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Abstract

Ubiquitin is a post-translational modifier with proteolytic and
non-proteolytic roles in many biological processes. At mitochon-
dria, it performs regulatory homeostatic functions and contributes
to mitochondrial quality control. Ubiquitin is essential for mito-
chondrial fusion, regulates mitochondria-ER contacts, and partici-
pates in maternal mtDNA inheritance. Under stress, mitochondrial
dysfunction induces ubiquitin-dependent responses that involve
mitochondrial proteome remodeling and culminate in organelle
removal by mitophagy. In addition, many ubiquitin-dependent
mechanisms have been shown to regulate innate immune
responses and xenophagy. Here, we review the emerging roles of
ubiquitin at mitochondria.
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Introduction

The 76-amino acid protein ubiquitin is the founding member of the

ubiquitin-like (UBL) protein family that is known for its regulatory

functions in a large variety of different cellular pathways in the

cytoplasm and nucleus [1,2]. Ubiquitin can be covalently attached

to target proteins as a single moiety, but can also form chains

through internal lysine residues [3]. As several lysines in ubiquitin

can be used, many different chain types are possible, which have

distinct cellular functions [4]. Ubiquitin chains linked by its lysine

48 (K48) are best known as a signal for degradation by the ubiquitin

proteasome system (UPS), whereas regulatory functions have been

attributed to other types of chains [5]. Deubiquitylases (DUBs),

which remove ubiquitin chains, render ubiquitylation reversible and

offer possibilities for regulation [6]. Ubiquitylation begins with the

activation of the modifier by E1 enzymes, followed by its transfer to

E2-conjugating enzymes, and its ligation to the target substrate by

E3 ubiquitin ligases [3]. Three major types of E3 ligases have been

described, the HECT, the RING, and the RING-between-RING (RBR)

ligases [4,7]. HECT ligases covalently accept ubiquitin before

transferring it to the substrate, whereas RING ligases promote sub-

strate ubiquitylation by bringing together the E2 and the substrate

and RBR ligases have a RING/HECT hybrid mechanism of action.

More recent studies have demonstrated that ubiquitin orches-

trates mitochondrial functions [8,9]. Mitochondria are unique organ-

elles, bound by two membranes, and harboring their own DNA

(mtDNA), which encodes essential respiratory chain subunits and

therefore enables energy production. Several subcompartments can

be distinguished within mitochondria, the outer membrane (OM),

intermembrane space (IMS), inner membrane (IM), and matrix. The

electron flow through the mitochondrial electron transport chain in

the IM builds up an electric potential difference between the matrix

and the IMS sides. This difference in proton concentration is then

converted into ATP production by the ATP synthase. Besides being

the ATP powerhouse, mitochondria are essential for a number of

other metabolic pathways, including the synthesis of iron-sulfur

clusters and phospholipids. Moreover, mitochondria participate in

many cellular processes, such as apoptosis, calcium buffering, aging,

cellular differentiation, and antiviral immune responses [10–12].

Here, we review our current knowledge on how ubiquitylation

influences mitochondrial activities. On the one hand, ubiquitylation

maintains mitochondrial homeostasis and regulates interorganelle

communications and developmental programs. On the other hand,

ubiquitylation is essential for pathogen defense and, under stress,

for mitochondrial quality control (QC) and mitophagy.

Ubiquitin is a master regulator of mitochondrial dynamics

Mitochondria are highly dynamic organelles, the morphology of which

is dictated by balanced fusion and fission events [10–14] (Fig 1A). The

predominance of one over the other leads to a range of morphologies,

from an interconnected mitochondrial network to the presence of a

multitude of small, dispersed mitochondria. Mitochondrial fission is

driven by Drp1 (Dnm1 in yeast), whereas fusion requires mitofusins—

Mfn1 and Mfn2 in mammals and Fzo1 in yeast—in the OM and OPA1

(Mgm1 in yeast) in the IM. All three belong to a special class of

GTPases, the dynamin-related proteins (DRPs), which provide the

mechanical forces necessary for membrane remodeling [15,16]. Drp1/

Dnm1 is a cytosolic protein that is recruited to mitochondria when

fission is initiated and forms spirals around mitochondrial tubules
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(Fig 1B). Interestingly, endoplasmic reticulum (ER) tubules were found

to wrap around mitochondria, marking the sites for mitochondrial divi-

sion by Drp1/Dnm1 [17]. Mitofusins are exposed to the cytoplasm but

anchored to the OM by two transmembrane domains [18] (Fig 1B). In

contrast, Opa1/Mgm1 is present in the IM and IMS and therefore does

not contact the cytoplasm [18].

A number of regulatory mechanisms that fine-tune opposing fusion

and fission events have been described. Phosphorylation and ubiquity-

lation of mitofusins modulate the fusion of mitochondrial membranes

[13]. In turn, mitochondrial fission is regulated by various post-

translational modifications of Drp1, including phosphorylation,

S-nitrosylation, SUMOylation, glycosylation, and ubiquitylation [14].

