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Abstract

Nearly thirty years ago, Cavalli-Sforza et al pioneered the use of principal components analysis

(PCA) to summarise data on variation in human gene frequencies across continental regions [1].

Cavalli-Sforza et al produced maps representing each Principal Component (PC), and found these

maps exhibited highly distinctive patterns, including gradients and sinusoidal waves. They

interpreted these patterns as resulting from specific migration events, such as the migration of

agriculturalists out of the Near East [1, 2, 3]. Cavalli-Sforza et al’s results have been highly

influential (e.g. [4]), and controversial [5, 6, 7, 8, 9], and PCA has become heavily used in

population genetics (e.g. [10, 11, 12, 13]). Despite its widespread use, the behavior of PCA with

data exhibiting continuous spatial variation, such as might exist within human continental groups,

has been little studied. Here, using empirical and theoretical approaches, we find that the

distinctive patterns observed by Cavalli-Sforza et al resemble sinusoidal mathematical artifacts

that arise generally when PCA is applied to spatial data, implying that the patterns are not

necessarily due to population movements. Our results aid the interpretation of PCA results from

large-scale analyses of human genetic variation, and suggest that PCA will be helpful in correcting

for continuous population structure in association studies.

Cavalli-Sforza et al’s 1994 “The History and Geography of Human Genes” [3] stands as a

classic text in human population genetics, synthesizing a decades-long survey of human

genetic variation. These ground-breaking datasets stimulated development of methods that

are now widely used, such as the application of Principal Components Analysis (PCA) to

population genetic variation. In essence, Cavalli-Sforza et al collected count data for each

genetic variant (“allele”) at numerous genetic loci from population samples at many

geographic locations, and produced for each allele an allele-frequency map, a spatially-

interpolated map representing variation in allele frequency across space. They then used

PCA, a general method for obtaining low-dimensional summaries of high-dimensional data,

to distill the many allele-frequency maps into a smaller number of “synthetic maps", which

for brevity we refer to as PC-maps. Intuitively, the first few PC-maps summarize the allele-

frequency maps, in that each allele-frequency map can be well approximated by a linear

Author contributions
J.N. and M.S. jointly designed the analyses and interpreted results. J.N. performed the analyses and researched the applications of
PCA in other fields. J.N. and M.S. wrote the paper.

NIH Public Access
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2014 April 16.

Published in final edited form as:
Nat Genet. 2008 May ; 40(5): 646–649. doi:10.1038/ng.139.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



superposition of the PC-maps (indeed one view of PCA is that it aims to produce PC-maps

with this property).

Figure 1 shows PC-maps for Asia, Europe and Africa from [2, 3]. In interpreting these maps,

Cavalli-Sforza and colleagues suggest that “if there is a radiation of circular or elliptic lines

from a specific area, a [population] expansion is a possible explanation; and its place of

origin must be the center of the radiation.” (p. 295 [3]). They also suggest centripetal

population movements as an alternative explanation. Examples of their explanations for the

European PC-maps in Figure 1 include: expansion of agriculturalists out of the Near East

(Europe PC1); migrations of Mongoloid Uralic speakers from northwestern Asia (Europe

PC2); migration of the carriers of the proto-Indo-European Kurgan culture in Europe

(Europe PC3); and an expansion from Greece (Europe PC4).

Since the basis for Cavalli-Sforza et al’s interpretive guidelines is unclear, we performed

simulations to investigate whether such specific migration events are necessary to explain

the observed patterns. Specifically, we performed PCA on data simulated under population

genetics models without range expansions, assuming a constant homogeneous short-range

migration process across both time and (2-dimensional) space. The results showed highly

distinctive structure. For example, the first two PC-maps exhibit large-scale orthogonal

gradients, and the next two exhibit “saddle” and “mound” patterns (fig. 1). The same four

basic patterns occurred consistently in the first few PC-maps across multiple simulations,

although not always in the same order (fig. S1). Results for the analogous 1-dimensional

habitat setting are even more structured, resembling sinusoidal functions of increasing

frequency (fig. 2B, fig. S2). Thus PC-maps exhibit local peaks and troughs even when

underlying migration patterns are homogeneous across time and space. This implies that

interpretation of local features of the PC-maps as necessarily reflecting specific localized

historical migration events is inappropriate. Furthermore, the first few PC-maps obtained by

Cavalli-Sforza et al in Asia, Europe, and Africa show, with minor exceptions, highly

structured patterns strikingly similar to those from our simulations (fig. 1,fig. S1).

