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Abstract

Tissue homeostasis depends largely on the ability to replenish
impaired or aged cells. Thus, tissue-resident stem cells need to
provide functional progeny throughout the lifetime of an organism.
Significant work in the past years has characterized how stem cells
integrate signals from their environment to shape regulatory tran-
scriptional networks and chromatin-regulating factors that control
stem cell differentiation or maintenance. There is increasing
interest in how post-translational modifications, and specifically
ubiquitylation, control these crucial decisions. Ubiquitylation
modulates the stability and function of important factors that
regulate key processes in stem cell behavior. In this review, we
analyze the role of ubiquitylation in embryonic stem cells and
different adult multipotent stem cell systems and discuss the
underlying mechanisms that control the balance between quies-
cence, self-renewal, and differentiation. We also discuss deregulated
processes of ubiquitin-mediated protein degradation that lead to
the development of tumor-initiating cells.

Keywords differentiation; malignancy; proteasome; stem cells; ubiquitin

DOI 10.1002/embr.201338373 | Received 17 December 2013 | Revised 21

February 2014 | Accepted 21 February 2014

EMBO Reports (2014) 15, 365–382

See the Glossary for abbreviations used in this article.

Stem cells: concepts and definitions

Embryonic stem cells and adult tissue-resident stem cells are of

great interest in biology and medicine due to their unique character-

istics [1]. They have the ability to self-renew, which is defined as

the capacity to proliferate while being able to differentiate to down-

stream cellular types upon proper stimuli from their environment.

This unparalleled cellular plasticity of stem cells identifies them as

key determinants of tissue equilibrium.

Although progenitor cells also have the ability to self-renew, this

is usually a short-term characteristic [2]. The long-term self-renewal

capacity of stem cells is essential to supply tissues with differentiated

progeny throughout the life of the organism. Adult stem cells

reside in specialized microenvironments called niches and manifest

different degrees of quiescence, depending on the specific organ

characteristics. For example, hematopoietic stem cells (HSCs) are

dormant [3], whereas mammary stem cells (MaSCs) appear to be

cycling [4] and intestinal stem cells (ISCs) proliferate rapidly [5].

Stem cells can divide symmetrically or asymmetrically [6; Sidebar

A]. Symmetric cell divisions ensure that all elements are distributed

equally between the two identical daughter stem cells, and

differentiation—usually of only one of the daughter cells—occurs at

a later stage. Asymmetric cell divisions, on the other hand, lead to

the unequal division of stem cell components in a process that

involves proper positioning of the mitotic spindle [7]. As a result,

one cell remains a stem cell, whereas the other adopts a different cell

fate. Asymmetric divisions also physically displace one daughter cell

from its relative position to the niche, leading to its differentiation.

Signals from the niche microenvironment are critical in regulating

intrinsic stem cell transcriptional programs. Various signaling path-

ways such as Wnt, Hedgehog, Notch, TGF-b/BMP, and JAK/STAT

act in concert to shape the regulatory networks that control cell

cycle progression or exit, differentiation, and homeostasis. Disturbing

the balance between these signaling pathways can deregulate these

processes and lead to tumor formation [8]. Thus, the precise control

of these pathways, both in stem and in niche cells, is crucial to

execute proper developmental programs. The control of protein

stability and/or activity by ubiquitylation is essential in the control

of the above-mentioned signaling pathways, and its manipulation

can either support or alter stem cell properties.

The nuts and bolts of ubiquitylation

The regulation of protein stability is a crucial function in the control

of cell plasticity. The ubiquitin-proteasome system (UPS) is a funda-

mental mechanism to regulate protein stability, quality control, and

abundance. Ubiquitylation is a post-translational modification

process that results in the covalent conjugation of the small, highly

conserved, 76-amino acid protein ubiquitin to lysine residues of

substrate proteins through a cascade of enzymatic reactions [9].

These events involve the activation of ubiquitin using ATP by
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E1-activating enzymes, followed by its transfer to E2-conjugating

enzymes and finally the formation of an isopeptide bond between

ubiquitin and the substrate protein catalyzed by E3 ligases, which

confer substrate specificity [10]. This cascade can be repeated

multiple times resulting in polyubiquitylated substrates, where each

ubiquitin moiety is conjugated to the previous one.

Ubiquitin contains seven lysines (K6, K11, K27, K29, K33, K48,

and K63), all of which can be acceptors for the next ubiquitin, as can

the amino-terminal methionine. As a result, polyubiquitylation can

generate substrates tagged with different types of ubiquitin chain, as

well as branches of mixed-chain composition [11]. These different

chain linkages result in different degrees of polyubiquitylated chain

compaction, which can mediate diverse cellular outcomes. For

example K11-linked chains, which have some degree of structural

flexibility, have been implicated in mitotic degradation [12], whereas

K63 chains, which have open, linear-like conformations, have been

associated with the activation of kinases [13, 14]. A well-studied type

is the highly compact K48-linked ubiquitin chain, which serves as

the canonical signal for degradation by the proteasome [15].

Monoubiquitylation and polyubiquitylations have been implicated in

regulating virtually all cellular signaling pathways and processes

[16], in addition to maintaining proteostasis. The different ubiquitin

chains are recognized by ubiquitin-binding domains of “reader”

proteins, thereby deciphering this three-dimensional code [17, 18].

The proteasome is a multimeric enzymatic complex that consists

of the 20S catalytic core and one of three regulatory particles, 19S,

11S/PA28, or Blm10/PA200. The core contains the catalytic sites for

degradation, and the regulatory particle is responsible for substrate

recognition, removal of the polyubiquitin chains, unfolding and

translocation into the catalytic cavity [19]. Regulatory particles

contain ubiquitin-binding receptors [20], deubiquitylating enzymes

(DUBs) [21], and ATPases [22] in order to perform these functions.

The catalytic core has trypsin-, chymotrypsin-, and caspase-like

proteolytic activities and degrades proteins in a processive manner,

generating short peptides. The assembly and structure of the protea-

some are dynamically controlled to enable the degradation of a wide

variety of substrates and thereby regulate multiple cellular functions

[19, 23, 24].

Ubiquitylation is often deregulated in many types of disease,

including cancer, neurodegenerative, and immune disorders. For

this reason, it is the focus of intense research that aims to develop

effective inhibitors of UPS activity that could selectively kill altered

cells. Bortezomib, also known as Velcade, is one of the best-

characterized proteasome inhibitors and has been used to treat

multiple myeloma, as well as a number of solid tumors [25, 26].

Similarly, other proteasome subunits are current targets for drug

development [27].

E3 ubiquitin ligase enzymes are responsible for the recognition

of substrates for ubiquitylation. In humans, there are more than 600

E3 ligases, divided into three major families, the HECT, RING, and

RING-between-RING (RBR) ligases [10, 28–31]. Although they are

highly selective enzymes, substrate recognition and ubiquitylation

often depend on the cross-talk between different post-translational

modifications. A well-characterized example is phosphorylation-

dependent ubiquitylation, when phosphorylation is a direct pre-

requisite for substrate recognition by the ubiquitylation machinery

[32]. However, phosphorylation can also block recognition of

substrates, suggesting that phosphatases can also regulate this

process [33].