Recent groundbreaking discoveries identified proteins and protein

complexes that link mitochondria to the cytoskeleton and to both the

cell cortex and the ER, also contributing to the proper segregation of

mtDNA [19–23] (Fig 1B). Interestingly, increasing evidence suggests

that ubiquitylation by the same E3 ubiquitin ligases regulates fusion,

fission, motility, and ER contacts of mitochondria. This interdependent

regulation of dynamic morphological changes allows an efficient

response to different physiological challenges.

Mitochondrial fusion
Mitofusins show a distinct ubiquitylation pattern that is conserved

throughout evolution from yeast to mammals [24–26]. Mutations in

Mfn2 cause the Charcot–Marie–Tooth type 2A peripheral neuro-

pathy, and ubiquitylation and degradation of mitofusin was sug-

gested to be implicated in the disease [27]. Once it was recognized

that mitofusins are ubiquitylated and degraded [24–26,28–34],

several E3 ligases and DUBs acting on yeast, fly, and mammalian

mitofusins were identified [13]. The analysis of these players

revealed that ubiquitin is a double-faced regulator of mitochondrial

fusion (Fig 1C). On the one hand, ubiquitylation triggers the con-

served, proteasome-dependent degradation of mitofusins [24–26,28–37]

(Fig 1C, lower panel), leading to the inhibition of mitochondrial

fusion, which fragment due to ongoing fission events. On the other

hand, the ubiquitylation of mitofusins plays a positive, critical role

for mitochondrial fusion [38–41] (Fig 1C, upper panel) as it can also

activate them [40–44] (Sidebar A).

The most detailed mechanistic insight into how ubiquitylation of

mitofusins promotes fusion is currently available for yeast. Fzo1 is

ubiquitylated by the E3 ligase SCFMdm30 and deubiquitylated by

Ubp12, which are soluble proteins that also associate with mito-

chondria [24,40,45,46] (Fig 1C, upper panel). The positive role of

Fzo1 ubiquitylation in fusing mitochondria appears to be linked to

Fzo1 oligomerization [40] (Fig 1C, upper panel). In analogy to other

DRP-mediated membrane remodeling events [15,16], mitochondrial

fusion requires the self-assembly of yeast and mammalian

mitofusins [38,39,47]. In addition, OM fusion depends on the inter-

Glossary

AIP4 atrophin-1-interacting protein 4
APC/C Anaphase-promoting complex/cyclosome
ATP adenosine triphosphate
BAG4 BCL2-associated athanogene 4
CARD caspase activation and recruitment domains
Cdc48 cell division cycle 48
Cdh1 cadherin 1
CMTA Charcot–Marie–Tooth type 2A
CUL4 cullin 4
Dnm1 yeast dynamin-related protein 1
DRP dynamin-related proteins
Drp1 mammalian dynamin-related protein 1
DUB deubiquitylating enzyme
ER endoplasmic reticulum
ERAD endoplasmic reticulum-associated degradation
ERMES ER-mitochondria encounter structure
Fis1 mitochondrial fission 1
Fzo1 yeast mitofusin, fuzzy onions homolog 1
Gp78 glycoprotein 78
GTPase guanosine triphosphate hydrolase
HBX hepatitis B virus protein X
HECT homologous to the E6-AP carboxyl terminus
HIV-1 human immunodeficiency virus 1
HR1 heptad repeat 1
HSP70 heat shock 70-kDa protein
HSPA1L heat shock 70-kDa protein 1-like
Huwe1 HECT, UBA, and WWE domain containing 1
IRF3 interferon regulatory transcription factor 3
JNK Jun N-terminal kinase
LUBAC linear ubiquitin chain assembly complex
MAPL mitochondrial-anchored protein ligase
March5 membrane-associated ring finger (C3HC4) 5
MAVS mitochondrial antiviral signaling protein
Mcl1 myeloid cell leukemia sequence 1
Mdm mitochondrial distribution and morphology (10,12,30,34)

Mfb1 mitochondria-associated F-box protein 1
Mfn mammalian mitofusin
Mgm1 mitochondrial genome maintenance 1
MIA mitochondrial intermembrane space import and

assembly
Miro1,2 mitochondrial Rho GTPase 1,2
MITOL mitochondrial ubiquitin ligase
Mmm1 maintenance of mitochondrial morphology
mtDNA mitochondrial DNA
NEMO NF-jB essential modulator
Opa1 optic atrophy 1
PARIS Parkin interacting substrate
Park2 autosomal recessive juvenile Parkinson disease-2
PARL presenilin-associated rhomboid-like
PCBP2 poly(rC) binding protein 2
PGC1-a peroxisome proliferator-activated receptor