In fact, these highly structured patterns are mathematical artifacts that arise generally when

PCA is applied to data exhibiting a “spatial” covariance structure (i.e. where covariances

between locations tend to decay with distance, fig. S3A). In population genetic data, a

spatial covariance structure will arise when genetic similarity tends to decrease with

distance, which would be expected under a wide range of demographic scenarios, including

both equilibrium isolation-by-distance models [14] and non-equilibrium models involving

population expansions [15, 16]. For intuition into why sinusoidal patterns emerge in PC-

maps, we note that the common description of PCA, as searching for directions that explain

the most variance in the data, is perhaps not especially helpful here, as these directions are in

a very high dimensional mathematical space and not geographic space. Instead recall the

property of PC-maps mentioned above: it should be possible to accurately approximate any

of the allele-frequency maps using a linear superposition of the first few PC-maps. PC-maps

that contain sinusoidal functions of increasing frequency accomplish this in a sensible way:

the low-frequency patterns in the first few PC-maps allow for a coarse approximation by

reflecting changes in allele frequencies across large spatial scales, while higher-frequency
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patterns in subsequent PC-maps allow for refinement of the coarse approximations by

capturing finer-scale changes.

Mathematically, the explanation for the highly structured patterns is that covariance matrices

from spatial data have eigenvectors related to sine waves of increasing frequency [17, 18,

19], and PC-maps are direct visual representations of such eigenvectors (see Supplemental

Material). To give three specific examples, consider a situation where the covariance

between two populations depends only on the geographic distance between them, and

assume that sufficient genetic data (loci/alleles) are available to accurately estimate this

covariance structure. Then:

1. If populations are regularly spaced on a line, then their covariance matrix has a

“Toeplitz” structure1(e.g. fig. S3B), and the eigenvectors of any (large) Toeplitz

matrix are known to be closely approximated by sinusoidal functions [19]. A well-

studied special case occurs when the covariance between populations decays

exponentially with distance2, where the eigenvectors are approximately the

columns of the discrete cosine transform (DCT) matrix [17, 18].

2. If populations are regularly spaced around a circle, then their covariance matrix has

a “circulant” structure3 (e.g. fig. S3B). The eigenvectors of any circulant matrix are

the columns of the discrete Fourier transform matrix [19], which are sinusoidal

functions of increasing frequency.

3. If populations are located on a 2-dimensional regular grid, as in Cavalli-Sforza et

al’s analyses, the covariance matrix has a “block Toeplitz with Toeplitz blocks”

form (e.g. fig. S3B), with eigenvectors that are approximated by the two-

dimensional DCT commonly used in image compression4 [18]. The first two

eigenvectors are commonly two orthogonal gradients, and the next two have a

“saddle” and a “mound” shape (fig. 1). Higher order eigenvectors relate to 2-

dimensional sinusoidal functions of increasing frequency (fig. S4).

We note also that in time-series analysis, where problems often arise that are analogous to

analysis of one-dimensional spatial data taken at regular intervals, it has long been

recognized that PCs are closely approximated by the columns of the discrete Fourier

transform matrix [20].

Although Cavalli-Sforza et al performed PCA on population allele frequency estimates,

PCA can also be applied to individual genotype data [12]. The results above apply equally to

this context: just as spatial covariance among populations will produce sinusoidal-like PC-

maps, so will spatial covariance among individuals. However, in this setting geographical

information may not be available for each individual, making PC-maps difficult to produce.