Ubiquitylation of substrates followed by proteolytic degradation

is a unidirectional process that involves the physical unfolding and

cleavage of a protein. However, prior to being processed by the

proteasome, ubiquitin removal can be catalyzed by DUBs, preventing

proteasomal cleavage and resulting in protein stability. Five families

of DUBs are known to exist, the majority of which are cysteine

peptidases. DUBs are emerging as important players in development

and the identification of a growing number of substrates has been

the focus of much attention in a wide variety of systems. DUBs are

implicated in chromatin regulation, transcriptional control, and the

modulation of mitogenic pathways. Their function is often deregu-

lated in malignancies, leading to a stabilization of oncogenic or anti-

apoptotic factors [34, 35].

In all, ubiquitylation and protein degradation by the proteasome

constitutes a highly regulated and evolutionarily conserved process

that affects development and tissue physiology, and is frequently

deregulated in disease. In the biology of stem cells, ubiquitylation

plays key roles in self-renewal and cell fate specification. It provides

an additional layer of stem cell regulation at the post-translational

level and extends to multiple cellular processes, including the

modulation of extracellular matrix composition, surface receptor

trafficking and signaling, control of the cell cycle, transcription

factor abundance, and deposition of epigenetic marks. Here, we

Glossary

APC adenomatous polyposis coli
BMP bone morphogenetic protein
CKI casein kinase 1
CRL Cullin-RING-ligase
Dnmt1 DNA methyltransferase 1
DUB deubiquitylating enzyme
FANCD2 Fanconi anemia group D2 protein
Fbxw7 F-box/WD repeat containing protein 7
GSK3b glycogen synthase kinase 3 beta
HECT homologous to E3-AP C-terminus family of E3 ligases
HIF-1a hypoxia-inducible factor 1, alpha subunit
iPS induced pluripotent stem cell
JAK Janus kinase
Lgr5 leucine-rich repeat containing G-protein-coupled

receptor 5
LSK lineage-negative Sca1-positive cKit-positive cells

containing the hematopoietic population
Mbi1 mind-bomb 1
Mdm2 mouse double minute 2 homolog
Psmd proteasome 26S subunit, non-ATPase
REST RE1-silencing transcription factor
RING really interesting new gene family of E3 ligases
ROS reactive oxygen species
SILAC stable isotope labeling by amino acids in culture
Skp2 S-phase kinase-associated protein 2
Smad small body size/mothers against decapentaplegic;

TGF-b signaling transcription factors
STAT signal transducer and activator of transcription
T-ALL T-cell acute lymphoblastic leukemia
TGF-b transforming growth factor beta
UPS ubiquitin-proteasome system
USP1 ubiquitin-specific peptidase 1
VHL Von Hippel-Lindau
Wnt homologues of the Drosophila “wingless” signaling

proteins
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discuss how ubiquitylation mediates the balance of cell fate

decisions in different stem cell systems.

Ubiquitylation pathways in embryonic stem cells

Embryonic stem cells (ESCs) are derived from the inner cell mass of

pre-implantation blastocysts [36, 37]. They are pluripotent and have

remarkable cellular plasticity, as they can differentiate to all somatic

and germ cell lineages of the embryo proper. ESCs can be cultured

in vitro maintaining their unique characteristics indefinitely. Addi-

tionally, they can differentiate to various cell types under proper

culture conditions. These unique properties of ESCs—including their

rapid proliferation—make them exceptionally valuable to study

mechanisms that dictate protein stability. Ubiquitylation pathways

can modulate ESC functions on multiple levels, and thus, there is

increasing interest in their use for the discovery of drugs that alter

protein abundance.

At the level of transcription, a core factor circuitry consisting of

Oct4, Sox2, Nanog, and c-Myc regulates the balance between ESC

self-renewal and differentiation. These proteins directly control the

levels of each other, creating a positive feedback loop that sustains

high levels of expression [38]. Furthermore, they can form complex

networks with multiple transcription and chromatin-regulating

factors. The dynamic interactions among these components

ultimately regulate differentiation and lineage specification processes

[39]. Changes in transcription factor abundance can result in the

tipping of this balance toward specific patterns of differentiation. As

a result, regulation at the post-translational level by ubiquitylation

is crucial and can specify these processes.

There are several examples of ubiquitin-modulating enzymes that

control transcription factor abundance in ESCs. The HECT family E3

ligase Wwp2 has been suggested to ubiquitylate Oct4 in both mouse

and human ESCs [40, 41], decreasing Oct4 transcriptional activity

and leading to its proteasomal degradation (Fig 1A). In the same

studies, Wwp2 was also proposed to undergo auto-ubiquitylation,

providing an additional level of complexity [42]. Although there are

a lot of open questions regarding this function in vivo, as well as

how ubiquitylated Oct4 interacts with additional ESC components,

these studies suggest that ubiquitylation fine-tunes self-renewal by

controlling Oct4 levels and activity. As expression levels of Wwp2

correlate with pluripotency, it would be interesting to investigate

how these functions control cellular reprogramming, given that Oct4

is a crucial factor in iPS generation [43].

Another example of transcription factor modulation in ESCs is

c-Myc ubiquitylation by SCFFbxw7 [44] (Fig 1A). This interplay illus-

trates how ubiquitylation orchestrates ESC differentiation. c-Myc is

primed for ubiquitylation by Gsk3-dependent phosphorylation on

Thr58, creating a phosphodegron that promotes its proteasomal

degradation [45]. Loss of c-Myc protein, a key transcriptional deter-

minant of ESC function, induces an irreversible transition toward

differentiation. Furthermore, degradation of c-Myc by SCFFbxw7 is

involved in cellular reprogramming, as mouse embryo fibroblasts in

which Fbxw7 is depleted are able to reprogram to iPS cells more effi-

ciently [44]. These results demonstrate the importance of dynamic

ubiquitylation events on the establishment of cell fate specification.

Similar to Oct4 and c-Myc, the levels of Nanog are also regulated

by ubiquitylation [46] (Fig 1A), and this process has been linked to

phosphorylation [47]. Nanog is known to be a phosphoprotein in

mouse ESC [48], and recent efforts in human ESCs have tried to
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Figure 1. Ubiquitylation regulates ESC pluripotency, differentiation and iPS cell generation.
(A) The E3 ligases SCFFbxw7 andWwp2 regulate core transcription factor—such as c-Myc and Oct4—abundance and functions in ESCs. Additional enzyme–substrate pairs may
control transcriptional regulation of ESCs. SCFFbxw7 controls cellular reprogramming and iPS generation, in addition to differentiation, through c-Myc stabilization. (B) Cul3-
Klhl12 ubiquitylates Sec31, regulating COPII vesicle size and procollagen export to the extracellular matrix. (C) Ubiquitylation regulates signaling components in ESCs. Nedd4l
and Rnf12 regulate Smad2/3 and Smad7 levels, respectively. (D) Enzymatic functions of the proteasome control self-renewal and differentiation of ESCs, as well as cellular
reprogramming. Psmd14 and Psmd11 regulate 19S regulatory particle activity and assembly, respectively.
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understand this post-translational cross-talk. Phosphorylation of

Nanog alters its degradation rate, resulting in an increased stability

in human ESCs [47]. Its ubiquitylation and proteasomal degradation

depend on specific sequence motifs, deletion of which has dramatic

effects on Nanog stabilization [46]. Although the E3 ligase responsi-

ble for this activity remains elusive, the maintenance of Nanog

levels has a big impact on ESCs, as elevated Nanog expression

sustains LIF-independent self-renewal [49]. Therefore, it is intriguing

to speculate that regulation at the post-translational level by

ubiquitylation can have similar effects. However, additional work

needs to clarify previous efforts to this direction. Interestingly, stem-

ness proteins, such as Nanog, have been linked to malignancies and

correlate with tumor progression and poor prognosis [50, 51]. As

the enzymes implicated in the post-translational control of Nanog

levels have also been associated with pathology [52], a tempting

possibility is that the ubiquitylation and proteasomal degradation of

key pluripotency factors is not only a determinant of ESC differentia-

tion but can also determine malignant transformation and disease

progression.