γ coactivator 1-a
Pink1 PTEN-induced putative kinase 1
RHOT1,2 ras homolog family member T1,2
RIG-1 retinoic acid-inducible gene 1
RING really interesting new gene
RNF5 RING finger protein 5
SCF Skp1/Cullin/F-box protein
siRNA small-interfering RNA
SMURF1 SMAD-specific E3 ubiquitin protein ligase 1
SUMO small ubiquitin-related modifier
TOM translocase of the outer mitochondrial membrane
TRAF TNF receptor-associated factor
UBL ubiquitin-like
Ubp ubiquitin-specific protease
UBX ubiquitin regulatory X domain
USP30 ubiquitin-specific protease 30
VCP valosin-containing peptide
Vms1 VCP/Cdc48-associated mitochondrial stress-responsive
Vpr viral protein R
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AFigure 1. Mitochondrial dynamics and
interconnectivity in the cell.
(A) Balanced fusion and fission events establish a
large variety of mitochondrial network topologies in
different cells and tissues and in response to various
stimuli. (B) Mitochondria are physically tethered: to
each other via mitofusins during fusion, to the
mitochondrial transport machinery via Miro
proteins, and to the ER via various protein
complexes to allow the exchange of metabolites
and signaling molecules and to mark sites for
mitochondrial fission by Drp1. (C) Ubiquitylation of
mitofusins has a dual function in yeast and
mammals. Constitutive ubiquitylation, depending
on the E3 ligase SCFMdm30 and the DUB Ubp12 in
yeast and USP30 in mammals, promotes
mitochondrial fusion. In contrast, ubiquitylation of
mitofusins inhibits mitochondrial fusion upon
growth arrest in yeast or in response to
mitochondrial depolarization in mammals. The E3
ubiquitin ligase Parkin and other ligases
ubiquitylate Mfn1 and Mfn2, marking them for
proteasomal turnover. The DUB Ubp2 was
identified in yeast to reverse Fzo1 ubiquitylation
resulting in its stabilization. Ub, ubiquitin. Mfns,
mitofusins. See Glossary for the other definitions
and text for details.

molecular cross-talk between Fzo1 mono-

mers: The conserved lysine 464 is initially

ubiquitylated and K48-linked ubiquitin

chains are subsequently formed on lysine

398 of a different Fzo1 monomer [40,43]

(Fig 1C, upper panel). In mammals, ubiquity-

lated forms of Mfn1 and Mfn2 that promote

mitochondrial fusion have been recently

shown to be deubiquitylated by USP30 [41].

USP30 was known to localize to mitochon-

drial OM and regulate mitochondrial elonga-

tion [48]. Now, inhibition of USP30 was

shown to efficiently revert the mitochondrial

fusion defects of the single Mfn1- and Mfn2-

knockout cell lines [41]. This strongly sug-

gests that in mammals, both mitofusins are

ubiquitylated in order to allow for fusion, in

line with the absolute requirement of Fzo1

ubiquitylation for mitochondrial fusion in

yeast [40]. Importantly, oxidized glutathione

promotes disulfide-bond-mediated oligomeri-

zation of mammalian Mfn1 and Mfn2 and

thereby directly activates mitochondrial

fusion [49]. This suggests that cysteine- and

lysine-mediated covalent modifications of

mitofusin together orchestrate mitochondrial

fusion (Sidebar A).

The pathway that triggers mitochondrial

fragmentation by ubiquitylating and mark-

ing mitofusin for degradation by the protea-

some has been longer known (Fig 1C,

lower panel). In yeast, proliferation arrest

by cell cycle blockage at the G1 phase
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induces Fzo1 proteolytic breakdown and organelle fragmentation,

independently of the SCFMdm30 [28,29]. In mammals, ubiquityla-

tion and turnover of Mfn1 and/or Mfn2 occurs under various

stress conditions—such as apoptosis, depolarization of mamma-

lian mitochondria, and muscle atrophy—but also during progres-

sion through the cell cycle [32,34,36,50]. Parkin and Gp78—an ER

membrane-anchored ubiquitin E3 ligase involved in the ERAD

pathway—ubiquitylates both Mfn1 and Mfn2 after mitochondrial

depolarization or upon apoptosis induction [26,31,32,51] (Fig 1C,

lower panel). Parkin is encoded by Park2, whose loss-of-function

mutations are associated with early onset of Parkinson’s disease

(PD), the most common neurodegenerative movement disorder

[52]. Therefore, Parkin—a cytosolic RBR E3 ubiquitin ligase [53–

55]—has been subject to extensive research. Notably, once ubiqui-

tylated by Parkin, mammalian and fly mitofusins were shown to

be recognized and extracted from the membrane by the p97/VCP/

Cdc48 AAA-ATPase, and subsequently degraded by the protea-

some [32,48,56]. Cdc48 and its co-factor Vms1 play a role in the

QC of OM proteins in worms and yeast, which lack Parkin [57].

Upon oxidative stress, Vms1 translocates to mitochondria and

appears to contribute to the degradation of mitochondrial OM

proteins [57]. However, the involvement of Vms1 in the turnover

of Fzo1 is controversial [57,58] (Sidebar A).

Specific ubiquitylation and turnover of one of the two mamma-

lian mitofusins has also been described [34,36,50] (Sidebar A).