Instead PCA results are commonly visualized by producing biplots of one PC against

1A Toeplitz matrix is a matrix whose (i, j)th element Xij depends only on (j — i).
2Specifically, each element Xij of the matrix equals ρ|i–j| for some constant ρ.
3A circulant matrix is a Toeplitz matrix in which each row is obtained from the row above it by a right cyclic shift; that is, by moving
the last element of the row to the start of the row.
4Indeed, the 2-D DCT is central to the popular JPEG image compression algorithm, and much of its efficacy is due to the fact that the
2-D DCT basis functions so closely approximate the PCA basis (also known as the Karhunen-Loeve basis) without having basis
vectors that are specific to each dataset (as in PCA).
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another. Under uniform sampling from a 1-dimensional habitat with homogeneous

migration, this results in biplots of sinusoidal functions of differing frequencies, producing

characteristic patterns known as Lissajous curves [21, 22] (fig. 2C). In particular, the first of

these biplots shows a pattern known as the “horseshoe effect” (e.g. [23]). For the analogous

2-dimensional setting, because PC1 and PC2 are typically orthogonal gradients, a biplot of

the first 2 PCs essentially reproduces the geographic arrangement of sampled individuals

(explaining PCA results on genetic variation in Arabidopsis [24] for example), and biplots

involving later PCs have intricate patterns analogous to Lissajous curves (fig. S5).

Since the above empirical and theoretical results involve unrealistically simplistic scenarios,

we assessed robustness by examining PC-maps for more complex scenarios involving

heterogeneous migration processes and irregular sampling of populations across space.

Detailed features of the PC-maps were influenced by both factors. Changing the sampling

scheme or details of migration can produce a range of continuous distortions of the idealized

sinusoidal shapes. Since quantifying this effect is difficult, we instead provide several

examples for illustration. Anisotropic migration (i.e. migration is not equal in all directions,

fig. S6) and irregularly spaced populations (fig. S7) both distort the PC-maps, and change

their order. The direction of the gradient in the first PC-map is influenced by habitat shape

(e.g. in fig. 2, PC1 in Africa and Asia are both along the longer axis of the continent), as has

also been noted in climatological data [25], and by migration patterns (e.g. under anisotropic

migration in a square habitat the gradient in PC1 aligns with the axis of least migration, fig.

S6). However, sinusoidal-like patterns consistently emerge. Even when sampling locations

are highly clustered within the continuous habitat (a common sampling design in practice,

because of logistical challenges to obtaining spatially uniform samples in many species,

[26]), the first PCs separate out the clusters as if the sample were obtained from discrete sub-

populations, and subsequent PCs show sinusoidal patterns within clusters (fig. S8).

We also examined how quantity of data affects PCA results. With limited data sinusoidal

patterns can still emerge. For example, such patterns occur in PC1 and PC2 (figs. S9, S10)

from only 62 amplified fragment length polymorphism (AFLP) markers typed in 105

individuals from the ring species complex of greenish warblers (Phylloscopus trochiloides,

see supplementary text, [27]). However, limited data can lead to less well-defined (or

entirely absent) sinusoidal patterns, particularly in higher PC-maps (e.g. PC3 for the same

dataset; fig. S9). In general, amounts of data needed to recover sinusoidal patterns will

depend on the strength of the population structure (e.g. the amount of differentiation among

sampled populations). Thus, for a fixed number of loci, higher effective migration rates,

which tend to reduce population structure, lead to less well-defined sinusoidal patterns (fig.

S11).

In summary: i) when analyzing data with a spatial covariance structure, PCA produces

highly structured results relating to sinusoidal functions of increasing frequency; ii) in as far

as PCA results depend on the details of a particular data set, they are affected by factors in

addition to the actual underlying spatial population structure, such as the distribution of

sampling locations and the amount of data available. These conclusions are supported not

only by the results we present here, but by extensive empirical results from other fields
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where PCA has been applied to spatial data, including pattern analysis of natural images

[28], ecology [23] and climatology [25, 29, 30, 31].