In addition to level of transcription factors, ubiquitylation can

regulate other aspects of ESC function, such as receptor signaling and

vesicle trafficking. Ubiquitylation mechanisms have been elegantly

linked to secretion and support of the extracellular matrix [53]. The

ubiquitin ligase Cul3—through its adaptor Klhl12—was found to

monoubiquitylate Sec31, a basic constituent of COPII vesicles in

ESCs (Fig 1B). This ubiquitylation controls the size of COPII vesi-

cles, enabling the export of large vesicle cargo, such as procollagen

fibers. These groundbreaking findings demonstrate that ubiquitin

pathways control not only intracellular constituents, but also the

extracellular space, expanding the perception of how ubiquitylation

regulates integrin signaling and cell division in early embryo

development.

Ubiquitylation also impacts signal transduction in ESCs, shaping

their differentiation potential toward specified lineages. Components

of the TGF-b signaling pathway, for example, are well-characterized

targets of ubiquitylation. The E3 ligase Nedd4L can tag phosphory-

lated Smad2/3 for degradation in ESCs [54], skewing differentiation

toward mesodermal lineages (Fig 1C). On the other hand, the inhib-

itory Smad7 was recently suggested to be a target of Rnf12 [55].

ESCs deficient of Rnf12 are unable to induce the formation of ante-

rior mesoderm or inhibit neuronal differentiation when challenged

with Activin and BMP/Smad, respectively.

Collectively, the above examples outline the diverse and

complementary nature of ubiquitin-mediated modifications in

ESCs. Relative protein abundance, vesicle trafficking and signal

transduction, all regulated by ubiquitylation, control important cell

fate decisions. Thus, the functional role of ubiquitin extends to

fundamental stem cell processes, emphasizing its importance in

development.

Finally, we would like to focus on the role of the proteasome in

stem cells, as a machinery that balances opposing developmental

processes. Interestingly, the various regulatory particles have

different effects on proteasomal activity. As a result, their functions

are distinct in ESCs. For instance, the 11S/PA28 activator is required

to eliminate oxidatively damaged proteins during differentiation [56,

57]. On the other hand, the 19S regulatory particle is essential for

maintenance of self-renewal and turnover of ubiquitylated proteins.

In mouse ESCs, the deubiquitylating enzyme Psmd14, an integral

subunit of the 19S particle, is necessary for proper self-renewal [44]

(Fig 1D). Loss of Psmd14 leads to differentiation with the simulta-

neous accumulation of polyubiquitylated proteins, which can be

fully rescued by the restoration of this enzymatic activity. Further-

more, Psmd14 is required for iPS cell generation, further emphasiz-

ing the importance of proteasome function in pluripotency (Fig 1D).

In human ESCs, PSMD11—which is a component of the proteasome

lid—was shown to play an instrumental role in the assembly of the

20S core with the 19S particle, thus regulating proteasome activity

[58]. Decreased levels of this subunit lead to diminished cleavage

activity and differentiation. Additional work is certainly needed in

order to clarify the exact changes in proteasome architecture and

identify the specific effects on stem cell elements that trigger differ-

entiation. However, the above examples demonstrate the regulatory

roles that proteostasis, and therefore the proteasome subunits, have

on stem cell biology. In agreement with this, proteasomes have been

suggested to restrict permissive transcription by degrading pre-

initiation complexes at loci important for development, thereby

preventing differentiation [59]. Conversely, transcription factors

such as OCT4 have been shown to directly or indirectly control the

expression of multiple proteasome subunits in an interesting feed-

back loop [60]. In summary, the work discussed above demonstrates

the diversity and importance of ubiquitylation functions in ESC

regulation.

Ubiquitylation pathways in adult stem cells

The regenerative potential of tissues relies on specialized subsets of

multipotent stem cells that can give rise to all the cells that make up

a given tissue. Those tissue-specific stem cells maintain a tightly

controlled balance between quiescence, self-renewal, and differenti-

ation. However, many of the molecular mechanisms governing stem

cell fates are poorly understood. Some of them are common for

several types of stem cells, whereas others are tissue specific. The

ubiquitin system has an important role in the regulation of funda-

mental cellular functions such as cell cycle, DNA damage repair,

protein quality control, and transcription; however, little is known

about its impact in regulating adult stem cell differentiation and

lineage specification. In the last years, the development of several

E3 ligase-knockout mouse models has revealed important functions

of the ubiquitin system in adult stem cell biology.

Hematopoietic stem cells as a paradigm of regulation by ubiquitin

Hematopoietic stem cells have the capacity to regenerate the blood

cell lineage throughout the life of an organism [61–63]. This capac-

ity depends on their remarkable self-renewal and differentiation

properties. Most of the HSCs remain quiescent in specialized niches

of the bone marrow. Only in response to specific stimuli, HSCs can

re-enter the cell cycle and self-renew or differentiate [64]. Quies-

cence and self-renewal prevents exhaustion of the HSC, whereas

differentiation induces the production of the different cell lineages.

Therefore, the molecular mechanisms controlling the balance

between quiescence, self-renewal, and differentiation are tightly

regulated. Improper control of this equilibrium may result in hema-

topoietic failure or cancer [65]. The regulation of these cellular

events is achieved on two different levels. First, in the HSC

niche, growth factors, chemokines, cytokines, and other secreted
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molecules constitute cell-extrinsic networks controlling HSC mainte-

nance [66]. Second, complex cell-intrinsic signaling pathways

involving cell cycle, proliferation, growth, and survival have been

shown to be essential in HSC homeostasis [65, 67–73]. The UPS

plays an important role in regulating protein functions required in

both networks. Ubiquitylation of Notch [74] and c-Myc [68, 71, 72,

75, 76] are among the most characteristic examples of such regula-

tion. Moreover, impaired ubiquitin-mediated regulation of HSCs has

been linked to malignant transformation events [76].

E3 ligases controlling HSC quiescence Loss of HSC quiescence leads

to hematopoietic exhaustion, accumulation of replicative stress, and

leukemia [77, 78]. The impaired activity of some E3 ubiquitin ligases

has been related to the loss of quiescence and expansion of the HSC

compartment.

The RING E3 ligase c-Cbl negatively regulates Notch [79], c-Kit

[80], and STAT5 [81, 82], all of which are essential in HSC homeo-

stasis (Fig 2A). c-Cbl-deficient mice have a cell-autonomous

increase in HSCs [83]. Similarly, c-Cbl-knockout HSCs show

enhanced proliferation and reconstitution capacity in competitive

bone marrow transplantations. The lack of this E3 ligase promotes

self-renewal and aberrant proliferation of stem cells (Fig 2B). All

these data support that c-Cbl maintains quiescence of the HSC

compartment. Eventually, c-Cbl-knockout mice develop myeloid

proliferative disorders and acute myeloid leukemia [84]. Interest-

ingly, CBL is mutated in 5–15% of human myeloid proliferative

disorders [85–89]. However, more studies are necessary to under-

stand whether those mutations are drivers of leukemia.

