit synchronization and generate oscillations (Bartos

et al., 2007; Whittington and Traub, 2003). Both electrical (Dra-

guhn et al., 1998) and inhibitory synapses (Wang and Buzsáki,

1996) can promote synchrony, and when they are combined

within the same network (Fukuda and Kosaka, 2000; Galarreta

and Hestrin, 2002; Koós and Tepper, 1999) they can have com-

plementary roles and enhance synchrony (Kopell and Ermentr-

out, 2004; Pfeuty et al., 2007; Traub et al., 2001). However, the

conditions required for this interaction are known to be depen-

dent on various parameters, such as relative coupling strength

(Kopell and Ermentrout, 2004), as well as connectivity and

network topology (Buzsáki et al., 2004). Most models of syn-

chrony are indeed based on random connectivity (Pfeuty et al.,

2007; Wang and Buzsáki, 1996). In contrast, recent work has

highlighted the emergence of highly spatially heterogeneous

activity states when local clustering of electrical and chemical

synapses is considered (Lau et al., 2010). The enhanced clus-

tering of both electrical and chemical synaptic connections

among MLIs, as well as their structured overlap, may therefore

form the substrate for complex spatial patterns of network

activity underlying computations in the cerebellar cortex.

A complementary way to examine the effect of different

network topologies on network function is to study how different

network motifs change network dynamics. Zhao et al. (2011)

showed that deviations from random networks caused by over-

representing different network motifs involving two connections

in either a divergent, convergent, or chain configuration can have

opposing effects on synchrony. What could be the functional

consequences of the overrepresentation of transitive chemical

motifs we find among MLIs? The ‘‘synaptic chain model’’ is an

example of such a transitive network architecture containing

feedforward motifs and is known to generate highly structured

temporal dynamics (Abeles, 1991; Seung, 2009). Loops, on the

other hand, are examples of intransitive network motifs and

can generate oscillations and self-maintaining rhythms (Wang

and Rinzel, 1992). Although some circuits may exploit such

dynamics (Manor et al., 1999; Wang and Rinzel, 1992), the rever-

berating effects of loops between brain regions have been pro-

posed to cause instability (Crick and Koch, 1998); this may

also occur at the local circuit level where oscillations may lead

to tremor. Thus, structured connectivity containing feedforward

motifs may be beneficial for network stability. In signal process-

ing, finite impulse response filters implemented by a feedforward

motif are more stable and reliable than infinite impulse response

filters implemented by a loop motif (Rabiner and Gold, 1975). It

remains to be determined if such features are also exhibited by

neural networks with transitive connectivity.

In the cerebellum, synchrony between MLIs (Mann-Metzer

and Yarom, 1999) may be restricted to sagittal bands where

electrical clustering is high. There, electrical coupling allows

improved spatial averaging of the activity levels in the input pop-

ulation (Alcami and Marty, 2013), by sampling from a large num-
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ber of parallel fibers. Inhibitory connections across sagittal

planes may help synchronize successive planes with each other.

Furthermore, the transitive inhibitory connectivity oriented from

top to bottom of the ML may generate waves of activity traveling

in the opposite direction, from the bottom to the top of theML, by

analogy to the waves along the Purkinje cell layer in the devel-

oping cerebellum (Watt et al., 2009). In summary, our quantifica-

tion of the functional organization of the interneuron network

places important constraints on the construction of any network

model of the cerebellum (Bower, 2010; Gleeson et al., 2007;

Maex and De Schutter, 2005) and should inspire many future ex-

periments exploring the consequences of this structured con-

nectivity for cerebellar cortical function.

EXPERIMENTAL PROCEDURES

All experiments were carried out in accordance with the animal care and

handling guidelines approved by the UK Home Office. Sagittal slices of cere-

bellar cortex were obtained from 18- to 23-day-old rats. Slices were placed in a

recording chamber perfused with standard artificial cerebrospinal fluid that

contained 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 25 mM

NaHCO3, 1.25 mM NaH2PO4, and 25 mM D-glucose and was bubbled with

carbogen (95% oxygen, 5% carbon dioxide), giving a pH of 7.4. Neurons

were visualized with an upright microscope (Zeiss Axioskop) using infrared dif-

ferential interference contrast (DIC) optics, optimized as described previously

(Davie et al., 2006). Interneurons were identified by their soma size (10–12 mm)