Genotoxic and other stresses were shown to induce an apoptotic

response that requires JNK-dependent phosphorylation and subse-

quent ubiquitylation of Mfn2 by Huwe1—a HECT family ubiquitin

ligase also termed Mule/ARF-BP1/HectH9/E3Histone/Lasu1. This

was the first demonstration of the relevance of mitofusin phosphory-

lation [34]. MAPL/Mul1 also leads to the specific ubiquitylation of

Mfn2 in response to muscle-wasting stimuli, targeting it to the

proteasome [50]. MAPL is a SUMO E3 ligase integral to the OM, with

two TM domains and a carboxyl terminal RING domain facing the

cytosol [59,60]. MAPL sumoylates Drp1 and regulates mitochondrial

fission [60]. Although suggested to exert ubiquitin ligase activities

as well [50,59,61], in vitro studies demonstrated a clear preference

of MAPL for SUMO instead of ubiquitin [60]. Equally unknown is

why the E3 ligase March5/MITOL specifically ubiquitylates Mfn1

but not Mfn2, in this case during the G2/M phase of the cell cycle

[36,62]. March5, a RING-type E3 ubiquitin ligase, harbors four trans-

membrane domains embedded in the OM and an amino terminal

RING domain facing the cytosol [63,64]. March5-mediated ubiquity-

lation and degradation of Mfn1 leads to mitochondrial fragmenta-

tion, perhaps to facilitate equal partitioning of cellular material to

the two daughter cells, overcoming the hyperfused giant network

formed during G1/S phase [36]. The control of mitochondrial

morphology by the degradation of mitofusins could thus play an

important role in the regulation of cell proliferation and

differentiation [65].

Mitochondrial fission

Drp1/Dnm1 is a major hub for the regulation of mitochondrial

fission. Several physiological and pathological stimuli lead to

post-translational modifications of Drp1, which allow the coupling

of mitochondrial division to mitosis and orchestrate the response to

hypoxia, apoptosis, and mitophagy [14,66]. The best-studied Drp1

modifications are SUMOylation and multiple phosphorylation events

mediated by several kinases [14], but Drp1 ubiquitylation has also

been observed. Interestingly, the hyperfused giant mitochondrial

network formed during G1/S phase discussed above also seems to

involve Drp1 ubiquitylation by the APC/CCdh1 E3 ubiquitin ligase

complex, a central regulator of the M to G1 phase transition [67]. In

addition to APC/CCdh1, the ubiquitin E3 ligases Parkin and March5/

MITOL have been shown to modify Drp1 and one of its membrane

anchors, Fis1.

Parkin induces the proteasomal degradation of Fis1 and Drp1

[68,69], which can be co-immunoprecipitated with ubiquitin [68],

suggesting that Parkin ubiquitylates Drp1 and Fis1. These observa-

tions, combined with the inverse correlation between Parkin

expression levels and Drp1-dependent mitochondrial fragmentation

[70], indicated that ubiquitin and Parkin are inhibitory for mito-

chondrial fission. Interestingly, a similar role was attributed to

March5/MITOL, which interacts with Drp1 and human Fis1, lead-

ing to their ubiquitylation and proteasomal-dependent turnover

[63,64]. These observations, combined with an elongation of mito-

chondrial tubules upon March5 overexpression and a fragmenta-

tion of mitochondria upon March5 inactivation, led to the initial

proposal that March5 is an inhibitor of fission [63,64]. However,

the model that March5 ubiquitylates Drp1 to induce its proteolytic

turnover, thus elongating mitochondria due to unopposed fusion

events, is controversial. In fact, the opposite mitochondrial pheno-

types were observed in a latter study, including the formation of

long and interconnected mitochondria upon March5 inactivation

[71]. In this study, mutations in the RING domain of March5

decreased the cellular mobility of Drp1, suggesting that March5

promotes the ubiquitin-dependent recruitment of Drp1 to mito-

chondria [71]. Consistently, the expression of a March5 variant

with a mutant RING domain restored tubular mitochondria in

Mfn1�/� and Mfn2�/� cells, as expected from the simultaneous

inhibition of mitochondrial fusion and fission [71]. In conclusion,

although mitochondrial fission is clearly regulated by ubiquityla-

tion of Drp1 and Fis1, further studies are required to dissect the

roles and mechanisms involved.

Mitochondrial transport
Mitochondrial dynamics are particularly important in highly polar-

ized cells, such as neurons, which depend on the long-range trans-

port of mitochondria to ensure energy supply [72–74]. Mitochondria

must be transported from the cell body to neurites, properly sus-

tained, and removed if damaged. In fact, more than one quarter of

the total mitochondria are actively moving, leading to constant

changes in mitochondrial density in different synapses [72–74].

Mitochondrial transport occurs along microtubule tracks that are

linked to mitochondria by the Miro, Milton, and kinesin heavy chain

motor complex [72–74]. Miro1/RHOT1 and Miro2/RHOT2 are inte-

gral Rho-like GTPase proteins in the OM, each containing two

GTPase motifs and a pair of EF hands involved in calcium binding

[75,76]. Milton is an adaptor protein that binds to both Miro and the

kinesin heavy chain motor complex, and thereby loads mitochon-

dria onto microtubules for anterograde axonal transport [75,77].

