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KATP
 channels consisting of Kir6.2 

and SUR1 couple cell metabolism to 
membrane excitability and regulate insu-
lin secretion. The molecular interactions 
between SUR1 and Kir6.2 that govern 
channel gating and biogenesis are incom-
pletely understood. In a recent study, we 
showed that a SUR1 and Kir6.2 mutation 
pair, E203K-SUR1 and Q52E-Kir6.2, at 
the SUR1/Kir6.2 interface near the plasma 
membrane increases the ATP-sensitivity 
of the channel by nearly 100-fold. Here, 
we report the finding that the same muta-
tion pair also suppresses channel folding/
trafficking defects caused by select SUR1 
mutations in the first transmembrane 
domain of SUR1. Analysis of the contri-
butions from individual mutations, how-
ever, revealed that the correction effect is 
attributed largely to Q52E-Kir6.2 alone. 
Moreover, the correction is dependent on 
the negative charge of the substituting 
amino acid at the Q52 position in Kir6.2. 
Our study demonstrates for the first time 
that engineered mutations in Kir6.2 can 
correct the biogenesis defect caused by 
specific mutations in the SUR1 subunit.

Introduction

The pancreatic ATP-sensitive potassium 
(K

ATP
) channel is a hetero-octamer com-

posed of four Kir6.2 subunits and four 
sulfonylurea receptor 1 (SUR1) subunits.1 
K

ATP
 channels play a key role in coupling 

cell metabolism with membrane excit-
ability to regulate insulin secretion.2-4 
Dysfunction of K

ATP
 channels rendered by 

mutations in the SUR1 and Kir6.2 genes 
underlies a spectrum of insulin secretion 
disorders.3
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It is well recognized that both Kir6.2 
and SUR1 contribute to channel bio-
genesis and gating.1,5 When expressed 
individually, neither subunit traffics to 
the cell surface owing to the presence of 
an -RKR- ER retention/retrieval motif.6 
When co-expressed and co-assembled into 
an octameric complex, the RKR motifs 
are concealed to allow channels to traffic 
from the endoplasmic reticulum (ER) to 
the plasma membrane.6 In the functional 
channel complex, Kir6.2 forms the pore 
and mediates ATP inhibition,7,8 whereas 
SUR1 modulates Kir6.2 gating by con-
ferring the stimulatory effect of MgATP/
ADP,9-11 increasing the open probability of 
Kir6.28,12-14 and enhancing channel sensi-
tivity to ATP inhibition.8 An outstanding 
question remains as to how SUR1 and 
Kir6.2 interact at the structural level to 
govern channel biogenesis and gating.

A structural domain that has emerged 
as important in physical and functional 
coupling between SUR1 and Kir6.2 
is the first transmembrane domain of 
SUR1,12,14,15 designated TMD0 (see Fig. 
1A). TMD0 alone can assemble with 
Kir6.2 to form channels that have the 
high open probability resembling WT 
channels. In addition, the cytoplasmic 
loop L0 immediately following TMD0 
interacts with the N-terminal cytoplas-
mic domain of Kir6.2 to modulate chan-
nel gating.12,17-20 Recently, we identified 
an engineered interaction between SUR1-
E203K and Kir6.2-Q52E (denoted as 
E203K//Q52E; hereinafter “//” separates 
mutations in SUR1 and Kir6.2, and “/” 
separates mutations within the same sub-
unit) that increased the channel-s sensi-
tivity to ATP by nearly 100-fold.21 E203 
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the surface available for interaction with 
SUR1 in the Kir6.2 tetramer homology 
model (Fig. 1B). These studies high-
light the importance of TMD0 and the 
nearby SUR1-Kir6.2 interface close to the 
plasma membrane in regulating channel 
gating.21-23 Interestingly, many mutations 
in TMD0 of SUR1 cause channel biogen-
esis defects, resulting in loss of channel 
expression at the cell surface and the dis-
ease congenital hyperinsulinism.24,25 One 
hypothesis is that these mutations disrupt 
the conformation of TMD0-SUR1 nec-
essary for interaction with Kir6.2 during 
channel biogenesis. In this work, we tested 
whether the aforementioned engineered 
SUR1-Kir6.2 interaction could overcome 
channel biogenesis and trafficking defects 
caused by TMD0 mutations.