and their location in the molecular layer. Simultaneous whole-cell patch-

clamp recordings were made at 32�C ± 1�C from up to four MLIs dis-

tributed throughout the vertical extent of the ML (Figure S8). Glass pipettes

(7–10MU) were filled with intracellular solution containing 130mMK-methane-

sulfonate, 10 mM HEPES, 7 mM KCl, 0.05 mM EGTA, 2 mM Na2ATP, 2 mM

MgATP, and 0.5 mM Na2GTP, titrated with KOH to pH 7.2. The resulting

reversal potential for chloride was ECl� = –77.5 mV. Biocytin (0.5%) was added

to the intracellular solution to label the cells. Recordings were typically made at

least 30–40 mm below the surface of the slice to minimize the number of cut

axons (Figure S2A). The relative position of each recorded cell in the ML was

identified using the DIC image, and the intersomatic distances were read out

using the stage position. MLI morphologies were reconstructed using the

TREES toolbox in MATLAB (Cuntz et al., 2011), after histochemical labeling

and confocal microscopy. For further details, see the Supplemental Experi-

mental Procedures.

Data analysis was performed using Igor Pro (Wavemetrics), MATLAB

(MathWorks), and Python. The probability of an electrical (pE) or chemical

(pC) connection is defined as the ratio between the total number of observed

connections and the total number of possible connections. For each experi-

mentally measured pair, there is one possible electrical connection and two

possible chemical connections, therefore:

pE = nE=npairs

pC = nC=ð2�npairsÞ
where nE is the total number of electrical connections, nC is the total number of

chemical connections, and npairs is the total number of pairs tested. To count

the occurrence of triplet patterns, all quadruplets were divided into four

triplets. All triplet graphs were tested for isomorphisms for each connection

type individually.

Data are reported as mean ± SD. The significance of differences between

the connectivity found in the experiment and models of random connectivity

was assessed using Monte Carlo methods. The first model represents the

simplest case: connections between neurons are formed independently of

each other based on the connection probabilities pE and pC, and independent

of other parameters. This model is called the ‘‘uniform random’’ model,

because the probabilities pE and pC are uniform with respect to distance.

The second model is called the ‘‘nonuniform random’’ model, because the
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probabilities of electrical and chemical connections are distance dependent

and determined by the experimentally measured distribution of pE and pC

versus the intersomatic distance between recorded cells (Figures 2A and

2B). Where appropriate, the p values were corrected for multiple hypothesis

comparisons using the Bonferroni method. Further details are available in

the Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and eight figures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2013.12.029.
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Häusser, M., and Clark, B.A. (1997). Tonic synaptic inhibition modulates

neuronal output pattern and spatiotemporal synaptic integration. Neuron 19,

665–678.

Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., and

Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in

the mouse retina. Nature 500, 168–174.

Hofer, S.B., Ko, H., Pichler, B., Vogelstein, J., Ros, H., Zeng, H., Lein, E.,

Lesica, N.A., and Mrsic-Flogel, T.D. (2011). Differential connectivity and

response dynamics of excitatory and inhibitory neurons in visual cortex. Nat.

Neurosci. 14, 1045–1052.

Holland, P., and Leinhardt, S. (1970). A Method for Detecting Structure in

Sociometric Data. Am. J. Sociol. 76, 492–513.

Hu, Y., Trousdale, J., Josi�c, K., and Shea-Brown, E. (2012). Motif statistics and

spike correlations in neuronal networks. BMC Neurosci. 13, 43.

Hull, C., and Regehr, W.G. (2012). Identification of an inhibitory circuit that reg-

ulates cerebellar Golgi cell activity. Neuron 73, 149–158.

Jarrell, T.A., Wang, Y., Bloniarz, A.E., Brittin, C.A., Xu, M., Thomson, J.N.,

Albertson, D.G., Hall, D.H., and Emmons, S.W. (2012). The connectome of a

decision-making neural network. Science 337, 437–444.

Jiang, X., Wang, G., Lee, A.J., Stornetta, R.L., and Zhu, J.J. (2013). The orga-

nization of two new cortical interneuronal circuits. Nat. Neurosci. 16, 210–218.
Neuron 81, 913–929, February 19, 2014 ª2014 The Authors 927

http://dx.doi.org/10.1016/j.neuron.2013.12.029
http://dx.doi.org/10.1016/j.neuron.2013.12.029
http://dx.doi.org/10.1073/pnas.1310983110


Neuron

Inhibitory Circuits Show Structured Connectivity
Jörntell, H., Bengtsson, F., Schonewille, M., and De Zeeuw, C.I. (2010).

Cerebellar molecular layer interneurons - computational properties and roles

in learning. Trends Neurosci. 33, 524–532.

Kampa, B.M., Letzkus, J.J., and Stuart, G.J. (2006). Cortical feed-forward net-

works for binding different streams of sensory information. Nat. Neurosci. 9,

1472–1473.

Kätzel, D., Zemelman, B.V., Buetfering, C., Wölfel, M., and Miesenböck, G.
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