Mitochondrial motility is regulated by the stability of the adaptor

protein Miro. Mitochondrial depolarization results in the ubiquityla-

tion of Miro by Parkin, which triggers its proteolytic breakdown

[78–80]. Loss of Miro releases the mitochondria–motor complex

bridge, arresting mitochondrial movement. Mfn2 was found to inter-
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act with both Miro and Milton proteins [81], possibly explaining the

correlation of mitochondrial movement with fusion frequency [82].

Consistently, Mfn2 knockdown in neuronal culture cells impairs

mitochondrial mobility. Similarly, mutations in Mfn2 associated

with CMT2A impair the axonal transport of mitochondria [83]

(Sidebar A).

Mitochondria-ER interactions
The existence of a special domain of the ER that is in contact with

mitochondria—termed mitochondria-associated membranes (MAM)

—is long known [84]. MAMs are enriched in enzymes of the lipid

metabolism, as well as in proteins involved in calcium buffering,

but also Mfn2 and Drp1 were found at the mitochondrial-ER contact

sites [85]. MAMs physically associate with mitochondria via protein

tethers, such as the yeast ER-mitochondria encounter structure

(ERMES), which is composed of the ER protein Mmm1 and the

mitochondrial OM proteins Mdm34, Mdm10 and Mdm12 [19].

Mdm34 is ubiquitylated by the SCFMdm30 [86]. Both MDM30 and

MDM34 were originally found in a screen for genes implicated in

mitochondrial morphology defects [45,87]. However, how ubiquity-

lation affects the function of Mdm34 is not yet known. Interestingly,

in addition to SCFMdm30, mitochondrial morphology is also regulated

by the E3 ubiquitin ligase SCFMfb1 by an unknown mechanism

[46,88].

In addition to the ERMES complex, a number of other proteins

have been proposed to tether ER to mitochondria in mammalian

cells, including Mfn2 [89–92]. Moreover, March5/MITOL was

shown to interact with the mitofusins Mfn1 and Mfn2 [62,64]. A

potential link between these findings stems from the observation

that Mfn2 ubiquitylation by March5/MITOL contributes to interde-

pendent functions of MAM and mitochondria [93]. March5/MITOL

specifically catalyzes the formation of K63-linked ubiquitin chains

on Mfn2 K129, which is not conserved in Mfn1 [93]. Notably, the

ubiquitylation-deficient mutant Mfn2K129R still interacts with

March5/MITOL [93], suggesting that there might be other roles for

March5/MITOL in Mfn2 regulation. Mfn2 ubiquitylation by March5/

MITOL does not affect its turnover, but rather affects ER-mitochon-

drial contacts and calcium exchange. Interestingly, the most

frequent mutation in Mfn2 found in CMT2A patients, R94Q, is

incompetent in promoting ER-mitochondria interaction [92]. These

results suggest that March5/MITOL could be involved in CMT2A

pathogenesis. The relevance of Mfn2 for ER-mitochondrial interac-

tions is highlighted by the finding that the HIV-1 Vpr protein

participates in the ubiquitylation and turnover of Mfn2 by the CUL4

E3 ligase, consequently leading to reduced ER-mitochondrial

contacts [94]. These studies demonstrate that ubiquitin regulates

mitochondria-ER contacts in different ways and that the E3 ubiqu-

itin ligases that participate in cell cycle progression also modulate

organelle contacts (Sidebar A).

Ubiquitin and mitochondrial quality control

Ubiquitin contributes to mitochondrial QC in various ways. The UPS

mediates the proteolytic breakdown of nuclear-encoded pre-proteins

before their import into mitochondria [95,96], whereas mitochon-

drial proteases degrade damaged proteins present within the

organelle [97] (Fig 2A). Severe damage or depolarization of mito-

chondria triggers the recruitment of Parkin to the mitochondrial

surface [98], where it ubiquitylates OM proteins initiating their

proteasomal degradation [99–101] and culminating in mitophagy,

the selective autophagic removal of the whole organelle [102–104]

(Fig 2B). Finally, ubiquitin participates in apoptosis via the regula-

tion of the integral OM protein Mcl1, as reviewed recently [105].
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S S

S S

S S

S S
MIA

Miro

Parkin

S

S
S

S

Ub

Proteasome

Mitophagy

B Mammals

VDACMfn
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Figure 2. Role of ubiquitin in the quality control of mitochondrial proteins.
(A) Regulation of mitochondrial proteostasis by the UPS in yeast. Nuclear-encoded mitochondrial precursor proteins, such as substrates of the MIA pathway, are ubiquitylated
and degraded by the UPS in the cytosol, limiting their accumulation in mitochondria. (B) Ubiquitin-dependent mitophagy of dysfunctional mitochondria in mammals. The
recruitment of the E3 ubiquitin ligase Parkin to the OM of depolarized organelles leads to the ubiquitylation and proteasomal degradation of OM proteins, such as Miro,
Mfns, and VDAC, inhibiting various processes, including mitochondrial transport or fusion. It also triggers mitophagy through the recruitment of adaptor factors for the
autophagy machinery, such as p62. Ub, ubiquitin. Mfns, mitofusins. See Glossary for the other definitions and text for details.
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Mitochondrial biogenesis
The vast majority of mitochondrial proteins are encoded by the