Results and Discussion

To test if the interaction between E203K-
SUR1 and Q52E-Kir6.2 affects the 
biogenesis of channels with previously 
identified SUR1-TMD0 trafficking muta-
tions,25,26 we placed several such muta-
tions on the E203K//Q52E background 
and assessed channel processing efficiency 
by western blots. SUR1 in the assembled 
channel complex undergoes complex gly-
cosylation in the Golgi to yield a higher 
molecular weight band distinguishable 
from the core-glycosylated SUR1 found 
in the ER. Of the three TMD0 mutations 
tested, F27S and A116P showed a clear 
upper band in addition to the lower imma-
ture band in the E203K//Q52E back-
ground; by contrast, the same trafficking 
mutations placed in the background with-
out the E203K//Q52E mutations only 
exhibited the lower band (Fig. 2), indicat-
ing the proteins were retained in the ER as 
reported previously.25,26 Another TMD0 
mutation, E128K, as well as three other 
previously identified, congenital hyperin-
sulinism-causing SUR1 trafficking muta-
tions outside of TMD0 (R495Q, F686S 
and L1350Q),25 however, showed no 
improvement in their processing efficiency 
when combined with E203K//Q52E (data 
not shown). These results led us to con-
clude that the E203K//Q52E mutations 
can overcome the folding and trafficking 
defects caused by some but not all TMD0 
mutations.

“sliding” helix. Q52 of Kir6.2 is also close 
to the plasma membrane just N-terminal 
to the amphipathic “slide” helix (Fig. 
1A) and is predicted to be exposed to 

of SUR1 is located at the beginning of L0 
close to the plasma membrane just down-
stream of TMD0 and near the beginning 
of a predicted amphipathic, so called, 

Figure 1. (A) Schematic of SUR1 and Kir6.2 proteins, highlighting the TMD0 portion of SUR1. 
Positions of SUR1-E203 and Kir6.2-Q52 residues (open squares) as well as the two TMD0 trafficking 
mutations F27S and A116P (open circles) are indicated. (B) A homology model of Kir6.2 tetramer 
marking the position of the Q52 residue (white). The model was made with Modeler and Chimera 
using a chicken Kir2.2 channel crystal structure (PDB ID: 3JYC)16 as the template. Amino acids 
30–352 of Kir6.2 which correspond to amino acids 42–369 of chicken Kir2.2 based on sequence 
alignment were modeled.
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E203K//Q52E mutation pair in correct-
ing the processing defect of F27S and 
A116P. This scenario differs somewhat 
from that observed for gating regulation 
whereby E203K-SUR1 does not affect 
channel ATP-sensitivity and Q52E-Kir6.2 
increases ATP-sensitivity by ~5-fold but 
E203K//Q52E increases ATP-sensitivity 
by ~100-fold.21 Moreover, while crosslink-
ing of E203C//Q52C induces channel 
closure21 it does not appear to rescue the 
trafficking defect caused by F27S, at least 
under the experimental conditions we have 
tested. Together these observations argue 
that the electrostatic interactions between 
E203K//Q52E or crosslinking between 
E203C//Q52C needed to observe a pro-
found change in gating are not required 
for the trafficking defect rescue.

That mutation in Kir6.2 can override 
the trafficking defect caused by a SUR1-
TMD0 mutation is remarkable and pro-
vides important insight into the channel 
assembly process. It suggests that inter-
actions between SUR1 and Kir6.2 may 
occur early in the channel biogenesis pro-
cess, perhaps co-translationally while both 
subunits are being folded, before mutant 
SUR1 is deemed incapable of reaching a 
correctly folded state and targeted for deg-
radation. Although the precise mechanism 
underlying our findings remains to be 
determined, the charge-dependence of the 
effect of Q52-Kir6.2 mutation on F27S-
SUR1 processing leads us to speculate that 
the negative charge at this position may 

not shown). Note in the case of Q52K-
Kir6.2, the pairing with E203 residue in 
SUR1 would represent a reverse-switch of 
charge at the two positions in relation to 
the E203K//Q52E mutation pair, and yet 
unlike E203K//Q52E, E203//Q52K failed 
to correct the trafficking defect caused by 
F27S and A116P. These results suggest 
that correction of the trafficking defects 
of F27S and A116P in the E203K//Q52E 
background is unlikely a consequence of 
electrostatic interactions between amino 
acids at the 203-SUR1 and 52-Kir6.2 
positions, and that a negatively charged 
amino acid at position 52 of Kir6.2 is the 
major driving factor for expression rescue.