Both features i) and ii) above limit the utility of PCA to draw inferences about underlying

processes, a fact previously noted in climatology ([25, 29, 30, 31]). In particular, interpreting

gradient and wave-like patterns in PC-maps as signatures of historical migration events is

problematic because such patterns arise quite generally under a simple condition: that

genetic similarity decays with distance. This finding has important implications for

interpretation of PCA in population genetics generally, and for Cavalli-Sforza et al’s PCA

analyses in particular. Not only is this simple condition likely to be satisfied under many

possible models, but, since Cavalli-Sforza et al used spatial interpolation to estimate allele

frequencies, their data could satisfy this condition even if absent in the underlying allele

frequencies [6, 8]. (Indeed use of interpolation may partly explain the striking similarity

between Cavalli-Sforza et al’s PC-maps and those predicted by theory, particularly in Asia

where their analysis was based on fewer samples. That said, recent analyses of European

data without interpolation also show perpendicular gradients in PC1 and PC2 [32].)

Regarding the specific question of a Neolithic expansion in Europe, we emphasize this paper

is not about whether or not such an expansion occurred; a full consideration of this would

require a synthesis of multiple types of evidence from many diverse sources (see review in

[33] and e.g. [34, 35, 9, 36, 37, 38, 39]). It is true that the NW-SE slope of the PC1 gradient

in Europe suggests that this may be the direction of greatest genetic variation in Europe

(although a careful analysis would have to take account of the fact that other factors,

including the shape of the continent, could also influence the slope direction). However, if a

Neolithic expansion could explain this, it is but one of many possible explanations.

For another example of how our results aid interpretation of PCA, consider the data from

Linz et al [13] who found that PC-maps from Heliobactor pylori show similar patterns to

those in Cavalli-Sforza et al’s human data and who use this as part of an argument that

genetic patterns of H. pylori reflect a shared migrational history with humans. There are

good reasons to suspect genetic variation in H. pylori will have been influenced by human

migrations. However our results show that similar patterns in PC-maps of two groups does

not imply a shared migrationary history; indeed, if each group shows an underlying spatial

covariance structure, then similar patterns will often occur in the top few PC-maps even if

their histories are independent (e.g. fig. S1).

Despite its limitations for inferring underlying processes that have produced population

structure, PCA is undoubtedly an extremely useful tool for investigating and summarising

population structure, and we anticipate that it will play a prominent role in the analysis of

ongoing genome-wide studies of human genetic variation. Results presented here provide a

helpful context for evaluating PCA results, essentially providing a “null” expectation against

which observed PCs may be compared and contrasted. On the one hand, a close

correspondence between observed and expected PCs may suggest an underlying continuous

spatial covariance structure. On the other hand, departures from this null may also be useful,

perhaps pointing towards a more discrete ”cluster-like” population structure [12], or to other
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important structure in the data, such as genotyping error or regions of high linkage

disequilibrium [40].

Finally, our results provide some intuitive support for the use of PCA to address the problem

of spurious associations produced by population structure in genome-wide association

studies [41, 11]. In essence, the problem is that if phenotype mean (or risk) varies among

subpopulations, then alleles that have no mechanistic connection to phenotype, but differ in

frequency among subpopulations, will be “spuriously” associated with phenotype [42].

Although this problem has been studied mostly in the context of discrete subpopulations, it

applies also to continuous (e.g. spatial) variation [43]. One commonly used PCA-based

solution [11] controls for stratification by including the first few PCs as covariates in a

regression. In populations showing a discrete, cluster-like, structure the first few PCs

typically separate out the clusters [12], and so this solution corresponds to allowing for

phenotype mean to vary among subpopulations. Our work shows that, for spatially-

continuous populations, the PCA-based approach is conceptually similar to modeling

smooth geographical trends in phenotype mean, a recognized technique in spatial

epidemiology [44]. For example, if PC1 and PC2 are orthogonal gradients in space,

including them in a regression essentially controls for latitude and longitude, and allows for

linear trends in phenotype across space; including higher-order PCs allows for more flexible

spatial trends. While some practical issues remain, including how many PCs should be used

(supplementary text) and how best to employ the PCs [24], this analogy between the PCA-

based and spatial-statistics approaches gives an intuitively appealing justification for using

PCA to control for spurious associations in spatially-structured populations. It also has two

important practical advantages over simply using geographic information on each individual

directly. First, PCA can be used even when geographic information is not available. Second,

PCA will control for continuous population structure even when geographic position does

not correlate well with genetic background (as is typical in the United States, for example).