nucleus and synthesized in the cytosol prior to their import into

mitochondria. Dedicated machineries are present in each mitochon-

drial subcompartment that recognize, import, and sort newly

imported proteins to their final destination within the organelle

[106]. Several cytosolic kinases phosphorylate the protein import

machinery in the OM, demonstrating that post-translational

modifications regulate mitochondrial biogenesis, at least in yeast

[107]. Ubiquitylation and proteasomal degradation, on the other

hand, appear to control the influx of precursor proteins from the

cytosol to mitochondria, as has been recently demonstrated for IMS

proteins in yeast [96]. IMS proteins are imported by the MIA path-

way through a folding-trap mechanism. The UPS regulates the mito-

chondrial proteome by constitutively ubiquitylating and degrading

MIA substrates, suggesting that it can act as a negative regulator of

mitochondrial biogenesis (Fig 2A). This is also consistent with the

ubiquitylation of many nuclear-encoded mitochondrial proteins

observed in proteome-wide studies [108–111] (Sidebar A).

Removal of damaged mitochondria through mitophagy

Pioneering work from the Youle laboratory has established a central

role for the Ser/Thr kinase Pink1 and Parkin in the selective

removal of damaged mitochondria [98]. Pink1 is an unstable mito-

chondrial IM protein that is rapidly degraded by the rhomboid prote-

ase PARL after import and maturation in healthy mitochondria

[112]. A C-terminal proteolytic fragment is released from the IMS to

the cytoplasm and degraded by the UPS through the N-end rule

pathway [113]. Loss of membrane potential prevents the import of

Pink1 into mitochondria and results in its accumulation at the OM

and Parkin recruitment [98]. Pink1 activates Parkin, promoting the

formation of a Parkin-ubiquitin thioester intermediate [114], per-

haps by directly phosphorylating Parkin [115]. Parkin then ubiquity-

lates OM proteins, triggering their degradation by the UPS and

thereby reshaping the protein composition of the mitochondria [99–

101] (Fig 2B). Notably, if stabilized by proteasomal inhibitors,

mature Pink1 can directly regulate cytosolic Parkin by binding to its

RING1 domain, inhibiting Parkin activity [116,117]. This suggests a

new regulatory layer of the Pink1–Parkin complex that awaits the

elucidation of whether at least some processed Pink1 is spared from

degradation in healthy cells.

A recent genome-wide siRNA screen for factors affecting Parkin

recruitment to mitochondria revealed an essential role of TOMM7, a

subunit of the TOM complex, the protein translocase in the OM

[118]. Binding of Pink1 to the TOM complex stabilizes it at the OM

and promotes the recruitment of Parkin to mitochondria [118,119].

Other factors involved in Parkin recruitment are HSPA1L, a widely

distributed but low abundant member of the HSP70 family, and

BAG4, a putative nucleotide-exchange factor of HSPA1L [118]. Both

proteins interact physically with Parkin but have opposing roles in

Parkin translocation to the OM [118].

Parkin accumulation at the surface of depolarized mitochondria

allows the ubiquitylation of a variety of OM proteins with K48- and

K63-linked chains, triggering their proteasomal degradation [99,100]

(Fig 2B). A systematic approach—using antibody capture of the

diglypeptide combined with SILAC to monitor depolarization-

dependent changes in abundance of the targets—recently expanded

the knowledge of how Parkin acts on its substrates [101]. Parkin

specificity was shown to be driven primarily by substrate recruitment

or proximity, rather than by binding to specific target sequences

[101]. In addition, Parkin dramatically altered the ubiquitylation

status of the cytosolic domains of OM proteins, dependent on its

active site residue C431, which is mutated in some PD patients.

The currently favored view is that general ubiquitylation at the

mitochondrial surface of the damaged organelles recruits ubiquitin-

binding adaptors, such as p62, which interact with the autophagic

machinery [98,99,120,121] (Fig 2B). However, a subset of OM

proteins—such as VDAC—have also been suggested to have a

specific role in mitophagy [99,122]. An analysis of Parkin-mediated

autophagy substrates in flies highlights how specific autophagy can

be for individual proteins/complexes [123]. Selective mitophagy was

also observed in yeast, which lack Parkin [124], but a role for ubiqu-

itin has not yet been shown. Moreover, different pathways for selec-

tive mitophagy exist in mammalian cells [102], and two mitophagy-

inducing conditions—oxygen or iron depletion—have been recently

described. Hypoxia-induced mitophagy is regulated by FUNDC1 and

phosphorylation and occurs in a Parkin- and seemingly ubiquitin-

independent manner [125]. In turn, the Parkin-independent iron

depletion-induced mitophagy pathway involves a metabolic switch

from oxidative phosphorylation to glycolysis without depolarization

of the engulfed mitochondria [117,126] (Sidebar A).

