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Hyperpolarization-activated, cyclic 
nucleotide-sensitive (HCN4) chan-

nels produce the “funny current,” I
f
, 

which contributes to spontaneous pace-
making in sinoatrial myocytes (SAMs). 
The C-terminus of HCN channels inhib-
its voltage-dependent gating, and cAMP 
binding relieves this “autoinhibition.” 
We previously showed 1) that autoinhi-
bition in HCN4 can be relieved in the 
absence of cAMP in some cellular con-
texts and 2) that PKA is required for β 
adrenergic receptor (βAR) signaling to 
HCN4 in SAMs. Together, these results 
raise the possibility that native HCN 
channels in SAMs may be insensitive 
to direct activation by cAMP. Here, we 
examined PKA-independent activation 
of I

f
 by cAMP in SAMs. We observed 

similar robust activation of I
f
 by exog-

enous cAMP and Rp-cAMP (an analog 
than cannot activate PKA). Thus PKA-
dependent βAR-to-HCN signaling does 
not result from cAMP insensitivity of 
sinoatrial HCN channels and might 
instead arise via PKA-dependent limita-
tion of cAMP production and/or cAMP 
access to HCN channels in SAMs.

Introduction

Hyperpolarization-activated, cyclic nucle-
otide-sensitive (HCN) channels produce 
the cardiac “funny current,” I

f
, which con-

tributes to spontaneous pacemaker activ-
ity in sinoatrial myocytes (SAMs). HCN 
channels have a conserved cyclic nucleo-
tide binding domain (CNBD) in the 
C-terminus which inhibits voltage-depen-
dent gating. cAMP binding to the CNBD 
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relieves this “autoinhibition,” causing a 
depolarizing shift in the voltage depen-
dence of activation.1 We recently observed 
that autoinhibition of HCN4 (the pre-
dominant sinoatrial HCN isoform) can be 
relieved in the absence of ligand in some 
cellular contexts, rendering the channels 
insensitive to cAMP.2

β adrenergic receptor (βAR) stimula-
tion potentiates I

f
 via a depolarizing shift 

in the voltage dependence of activation. 
It is generally assumed that direct cAMP 
binding to HCN4 mediates this βAR 
activation of I

f
. However, we previously 

showed that βAR signaling to HCN 
channels in SAMs requires PKA activ-
ity, and that PKA phosphorylation of  
heterologously-expressed HCN4 chan-
nels causes a depolarizing shift in voltage 
dependence, which is similar in magni-
tude to the shifts produced by βAR stim-
ulation or cAMP binding.3 These results 
suggest a model in which βAR-generated 
cAMP activates I

f
 via PKA-dependent 

phosphorylation of the native sinoatrial 
HCN channels. However, indirect, mech-
anisms for PKA-dependent regulation of 
I

f
 are also possible, and the mechanistic 

basis for the PKA requirement in βAR-to-
HCN signaling in SAMs is not known.

Taken together our findings of tun-
able cAMP sensitivity of HCN4 and of 
PKA-dependence in βAR-to-HCN sig-
naling raise the possibility that native 
HCN channels in mouse SAMs may be 
insensitive to direct activation by cAMP. 
In this short follow-up study, we evalu-
ated the ability of cAMP to activate I

f
 

in mouse SAMs in the absence of PKA 
activity.
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cAMP analog that cannot activate PKA4 
but can activate I

f
 in excised inside-out 

membrane patches from rabbit SAMs.5 We 
found that cAMP and Rp-cAMPS pro-
duced nearly identical depolarizing shifts 
in the midpoint activation voltage (V

1/2
) of 

I
f
 in mouse SAMs when applied at either 

(Fig. 1A). To determine whether cAMP 
can activate native HCNs in SAMs inde-
pendent of PKA activity, we compared the 
effects on the midpoint activation volt-
age (V

1/2
) of I

f
 in response to intracellular 

dialysis with cAMP or Rp-adenosine cyclic 
3',5'-phosphorothioate (Rp-cAMPS), a 

Results and Discussion

I
f
 was recorded from acutely dissociated 

mouse SAMs in whole cell voltage clamp 
recordings. Cells were held at −50 mV, and 
I

f
 was elicited by 3-sec test pulses from 

−60 to −170 mV in 10 mV increments 

Figure 1. Similar effects of cAMP and Rp-cAMPS on If in sinoatrial myocytes. (A) Representative If whole cell current families recorded from SAMs in 
control (Tyrodes), 1 mM cAMP, or 1 mM Rp-cAMPS. Red traces indicate currents at −100 mV to illustrate similar shift in voltage dependence in the 
presence of cAMP or Rp-cAMPS. Scale bars, 250 ms 200 pA for control and 1 mM cAMP, 250 ms, and 100 pA for 1 mM Rp-cAMP (B) Average normalized 
conductance-voltage plots for If in Tyrodes (black circles), 1 mM cAMP (red circles), or 1 mM Rp-cAMPS (red triangles). (C) Average normalized conduc-
tance-voltage plots for If in Tyrodes (black circles), 100 μM cAMP (red circles), or 100 μM Rp-cAMPS (red triangles). (D) Average midpoint activation 
voltages for If in Tyrodes, 1 μM ISO, or the indicated concentrations of cAMP or Rp-cAMPS. Asterisks indicate p < 0.05 vs. Tyrodes, ns indicates p > 0.05.
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Materials and Methods

Animal procedures were performed in 
accordance with protocols approved by 
the IACUC at the University of Colorado 
Denver, Anschutz Medical Campus. 
SAMs were isolated from adult male 
C57BL/6J mice as previously described.3,17

Whole-cell voltage-clamp recordings 
of I

f
 from SAMs were conducted as pre-

viously reported.3,17 Cells were perfused 
(1–2 ml/min) with Tyrode’s solution (in 
mM, 140 NaCl, 5.4 KCl, 1.2 KH

2
PO

4
, 

5 HEPES, 5.55 glucose, 1 MgCl
2
, 1.8 

CaCl
2
; pH adjusted to 7.4 with NaOH) 

containing 1 mM BaCl
2
. Recording 

pipettes had resistances of ~1.5–3.0 MΩ 
when filled with an intracellular solution 
consisting of (in mM) 135 potassium 
aspartate, 6.6 sodium phosphocreatine, 1 
MgCl

2
, 1 CaCl

2
, 10 HEPES, 10 EGTA, 

4 Mg-ATP; pH adjusted to 7.2 with 
KOH. cAMP (Sigma-Aldrich A6885) 
or Rp-adenosine-3',5'-cyclic monophos-
phorothioate sodium salt (Rp-cAMPS; 
BioLog A 002 S) were added to the intra-
cellular solution at the indicated concen-
trations. Reported voltages were corrected 
for a calculated −14 mV junction potential 
error. Conductance was calculated from 
inward currents using the equation G = I/
(V − V

r
), where G is conductance, I is the 

time-dependent inward current at a given 
voltage, V, and V

r
 is the reversal potential 

for I
f
 (−30 mV3,18). Conductances were 

subsequently plotted as a function of volt-
age and fit with a Boltzmann equation to 
determine midpoint activation voltages 
(V

1/2
).
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