Little is known about how SUR1 and 
Kir6.2 interact with one another dur-
ing subunit translation and assembly to 
ensure formation of a stable, functional 
channel complex. Our study identifies 
several mutations, including E203K//
Q52E, Q52E-Kir6.2 and Q52D-Kir6.2, 
that can significantly improve the pro-
cessing and surface expression of channels 
harboring specific TMD0 mutations. To 
our knowledge, this is the first report of 
such trafficking defect “suppressor” muta-
tions in K

ATP
 channels. Analysis of the 

contribution from individual mutations 
revealed that the processing defect caused 
by F27S-SUR1 is little affected by E203K-
SUR1 but is significantly alleviated by the 
Q52E and D mutations in Kir6.2 alone. 
In fact, the Q52E- or Q52D-Kir6.2 muta-
tions alone were nearly as effective as the 

E203K//Q52E has been found to 
increase channel sensitivity to ATP inhi-
bition by nearly 100-fold in our recent 
study.21 The markedly increased ATP sen-
sitivity is likely due to close electrostatic 
interactions between the two oppositely 
charged mutant residues. Mutation of 
Q52E-Kir6.2 alone only increased ATP-
sensitivity by ~5-fold whereas E203K-
SUR1 did not change ATP-sensitivity 
significantly. Close physical proximity of 
the two residues is further supported by 
the observation that in inside-out patch-
clamp recording of E203C-SUR1//
Q52C-Kir6.2 channels, application of the 
oxidizing reagent H

2
O

2
 to induce disul-

fide bond formation locked the channels 
in a closed state that was reversible by the 
reducing agent dithiothreotol.21 Given this, 
we considered the possibility that cross-
linking of E203C//Q52C may rescue the 
folding/assembly defect caused by F27S- 
or A116P-SUR1 by stabilizing the mutant 
SUR1-Kir6.2 interface at this location. We 
attempted to test this hypothesis by treat-
ing cells expressing F27S/E203C//Q52C 
with H

2
O

2
. While we were able to observe 

a crosslinked SUR1-Kir6.2 species on 
immunoblots within 10 min of H

2
O

2
 expo-

sure, no significant correction of the F27S 
processing defect was detected even after 
30 min or overnight H

2
O

2
 exposure (data 

not shown). These results could indicate 
that forced interaction between the two 
residues at this subunit interface is insuf-
ficient to overcome the channel biogenesis 
defect. However, the negative results could 
also be explained by experimental param-
eters such as incomplete crosslinking or 
oxidative stress caused by H

2
O

2
 exposure.

Next, we tested the role of individual 
E203K-SUR1 or Q52E-Kir6.2 muta-
tions in F27S-SUR1 mutant processing. 
Surprisingly, while the E203K-SUR1 
mutation had little effect on F27S-SUR1 
processing, co-expression of F27S-SUR1 
with Q52E-Kir6.2 was sufficient to 
increase the upper F27S-SUR1 band, and 
surface F27S-SUR1 detected by surface 
biotinylation was nearly as abundant as 
F27S/E203K//Q52E (Fig. 3A). Moreover, 
we found that while Q52D-Kir6.2 simi-
larly improved the processing and surface 
expression of F27S-SUR1, Q52K-Kir6.2 
did not (Fig. 3B). Similar observations 
were made for the A116P mutation (data 

Figure 2. The E203K//Q52E mutation pair suppresses the processing defect caused by the F27S 
or A116P SUR1 mutation. Western blots of SUR1 protein in COSm6 cells transfected with cDNA en-
coding WT or mutant channels. The complex glycosylated form of SUR1 is indicated by the solid 
arrow and the core-glycosylated SUR1 is indicated by the open arrow. Tubulin was detected for 
each sample as a loading control. Dashed lines indicate spliced lanes from the same blot.
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Tris·HCl, pH 7.0, 150 mM NaCl and 1% 
TritonX-100, with CompleteTR protease 
inhibitors. Cell lysates were run on SDS-
PAGE, exposed to anti-SUR1 sera and 
visualized by enhanced chemilumines-
cence as described previously.23 For surface 
biotinylation, cells were placed on ice and 
incubated in 1 mg/ml EZ-Link Sulfo-
NHS-SS-Biotin (Pierce) in DPBS (Thermo 
Scientific) for 30 min. Cells were lysed 
immediately in the lysis buffer and bioti-
nylated proteins were pulled down by incu-
bation with NeutrAvidin-agarose beads 
(Pierce) and processed for immunoblotting.
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