Mitochondrial dynamics and mitophagy

The processes of fusion, fission, and movement of mitochondria are

intimately linked to mitophagy. Starvation and mild oxidative stress

induce hyperfusion of mitochondria and spare them from mitophagy

[35,49,127,128] (Fig 1A). In contrast, mitochondrial depolarization

triggers mitochondrial fragmentation and mitophagy of the damaged

organelles (Fig 1A). It is noteworthy that fission events, indepen-

dently of stress insults, generate a mitochondrial population with

uneven membrane potential, which affects the probability for subse-

quent fusion events [129,130]. The impaired fusion of depolarized

mitochondria allows their segregation from the mitochondrial

network as fragments and therefore facilitates their removal by

mitophagy. Similarly, damage leads to an arrest of mitochondrial

movement in highly differentiated cells, such as neurons (see

above) [30–32,79] (Fig 2B). Interestingly, Parkin overexpression led

to an increase in life span in flies and this could reflect the beneficial

effects of an increased rate of mitophagy [37]. Consistently, it led to

a decrease in Mfn2 levels that contributed to clearance of damaged

mitochondria and increased mitochondrial activity [37].

Gp78 also activates mitophagy upon mitochondrial depolariza-

tion [51]. Although recognizing both Mfn1 and Mfn2 as substrates,

Gp78-induced mitophagy depends only on ubiquitylation of Mfn1

[51]. In addition to Parkin and Gp78, the E3 ligase MAPL/Mul1 was

recently shown to participate in mitophagy [50]. MAPL-dependent

UPS turnover of Mfn2 was shown to facilitate mitophagy during

skeletal muscle wasting, a process that is essential for recycling

amino acids from proteins of the skeletal muscle [50,131].

Recent evidence suggests that Mfn2 is involved in the QC surveil-

lance of cardiac mitochondria [132]. In the heart, damaged-induced

phosphorylation of Mfn2 at Thr111 and Ser442 was found to recruit

Parkin to mitochondria. Consistently, mitochondrial dysfunction

over time contributes to age-related heart failure, and heart-specific

Mfn2�/� mice developed cardiomyopathies. However, earlier stud-

ies had demonstrated that Parkin can still induce mitophagy in
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Mfn1�/� Mfn2�/� mouse embryonic fibroblasts [98]. Although it is

well established that activation of Parkin triggers mitophagy,

whether the turnover of specific proteins such as Mfn2 is necessary

remains to be clarified (Sidebar A).

Parkin and Parkinson’s disease

PD is an important neurodegenerative disease that affects 1% of the

population over 55 years old [133]. Genetic mutations are responsi-

ble for about 10% of all PD cases [134]. Mutations in Park2 cause

autosomal recessive forms of PD and account for about 50% of the

familial cases and 20% of the early-onset cases of PD [52]. Therefore,

impaired mitophagy was suggested to contribute to neurodegenera-

tion [135]. However, it should be noted that the majority of the find-

ings indicating a role of Parkin in mitophagy were obtained in tumor

cells upon depolarization of mitochondria and overexpression of

Parkin. Parkin translocation to mitochondria was not observed in

primary neurons or in mouse models accumulating mitochondria

marked with ubiquitin, suggesting that alternative pathways do exist

[103,136]. Moreover, even in cases where Parkin recruitment to

mitochondria was observed, it did not induce mitophagy [137]. Nei-

ther the analysis of PD mice models nor of park2 KO mice provided

supportive evidence for Parkin-mediated mitophagy in vivo [138–

140]. However, a progressive degeneration of dopaminergic neurons

was observed after ablating park2 in adult mice [141], suggesting

that the lack of PD phenotypes in PD mouse models might be

explained by developmental compensation [141]. Similarly, the

differences in Parkin recruitment and mitophagy induction observed

between immortalized cells and neuronal cultures could arise from

variations in protocols [142]. For example, Parkin was robustly

recruited to neuronal cells cultured in the absence of antioxidants,

which may counteract the action of chemical uncouplers; whether

this can cause mitophagy requires further investigation [143].

Many Parkin substrates have already been identified, affecting a

wide range of signaling and stress metabolic pathways, which is

consistent with the broad neuroprotective capacity of Parkin. For

instance, Parkin ubiquitylates and triggers proteolytic breakdown of

PARIS, thus releasing the repression of the transcription factor

PGC1-a that induces mitochondrial biogenesis [141]. Cellular stress

recruits Parkin to the LUBAC complex [144], leading to the forma-

tion of linear ubiquitin chains on NEMO. Consequently, OPA1 tran-

scription is upregulated, inhibiting apoptosis [144]. Thus, the

relative contribution of various pathways modulated by Parkin to

the pathogenesis of PD remains to be clarified (Sidebar A).