Similar to c-Cbl, the HECT E3 ligase Itch is a negative regulator

of HSC self-renewal and proliferation [90]. Itch-deficient mice show

increased numbers of HSC and enhanced self-renewal. These pheno-

types are attributed to deficits in the ubiquitylation of Notch

(Fig 2A), a well-known target of Itch. Indeed, Notch downregulation

in Itch-deficient mice can partially rescue the effects on HSCs [29].

However, loss of Itch does not promote leukemia.

In contrast, the E3 ligase SCFFbxw7 is mutated in a significant

portion of human tumors, including T-cell acute lymphoblastic

leukemia (T-ALL) [91–93]. This E3 ligase controls the stability of

key hematopoietic regulators such as Notch [94, 95], c-Myc [96,

97], Cyclin E [98, 99], and Mcl-1 [100, 101] (Fig 2A). Germline dele-

tion of SCFFbxw7 results in embryonic lethality due to hematopoietic

and vascular defects [95, 101]. Conditional deletion of Fbxw7 in

the hematopoietic system leads to constant HSC proliferation and

eventually exhaustion of that population [74, 102] (Fig 2B). As a
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Figure 2. The ubiquitin-proteasome system maintains the balance between quiescence, self-renewal, and differentiation of HSCs.
(A) The E3 ligases Itch, SCFFbxw7,CBL and SCFSkp2 maintain the quiescence of the HSC by targeting Notch, c-Myc, and STAT5, among others. (B) Loss of any of those E3 ligases
results in self-renewal factor upregulation. As a consequence, HSCs re-enter the cell cycle and divide. The aberrant expansion of HSCs results in hematopoietic exhaustion or
leukemia. (C) HSCs need HIF-1a in order to survive in the hypoxic niche. However, during differentiation, they migrate out of the niche. The E3 ligases VHL and MDM2 play an
important role in the adaptation to the new environment. HIF-1a must be degraded by VHL for migration and differentiation to occur. Additionally, as increase in ROS
activates the p53 pathway, MDM2 controls the levels of p53, promoting cell survival. Impaired activity of USP1, VHL, or MDM2 alters HSC self-renewal and differentiation
capacities, resulting in hematopoietic failure. (D) During HSC self-renewal, the DUB USP1 promotes the activation of FANCD2, which is essential for DNA damage repair upon
replicative stress.
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consequence, a significant percentage of Fbxw7-knockout mice

develop anemia. Besides the increased proliferation of HSCs, these

cells are unable to compete in bone marrow transplantation. There-

fore, Fbxw7 deficiency results in a global loss of quiescence in the

HSC compartment and consequently exhaustion of hematopoiesis.

Accordingly, genes involved in HSC quiescence are downregulated

in Fbxw7-deficient LSKs, which are the primitive hematopoietic cells

that have the ability to self-renew. This may be due to changes in

the stability or transcriptional activity of one or more of the Fbxw7

targets, such as c-Myc. Furthermore, some aged mice develop

T-ALL due to the stabilization of c-Myc, which prevents T cells from

exiting the cell cycle [74, 103]. Interestingly, Fbxw7 was recently

shown to modulate leukemia-initiating cells by the regulation of

c-Myc stability [75].

Another important regulator of HSC self-renewal and quiescence

is the E3 ligase SCFSkp2 (Fig 2A), which triggers ubiquitylation and

degradation of cell cycle inhibitors such as p27 [104]. Upregulation

of Skp2 has been related to increased proliferation and tumorigene-

sis [105]. In contrast, depletion of Skp2 in long-term HSCs (LT-

HSCs) can promote the loss of quiescence and proliferation [106,

107] (Fig 2B). While p21 and p27 levels are normal in the Skp2-null

cells, Cyclin D1 is upregulated. However, Cyclin D1 is not a direct

target of Skp2. Therefore, the molecular mechanism driving this

proliferative phenotype in stem cells is still unknown.

E3 ligases in HSC differentiation Similar to quiescence, proper

control of HSC differentiation is essential for the regulation of hema-

topoiesis. One of the hallmark characteristics of the HSC niche is its

low-oxygen tension, essential for stem cell quiescence and functions

[108]. In order to adapt to this hypoxic niche, HSCs have developed

appropriate molecular mechanisms for stem cell survival. HIF-1a is

the master regulator that orchestrates this hypoxic transcriptional

program [109]. When HSCs differentiate, they move out from the

HSC niche and HIF-1a is degraded through the E3 ligase VHL [109]

(Fig 2C). Indeed, VHL plays an essential role in the exit from quies-

cence and HSC differentiation. Loss of one or two alleles of VHL

induces HSC quiescence, determined by both an increase in the total

numbers of LSK cells, which contain the HSCs population, and in

the numbers of LSKs in G0. As a consequence, there is attenuated

differentiation of cells in the peripheral blood. Therefore, VHL

is essential for exit from quiescence and the initiation of HSC

differentiation.

In addition to the above example, the hypoxic bone marrow

niche keeps low levels of reactive oxygen species (ROS). As stem

cells move out from the niche to proliferate and differentiate, the

concentration of ROS increases. Given that ROS are DNA-damaging

agents, cells activate p53 pathways. The RING E3 ligase MDM2

regulates p53 stability, facilitating the survival of HSCs upon those

microenvironmental changes. The ablation of MDM2 in the hema-

topoietic system leads to the stabilization of p53, resulting in cell

cycle arrest, senescence, and apoptosis of HSC and progenitor cells

[110] (Fig 2C). Several studies have demonstrated that this is a cell-

intrinsic effect alleviated by p53 downregulation or treatment with

antioxidants [111, 112]. Therefore, MDM2 is required to regulate

p53 levels as ROS levels increase when the HSCs migrate away from

the niche.

In the adult organism, most HSCs remain quiescent and are thus

protected from the DNA damage inherent to DNA replication and

from molecular species resulting from cellular metabolism.

However, as HSCs re-enter the cell cycle to divide and differentiate,

they are exposed to such stress. An important DNA repair mecha-

nism is the Fanconi anemia pathway. Monoubiquitylated FANCD2

is recruited to chromatin to mediate this process [113], and the

cysteine protease USP1 deubiquitylates FANCD2 (Fanconi anemia

D2) to end this function [114] (Fig 2D). Loss of Usp1 causes detri-

mental phenotypes in mice [115, 116], similar to those observed in

patients deficient for any of the Fanconi anemia pathway proteins.

These include aplastic anemia, developmental abnormalities, and

increased cancer susceptibility due to increased genomic instability

[117]. Accumulation of DNA damage and apoptosis in the HSC

compartment explains bone marrow failure phenotypes in those

patients. As a result, the deubiquitylating activity of Usp1 demon-

strates its key role in HSC protection against DNA damage.

However, it is unclear whether this is only through its regulation of

FANCD2 or other targets are also implicated.