Methods

Simulations

For our population-genetics simulations we assumed a model of D demes that are arranged

in a regular square lattice (for two-dimensional habitat) or a line (one-dimensional habitat).

Each deme has effective population size 2N gametes, and, backwards in time, in each

generation, a proportion, m, of gametes swap places with an equal number of gametes in

each neighboring deme (e.g. for the 2-d simulations, demes internal on the lattice have four

neighbors; demes on the edge have three neighbors; demes in the corners have two

neighbors). We assume the population has reached equilibrium (i.e, the population has been

evolving in this way for a long time).

We applied PCA to both “population-based” data (as in Cavalli-Sforza et al [1, 2, 3]) and

“individual-based” data (as in [12]). For generating population-based data sets, we sampled

n individuals from Ds of the D demes, and simulate for each individual data at L

independent, bi-allelic polymorphic loci. Assuming independence of loci corresponds to

migration of alleles rather than of whole gametes. We experimented with different spatial

arrangements of the Ds demes, but for the results shown here (figs. 1, S1,S3,S5,S6), we use
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a regular square lattice of Ds = 15 × 15 demes embedded in a larger D = 31 × 31 lattice of

demes. Allele frequencies in each deme are stimated from the n sampled individuals in that

deme, to create a Ds × L data matrix of allele frequency estimates. For the one-dimensional

simulations we report individual-based, rather than population-based PCA. We sampled n

diploid individuals randomly from the D demes, and the data matrix consists of an n × L

genotype matrix. See Supporting Online Material for additional details.

Principal components analysis

To calculate principal components on our simulated data, we use bi-allelic loci and include

only the frequency of one of the two alleles. To compute the PCs, we apply the prcomp

function of the R statistical package [45] to a matrix based on allele counts. In accord with

Cavalli-Sforza’s method for creating PCA maps, we do not scale the allele frequencies when

conducting population-based PCA; however our methods differ from Cavalli-Sforza et al’s

in that we applied PCA directly to the observed allele-frequency matrix rather than using

allele frequencies spatialy interpolated on a dense grid. This avoids problems with

interpolation altering underlying spatial covariance patterns [6]. For individual-based PCA

we use an approach similar to that of Patterson et al [12], in that we scale the genotype

values across individuals at each locus to have unit variance. For the analysis of AFLP data

from greenish warblers, we coded each typed marker by using an indicator variable with 0

or 1 indicating the absence or presence of an AFLP band, respectively. We then normalized

each indicator variable to have mean zero and unit variance before applying PCA (again

similar to [12], see Supporting Online Material for more detail).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of PC-maps of [3] with theoretical and empirical predictions. The first column

shows the theoretical expected PC-maps for a class of models in which genetic similarity

decays with geographic distance (see text for details). The second column shows PC-maps

for population genetic data simulated with no range expansions, but constant homogeneous

migration rate in a 2-dimensional habitat. The columns marked Asia, Europe, and Africa are

redrawn from the originals of [3]. Each map is marked by which PC it represents. The order

of maps in each of the last three columns was chosen to correspond with the shapes in the

first two columns.
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Figure 2.
Results of PCA applied to data from a one-dimensional habitat. (A) Schematic of the one-

dimensional habitat, with circles marking sampling locations and shades of blue marking

order along the line. (B) One-dimensional PC-maps (i.e. plots of each PC element against

the geographic position of the corresponding sample location). (C) Biplots of PC1 vs. PC2,

PC2 vs. PC3, and PC3 vs. PC4. Colors correspond to those in Panel A. In many datasets

without spatially referenced samples, the colors and the lines connecting neighboring points

would not be observed; here they are shown to aid interpretation.
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