Ubiquitylation in epidermal stem cells
The skin is a multilayer organ that protects organisms against

external aggressions. It constitutes one of the tissues with the best-

characterized hierarchical organization. Stem cells are found in the

basal layer of the epidermis and generate several types of

progenitors ensuring the high turnover rate of the epithelium. In

addition, the bulge region of the hair follicle in mice contains a

population of multipotent stem cells that can give rise to all epithe-

lial cell lineages within hair follicles during normal hair growth

[118]. Surprisingly, non-hair follicle stem cells can contribute to

the formation of hair follicles in response to wounding [119],

demonstrating the dynamic characteristics of this system. Although

only some of those stem cells remain quiescent, most of the

epidermal stem cells can divide symmetrically or asymmetrically

in order to self-renew or differentiate. This balance between

quiescence, symmetric, or asymmetric cell division is controlled by

a number cell-autonomous molecular mechanisms and interactions

between stem cells and their microenvironment [120]. As in other

tissues, disequilibrium between self-renewal and differentiation

results in pathologies like cancer [121].

The canonical Wnt/b-catenin signaling pathway has been impli-

cated in maintaining stem cell homeostasis in epithelial tissues such

as the skin, mammary gland, and intestine. Furthermore, deregula-

tion of this pathway often leads to the generation of epithelial

cancers [122]. In the absence of active Wnt signaling, intracellular

b-catenin is phosphorylated and targeted for proteolytic degrada-

tion. High levels of b-catenin lead to hair growth and ectopic hair

follicle formation in transgenic mice [123], whereas inhibiting

b-catenin blocks the formation of hair during development [124]. In

addition, transplant experiments in pre-cancerous murine skin

cancer stem cells show that b-catenin signaling is essential for

tumorigenesis [118]. Interestingly, the E3 ligase Smurf2 targets

Smad7-bound b-catenin for degradation [125] (Fig 3A). Transgenic

mice overexpressing Smad7 show reduced levels of b-catenin and

Wnt signaling inhibition, resulting in the delay of hair development.

Under physiological conditions, the levels of Smad7 in keratinocytes

are low; however, its knockdown leads to overexpression of b-catenin
and Wnt signaling. This suggests that low levels of Smad7 are

required in stem cells to maintain a proper balance of b-catenin/
Wnt signaling. Accordingly, whether the overexpression of Smad7
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in b-catenin-dependent cancer stem cells could abolish tumorigene-

sis is an intriguing possibility that awaits testing.

Another example of ubiquitin-mediated regulation is that of the

HECT E3 ligase Itch, which similarly to its function in the hemato-

poietic system, has important roles in epidermal stem cells. Itch was

originally identified through genetic studies aimed to examine the

agouti locus. The 18H mutation associated with a darker color arises

from an inversion disrupting the agouti and Itch genes [126]. Inter-

estingly, some Itch substrates such us p63, Notch, Gli1, c-Jun, JunB,

Erb4 are transcription factors controlling epidermal stem cell main-

tenance and keratinocyte differentiation [127–130] (Fig 3A). Itch-

deficient mice develop severe immune deregulation [131] and a

thickening of the epidermis [132]. In skin epithelia, the p63 isoform

NDp63a supports the proliferative potential of basal cells. Moreover,

its downregulation is required during keratinocyte differentiation

[133]. Aberrant accumulation of NDp63a and Notch during kerati-

nocyte differentiation might partially explain the epidermal hyper-

proliferative phenotype of Itch-null mice. However, the precise role

of Itch in epidermal stem cells remains unknown. Furthermore,

SCFFbxw7 has been proposed to target p63 during keratinocyte differ-

entiation and DNA damage regulation [134] (Fig 3A). As in other

stem cells, SCFFbxw7 could regulate the proliferation of epidermal

stem cells.

Ubiquitylation in intestinal stem cells

In the mammalian intestine, rapidly dividing stem cells are confined

to the crypts of Lieberkuhn. They continuously self-renew and

differentiate to regenerate all tissues every 4–5 days. Alterations in

these stem cell functions might result in the expansion of the

stem-like cells, adenomas, and cancer [135]. As in skin, Wnt signal-

ing was one of the first mechanisms implicated in the control of gut

stem cells by maintaining active cell divisions [136].

Canonical activation of Wnt signaling leads to the stabilization of

b-catenin [136]. In the absence of Wnt ligand, b-catenin is seques-

tered in a multiprotein degradation complex containing the scaffold

protein Axin, the tumor suppressor adenomatous polyposis coli APC

(Fig 3B) and the kinases CKI and GSK3b. Upon sequential phos-

phorylation at serine and threonine residues, b-catenin is ubiquity-

lated by the E3 ligase SCFb-TrCP and subsequently degraded by the

proteasome [137] (Fig 3B). Mutations in APC or b-TrCP result in

b-catenin stabilization and nuclear translocation, constitutively acti-

vating its transcriptional targets, which induces adenoma formation

and colon cancer [138, 139] (Fig 3B). Although mutations in b-TrCP
have been only found in gastric and endometrial cancer, transgenic

mice overexpressing either wild-type or loss-of-function b-TrCP
develop tumors in a wide variety of organs through b-catenin activa-

tion [140, 141]. For these reasons, b-TrCP may be important during

stem cell differentiation.

However, b-TrCP is not the only mediator of Wnt signaling. In a

recent landmark study, the RING-family transmembrane E3 ligases

RNF43 and ZNRF3 were shown to modulate the Wnt pathway, regu-

lating the functions of the LGR5-positive crypt stem cells [142]

(Fig 3B). According to this study, RNF43 and ZNRF3 target frizzled

receptors for degradation. Deletion of both genes in mouse intestinal

epithelium induces rapidly growing adenomas due to an expansion

of the LGR5-positive stem cells. Inhibition of Wnt secretion

decreased the proliferation of organoids derived from those

adenomas [142]. This groundbreaking work provides an excellent
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example of signaling cascade modulation by ubiquitylation in stem

cell function.

Another E3 ligase that is expressed in the nucleus of the crypt

stem cells is SCFFbxw7. Loss of Fbxw7 alters intestinal epithelium

homeostasis and induces the development of adenomas [143]. In

the context of APC deficiency, ablation of Fbxw7 accelerates intesti-

nal tumorigenesis, promoting an accumulation of b-catenin in

adenomas that normally have a long latency. Intestinal alterations

and a susceptibility to adenoma formation suggest that lack of

Fbxw7 results in the expansion of stem cell crypts. However, further

analysis is required to validate the role of Fbxw7 in the intestinal

stem cells.

Ubiquitylation in neural stem cells

Multipotent neural stem cells (NSCs) exist both in embryonic and in

adult tissues of the nervous system. They reside in various distinct

anatomical sites and are able to maintain and specify neurogenesis

during early development, as well as throughout post-natal life.

Among various signaling pathways that regulate NSC maintenance,

differentiation and specification, the Notch pathway is of crucial

importance. Notch can inhibit neurogenesis and maintain glial

progenitor cells [144, 145]. In this stem cell system, ubiquitin-

mediated regulation plays an important role. For instance, the RING

E3 ligase Mbi1 shapes Notch regulation by ubiquitylating Notch

ligands in neighboring cells. Loss of Mbi1 results in aberrant Notch

activation, which leads to premature neurogenesis [146]. The

perturbation of Notch ligand ubiquitylation in the absence of Mbi1

results in their defective endocytosis, sustaining Notch activation

[147]. This important function places Mbi1 as an upstream regulator

of Notch signaling.

The self-renewal of NSCs must be also regulated by suppression

of neural differentiation genes. The transcription factor REST is an

important repressor of differentiation toward neurons and consti-

tutes another example of ubiquitin-mediated cell specification.

SCFb-Trcp is the E3 ligase that mediates REST proteasomal degradation

[148]. Knockdown of b-Trcp inhibits neuronal differentiation from

ESCs. Similarly, b-Trcp expression levels are upregulated during the

induction of neuronal differentiation.

Conversely, NSC differentiation must be accompanied by the loss

of factors that promote self-renewal. N-myc is an essential transcrip-

tion factor that promotes cycling and controls the transcriptional

program of NSCs. The HECT-type E3 ligase Huwe1 was shown to

target N-myc for polyubiquitylation and proteasomal degradation,

allowing proper neuronal differentiation [149]. Huwe1-knockout

ESCs fail to differentiate toward neurons in vitro and, similarly,

depletion of Huwe1 in vivo leads to improper maintenance of

stemness characteristics in the mouse brain.

Beyond the described functions in neural development, E3 ligases

are often mutated in neurodegenerative diseases. The mouse model

of the RING E3 ligase Listerin is an example of the importance of

proper ubiquitylation in human disease [150]. Mutant mice for the

lister gene present defective neuronal and motor functions. Axons

and neurons are degenerated, leading to muscle atrophy. Another

example of E3 ligases implicated in neurodegenerative disease is the

RING ligase Parkin. Mutations in the Park2 locus, which encodes

Parkin, were identified in Parkinson’s disease [151]. Parkin was

found to bind the E2-conjugating enzyme UbcH8, promoting the

ubiquitylation and degradation of the synaptic vesicle-associated

protein CDCrel-1 [152]. Several other substrates have been proposed

and loss-of-function Parkin mutations are associated with a loss of

dopamine neurons [153].

Histone ubiquitylation in stem cell function and disease

Although ubiquitylation often leads to the formation of polyubiqu-

itin chains that can ultimately lead to proteasomal degradation,

other types of ubiquitin conjugation to substrate proteins do not

mediate proteolysis. Examples of such modifications are monoubiq-

uitylation and conjugation of polyubiquitin chains linked through

lysines other than K48. These play a pivotal role in stem cell

biology, as they can regulate a plethora of different processes, such

as regulation of histone function and gene expression, as well as

receptor endocytosis and DNA repair [16].

Stem cells impose plasticity in chromatin structure and dynam-

ics, processes that facilitate the rapid establishment of different gene

expression patterns after differentiation stimuli. Nucleosomes

constitute the basic units of chromatin and are composed of 147-bp

DNA fragments surrounding octamers of histones H2A, H2B, H3,

and H4, which are present in dimers. The post-translational modifi-

cation of histone tails can result in alteration of histone physical

properties, leading to alterations in protein compaction. In addition,

they can serve as a platform for the recruitment of transcription

factors, enzymes, and other chromatin-associated proteins [154].

Histone ubiquitylation thus plays substantial roles in the regulation

of gene expression programs during stem cell self-renewal or

differentiation, mediating transitions in chromatin architecture and

organization [155].

As opposed to other modifications such as methylation, phosphory-

lation, or acetylation that are modest in size, histone monoubiquityla-

tion covalently links a larger approximately 8-kDa protein to histones,

affecting chromatin structure. In mammals, H2B-monoubiquitylation

(H2B-Ub) on Lys120 is catalyzed by the E3 ligases RNF20 and RNF40

[156], which form a complex, and the E2-conjugating enzymes hRad6A

and hRad6B [157] or UbcH6 [158, 159] (Fig 4A). Chromatin immuno-

precipitation (ChIP) studies showed that H2B-Ub is closely associated

with transcriptionally active regions in chromatin and RNA polymerase

II elongation [160–162]. Given that it constitutes a bulky modification

associated with open chromatin structure, it was postulated that it

causes steric effects to allow the opening of chromatin conformation

[163]. H2B-ub has been also shown to regulate nucleosome assembly

and disassembly [164]. This is achieved during transcription elongation

through the histone chaperone FACT, which can toggle the deposition

of H2B-ub. FACT can modulate H2A/H2B removal to facilitate elonga-

tion by RNA polymerase II, and it can restore nucleosome assembly,

promoting chromatin dynamics and configuration during transcription

[159]. The Paf1 transcriptional elongation complex is also involved in

H2B-Ub deposition, as it plays an active role in the recruitment of

RNF20 to RNA polymerase II among other functions [165].

Given that H2B-Ub modification can have marked effects in gene

expression, it plays an important role in stem cell differentiation

and adaptation of transcriptional programs. H2B-Ub is significantly

upregulated during differentiation of human mesenchymal stem

cells (hMSCs) [166] (Fig 4B). Indeed, hMSC differentiation is inhib-

ited upon the depletion of RNF40, leading to significant changes in

the transcriptional programs of osteoblast and adipocyte lineages.
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Similarly, H2B-Ub is required for the optimal differentiation of

embryonic stem cells, and depletion of RNF20 is associated with

impaired induction of differentiation-associated gene subsets [167].

However, the opposite is observed during myoblast differentiation,

where deposition of this histone mark is rapidly downregulated,

giving rise to myotube formation [168]. Another direct implication

of H2B-Ub in gene expression and its implication in cellular identity

and morphogenesis is its requirement for the transcriptional activity

of Hox genes. Importantly, H2B-Ub was the first histone mark

directly implicated in the modification of another histone in a cross-

talk mechanism. H2B-Ub is required for H3K4me3 and H3K79me3

formation by complexes containing Set1- and Dot1-histone methyl-

transferases, respectively [169]. Consistent with that, knockdown of

RNF20 leads to a decrease in not only H2B-Ub, but also H3K4 and

H3K79 methylation [156].

Besides its positive roles in RNA polymerase II elongation and

chromatin compaction, H2B-Ub has also been linked to transcrip-

tional repression. RNF20 is associated with repression of the

proto-oncogenes c-Fos and c-Myc [161]. In addition, in RNF20-

depleted cells, epidermal growth factor (EGF)-induced genes are

de-repressed, suggesting that H2B-ub can have tumor suppressor

activity. Similar to E3 ligases, DUBs specific for H2B-Ub can also

regulate transcriptional activity and chromatin functions. USP22 is

the major H2B-Ub DUB in mammalian cells (Fig 4A). It has been

shown to deubiquitylate H2B on promoters, regulating androgen

and estrogen receptor-mediated transcription [170]. Furthermore,

USP22 is implicated in the activation of c-myc targets in tumor-

initiating stem cells [171] and is correlated with tumor metastasis

and poor patient prognosis [172, 173]. In Drosophila, the H2B-Ub

DUB Scrawny (scny) is involved in germline, epithelial, and intestinal

stem cell maintenance [174]. Aberrant Notch pathway signaling

was observed in scny Drosophila mutants, suggesting that H2B-Ub

functions through the silencing of genes required for differentiation.

Another important mechanism regulating stem cell functions

involves H2A ubiquitylation on Lys119. The Ring1B component of

the polycomb repressive complex 1 (PRC1) was shown to be the

main E3 ligase for this enzymatic function in mammalian cells

(Fig 4B), as loss of Ring1b dramatically decreases H2A-ub deposi-

tion globally [175–177]. In contrast to H2B-Ub, H2A-Ub plays a

repressive role in transcription [175]. In ESCs, it has been associ-

ated with poised RNA polymerase II at bivalent genes [178]. Addi-

tionally, H2A-Ub correlates with the loss of occupancy of RNA
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polymerase II phosphorylated at Ser5 and Ser2, which mark initia-

tion and elongation [158]. During development, H2A-Ub controls

Hox gene silencing [176, 179] and X-chromosome inactivation [34,

177], among other functions. Other RING-finger proteins of the

PRC1 complex, Ring1A and Bmi1, stimulate H2A-Ub deposition

[176, 180], suggesting that Ring1A/Ring1B/Bmi1 act in concert in

order to modulate H2A functions. In support of these findings,

Bmi1 was shown to be essential for hematopoiesis, as bone

marrow HSCs lacking Bmi1 are unable to self-renew properly [69,

70] (Fig 4B). Bmi1 is also overexpressed or amplified in many

leukemias [181]. Similar to HSCs, Bmi1 is known to regulate

neural and mammary stem cell self-renewal, preventing differenti-

ation [182–184].

Besides ubiquitylation by the PRC1 complex, other E3 ligases

have been proposed to act on H2A to regulate its functions. BRCA1

is a RING-finger E3 ligase with H2A-ub activity [185] (Fig 4B),

which is stimulated by its association with BARD1, a RING-finger

protein that lacks enzymatic activity [186]. Recent work has associ-

ated BRCA1 with satellite regions of the genome [187], suggesting

that its loss disrupts constitutive heterochromatin and leads to the

deregulation of gene silencing, which suggests a tumor suppressor

role. Loss of BRCA1 is implicated in multiple breast and ovarian

cancers [188]. Additionally, BRCA1 mutations are present in

expanded luminal progenitor populations [189], consistent with

proposed perturbations in their differentiation program.

In addition to E3 ligases, H2A-specific DUBs are also implicated

in the regulation of gene expression during development. USP16

was demonstrated to mediate Xenopus embryo patterning through

Hox gene silencing [190] (Fig 4B). Furthermore, it has been impli-

cated in de-repression of transcription following DNA damage [191].

In addition to USP16, the polycomb protein BAP1 has ubiquitin

C-terminal hydrolase activity for H2A-Ub [192]. In Drosophila, loss

of BAP1 results in diminished deubiquitylation of H2A-Ub and aber-

rant Hox gene de-repression. In addition, its binding partner ASX,

also a polycomb protein, is required for H2A-Ub DUB activity. Its

mammalian counterpart, Asxl1, is often deleted or mutated in a

number of hematologic malignancies, and Asxl1-knockout stem and

progenitor cells present impaired self-renewal [193, 194] (Fig 4B).

In addition to monoubiquitylation, H2A and its variant H2AX can be

polyubiquitylated with K63-linked chains by the E3 ligases Rnf8 and

Rnf168 [195, 196]. This occurs at foci of DNA damage and might

serve as a platform in the recruitment of DNA repair-associated

proteins.

In addition to H2A and H2B, the other core nucleosome histones,

H3, and H4, as well as the linker histone H1, have been proposed to

be regulated by ubiquitylation [197, 198]. However, the relevance of

most of these modifications in stem cell function remains unclear.

Ubiquitylation of H3 at Lys23 (H3K23-Ub) by the RING-finger

protein Uhrf1 was recently shown to modulate DNA methylation

and DNA replication [199] (Fig 4C). The role of Uhrf1 was known

to involve the recruitment of Dnmt1 to sites of hemi-methylated

DNA [200, 201] to maintain DNA methylation in mammalian cells

[202]. A RING-finger mutant of Uhrf1 expressed in ESCs failed to

maintain DNA methylation at DNA replication sites, suggesting a

direct implication of H3K23-Ub in proper ESC differentiation.

Collectively, all the above mechanisms of regulation accentuate

the importance of proteolytic-independent functions of ubiquityla-

tion in stem and progenitor cell functions.

Ubiquitin regulation in cancer stem cells: potential
therapeutic targets

Cancer stem cells (CSCs) are defined as a population that have the

capacity to self-renew, differentiate, and regenerate the cells that

originated the tumor. The concept of CSCs remains controversial

and probably the role that CSCs play in tumor biology depends on

individual types of malignancy. However, emerging evidence

suggests that cancers consist of heterogeneous populations in which

cancer-initiating cells can regenerate the bulk of the tumor [203].

Therefore, the concept of CSCs will undoubtedly help us understand

tumor biology and design novel therapeutic strategies.

As explained for different stem cell systems above, ubiquitylation

controls self-renewal or differentiation through the regulation of

different substrates. Acquisition of self-renewal capacity is one of the

first tumorigenic events in most tumors. In fact, alterations of the

ubiquitin pathway are known to promote tumorigenesis in mouse

models by inducing stem cell-like phenotypes [29, 204, 205]. One of

the most studied examples is the E3 ligase SCFFbxw7. As discussed

above, Fbxw7 can target several oncoproteins, such us Notch,

c-Myc, and Cyclin E. Thus, it is not surprising that Fbxw7 acts as a

tumor suppressor. In fact, Fbxw7 is located on chromosomal region

4q32, which is frequently lost in tumors. Moreover, Fbxw7 is

mutated in several malignancies, such as cholangiocarcinoma,

T-ALL, colon, endometrium, and stomach cancers [91, 99, 206, 207].

Sidebar A: Regulation of symmetric and asymmetric stem cell
divisions by ubiquitylation

The Drosophila and C. elegans embryos constitute a powerful tool to
study the mechanisms of asymmetric cell division during early devel-
opment. Several ubiquitin-mediated pathways have been recently
implicated in these processes. The E3 ligase Neuralized (Neur) has
been shown to regulate epithelial cell polarity [211]. Neur ubiquity-
lates the Notch ligand Delta, promoting its internalization. In addition,
bearded can inhibit Neur, restricting its activity to the mesoderm and
contributing to the establishment of cell polarity. In an analogous
function, NEUR also promotes NOTCH DL internalization in the apical
zone of the polarized human kidney cell line MDCK [212]. However,
the specific roles of Neur during mammalian development in vivo and
whether this E3 ligase is important in the adult epithelial cells have
not been explored yet.
The asymmetric inheritance of cellular components in C. elegans is
controlled by the interplay between PIE-1 and MEX-5. PIE-1 represses
transcription by promoting the expression of germline-associated
genes [213]. MEX-5 on the other hand, through activation by ZIF-1
and phosphorylation by PAR-1 [214], forms an E3 ligase complex that
degrades PIE-1, establishing segregation and anterior–posterior cyto-
plasm specification [6].
In addition, the E3 ligase SCFSlimb (SCF‐bTrcp in mammals) was shown
recently to regulate asymmetric division in Drosophila neuroblasts
[215]. Slimb is able to associate with kinases Sak and Akt, promoting
their ubiquitylation and inhibiting ectopic neuroblast formation.
Supporting this notion, b-Trcp is often deleted in human gliomas with
a simultaneous activation of Akt signaling [216]. SCFSlimb was also
implicated in the degradation of Oskar in the Drosophila oocyte [217].
In the latter case, Par-1 was shown to be the priming kinase, which
allows Gsk3 to phosphorylate an Oskar degron in order to allow degra-
dation by SCFSlimb and establish polarity.
These examples demonstrate the importance of ubiquitin-regulating
mechanisms in the balance between symmetric or asymmetric stem
cell divisions that establish early tissue specification.
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Ablation of Fbxw7 in the hematopoietic compartment results in

T-ALL, whereas deletion in the intestine promotes the development of

adenomas. The upregulation of the Notch pathway in both systems

explains the acquisition of self-renewal capacity in the transformed

cells. Moreover, in the hematopoietic compartment, stabilization of

c-Myc in Fbxw7 mutant mouse models has been shown to promote

cancer-initiating cell populations [75] Interestingly, treatment of

those mice with c-Myc inhibitors leads to T-ALL remission.

Furthermore, the important roles of ubiquitylation in stem cell

and cancer stem functions illustrate the importance of its machinery

as therapeutic targets. The best example in cancer therapy is Bort-

ezomib, or Velcade, which inhibits protein degradation by the

proteasome and is approved in the United States for the treatment of

relapsed multiple myeloma and mantle cell lymphoma. However, as

Bortezomib affects all ubiquitin-tagged proteins, therefore lacking

substrate specificity, it may cause undesired effects. In contrast, inhi-

bition of one E3 ligase would lead to the accumulation of only a

small number of substrates. Efforts to identify drugable cancer-

specific targets include screening for altered requirements of ubiqui-

tylation between stem and cancer stem cells. For instance, the

comparison of primary glioblastoma cancer stem cells with neural

stem cells revealed 28 E3 ligases whose downregulation promotes

CSC differentiation or apoptosis [208]. A model enzyme for drug

targeting is MDM2, which controls p53 degradation, and it is associ-

ated with several malignancies. Cis-imidazolines and spirooxindoles

can disrupt the interaction between p53 and MDM2, and these

compounds are currently in clinical trials to explore their activity

against human tumors [209]. Additional efforts include in silico

screens to identify compounds that inhibit SKP2 [210]. Inhibiting

SCFSKP2 E3 ligase activity impairs the proliferation of a wide range of

cancer cell lines. Additionally, it diminishes the prostate cancer stem

cell properties of PC3 cells. Collectively, the above studies stress

the importance of ubiquitylation in tumor-initiating cell biology.

Manipulation of ubiquitin-regulating mechanisms can alter the onco-

genic properties of cancer stem cells, leading to effective therapies.

Sidebar B: Quantitative ubiquitin proteomics to study dynamic
changes of stem cell identity

In order to delve into the systemic details of post-translational regula-
tion of cellular plasticity, specific substrate–enzyme interactions have
been interrogated in the context of stem cell differentiation or cellular
transformation. A lot of these studies have been performed primarily
using epitope tagging and affinity-based approaches and have been
very informative about the nature and specific details of the enzymatic
functions orchestrating these processes [218]. However, advances in the
field of mass spectrometry in recent years enabled the use of proteome-
wide studies in order to understand the dynamics of signaling networks,
providing a holistic overview of cellular identity changes [219].
These powerful proteomic tools have been utilized in the past to
study phosphorylation, acetylation or other small protein modifica-
tions in a system-wide manner [220]. However, ubiquitylation poses
additional challenges in comparison, considering its bulk size and
chain branching. Nevertheless, a novel tool that has revolutionized
this field is the use of monoclonal antibodies that recognize di-glycine
moieties linked by an isopeptide bond to lysine side chains of proteins
[221]. These epitopes, which constitute the remnants of ubiquitylation
events after tryptic digestion, can be biochemically isolated and
subjected to mass spectrometry in order to identify whole-proteome
ubiquitin signatures, while providing site-specific information [222].
Importantly, this methodology can be effectively combined with SILAC
strategies, which allow for metabolic labeling of proteins in culture
using isotopic amino acid variants [223]. This powerful approach and
methodology allows the detailed study of changes in ubiquitin conju-
gation in a quantitative manner in response to different stimuli. Such
technology has been particularly useful to delineate the temporal
changes of ubiquitylation in stem cell differentiation and reprogram-
ming, allowing the correlation of relative protein abundance of self-
renewal factors with differentiation timing [44]. Additionally, it
provides valuable information with regard to dynamics in site speci-
ficity and protein turnover after differentiation stimuli. Additional
examples of this application include the identification of substrates
for Cullin-RING ligases (CRLs) [224]. Taken together, the applications
described above can expand our knowledge on missing E3 ligase-
substrate pairs and also on protein network dynamics during stem
cell maintenance or differentiation.

Sidebar C: In need of answers

(i) As only few enzyme–substrate pairs have been characterized in
stem cell functions, which additional E3 ligases and DUBs control
differentiation or self-renewal in various stem cell systems?

(ii) How can technical advances in the field of proteomics help us
understand ubiquitylation events in small stem cell populations
in vivo?

(iii) How can we develop small-molecule inhibitors for specific
components of the ubiquitin pathway? Given that enzymes often
regulate multiple substrates in different cellular contexts, how
can these strategies change the properties of specific stem cell
systems?

(iv) Stem cells often represent < 1% of the total cell population in adult

tissues. Can we identify ubiquitylation events that regulate the expan-

sion of stem cell populations?
(v) Can we identify “ubiquitin codes” in stem cells? Can different

ubiquitin linkages and branching decipher alternative outcomes
in the regulation of quiescence or differentiation?

(vi) Which enzymes differentially control tumor initiation, progres-
sion and relapse? As the field needs additional in vivo proof that
ubiquitin pathways are important for these functions, what is
the distinction between substrates in malignancies?

(vii) Which additional non-proteolytic functions of ubiquitylation
result in alterations in membrane receptor repertoire, locali-
zation of factors and chromatin landscape during stem cell
differentiation? How are these processes deregulated in cancer
stem cells?

“Ubiquitylation: mechanism and functions” Review series

Previous issues of EMBO reports include:

� Building and remodeling Cullin-RING E3 ubiquitin ligases, by Wade
Harper et al

� Ubiquitin in the immune system, by Henning Walczak et al
� RBR E3 ligases at work, by Judith Smit & Titia Sixma
� Dynamic survey of mitochondria by ubiquitin, by Mafalda Escobar-

Henriques and Thomas Langer

Other reviews in this series, which will be published in consecu-
tive issues of EMBO reports, will cover:

� Understanding ubiquitylation one structure at a time, by Ronald
Hay et al
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Conclusions and future directions

Since its identification, the UPS has emerged as an important regula-

tor of different processes through the control of protein stability.

Additionally, the identification of proteolytic-independent functions

has linked the ubiquitin system to the regulation of signaling

networks and epigenetic mechanisms. Together, the proteasome-

dependent and independent functions of the ubiquitin system play

an important role in stem cell quiescence, self-renewal, and differen-

tiation. Only a few of the numerous E3 ligases and DUBs encoded in

the human genome are well characterized. In addition, little is

known about how others regulate stem cell fates. Therefore, the

identification of the role and targets of additional enzymes could

help us understand additional characteristics of stem cell biology.

Moreover, identifying the mechanisms of deregulation of specific

enzymes that impinge on tumor initiation and progression could

lead to effective therapies against additional types of cancer. As this

fast-moving field stands at the crossroads of proteomics, stem cell

biology, and therapeutics, there are increasing expectations for

effective manipulation of cellular systems and the discovery of new

concepts in protein modification in cell plasticity.
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