Maternal inheritance of mtDNA
In contrast to the nuclear DNA, mtDNA is maternally inherited

[145,146]. Several species-dependent mechanisms ensuring selec-

tive removal of sperm-derived mtDNA have been described. Sperm-

derived mammalian mitochondria are marked with ubiquitin during

spermatogenesis, and this was proposed to constitute the specific

sorting signal for proteasomal-dependent elimination of male-

derived mammalian mitochondria [147]. However, the lysosome

has also been suggested to play a role [148]. Indeed, paternal mito-

chondria are actively disposed of by mitophagy after fertilization at

early stages of C. elegans embryogenesis [149,150]. Nevertheless,

the relevance of these findings for mammals was recently chal-

lenged, because elimination of sperm mitochondria in mice was

found not to be dependent on autophagy [151]. Although ubiquity-
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Figure 3. Ubiquitin modulates the antiviral response.
K63-linked ubiquitin chains, viral RNA, and the helicase RIG-1 participate in the assembly of a signal platform on mitochondria that contains MAVS. This allows several E3
ubiquitin ligases to activate LUBAC and TRAF transcription factors, which induce innate immunity genes. Moreover, ubiquitin is required for disassembly of the MAVS
complex, terminating signal transduction. On the other hand, ubiquitin and Mfn2 impair MAVS assembly before signaling initiation. Ub, ubiquitin. See Glossary for the other
definitions and text for details.
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lation of the sperm tail was observed, murine sperm mitochondria

were not degraded post-fertilization. Rather, the most motile sperm

that reached the oviduct were already depleted of mtDNA. There-

fore, although a role of ubiquitin has been established, further

studies are required to understand whether mitophagy is generally

required to ensure maternal inheritance of mtDNA.

Mitochondria, ubiquitin, and antiviral defense

The innate immune system responds to pathogens such as bacteria

and viruses using receptors from two different families, culminating

in the activation of the NF-jB and type I interferon signaling path-

ways [152] (Fig 3). Double-stranded viral RNA is recognized in the

cytoplasm by the RNA helicase RIG-1 [153]. Upon binding to viral

RNA, RIG-1 is activated and exposes its CARD signaling domains,

which associate with unanchored K63-linked ubiquitin chains. This

leads to the formation of heterotetramers that interact with and acti-

vate the mitochondrial OM protein MAVS, a central player of the

defense response (Fig 3). MAVS dimers or higher-order multimers

recruit several downstream signaling effectors, such as the TRAF

family members, which trigger the production of type I interferons

and other cytokines [154–156]. MAVS polymers were recently

shown to bind the E3 ubiquitin ligases TRAF2, TRAF5, TRAF6, and

LUBAC, which collectively promote ubiquitylation reactions that

recruit NEMO to the MAVS signaling complex, leading to the activa-

tion of the transcription factors IRF3 and NF-jB [157] (Fig 3).

The majority of the mechanisms that terminate the antiviral

response involve the proteolytic breakdown of MAVS. For example,

the RNA-binding protein PCBP2 negatively regulates the immune

response by recruiting the E3 HECT ligase AIP4 to MAVS, leading to

its ubiquitylation and UPS-dependent turnover [158]. Similarly, the

E3 RING ligase RNF5 attaches K48-linked ubiquitin chains at K362

and K461 of MAVS, targeting it for degradation after viral infection

[159]. Interestingly, several viruses suppress the innate immune

response, for example, by expressing specific proteases or—in the

case of hepatitis B virus—by interaction of its protein X (HBX) with

MAVS, thus targeting it for UPS-dependent degradation [160] (Fig 3).

The disruption of MAVS self-interactions precludes MAVS inter-

action with the TRAF proteins and represents another mechanism of

curtailing MAVS activation [161]. The UBXN1 protein, a member of

the ubiquitin-binding UBX protein family, binds to MAVS via its

ubiquitin-associated domain and impairs antiviral responses [161].

Mfn2 has also been proposed to inhibit MAVS oligomerization by

binding to it via its HR1 region [156,162], which is in line with the

fact that Mfn2�/� mouse embryonic fibroblasts have an increased

antiviral response [162] (Fig 3).

Interestingly, most of the genes involved in the immune response

to Sindbis virus are required for Parkin-mediated mitophagy, point-

ing to an intimate relationship between mitophagy and xenophagy,

which is the autophagic degradation of incoming pathogens [163].

The E3 ubiquitin ligase SMURF1, for example, was identified as a

mediator in both xenophagy and mitophagy [163]. Mitophagy is

also related to the autophagic eradication of bacteria, because the

innate immune response to bacterial infection involves Parkin

[164]. Thus, multiple functions of ubiquitylation at the surface of

mitochondria are emerging, acting upstream and downstream of

MAVS during the immune response (Sidebar A).

Conclusions

Ubiquitin serves as an important regulator of mitochondrial dynam-

ics, surveys mitochondrial damage, and regulates innate immune

responses in many ways. The ubiquitylation and turnover of several

OM proteins contributes to maintaining mitochondrial homeostasis.

We are only beginning to understand the emerging regulatory func-

tions of ubiquitin, such as its essential role in promoting mitochon-

drial fusion or its wide participation in the initiation or termination

of the innate immune response. The considerable research efforts in

Sidebar A: In need of answers

(i) How are ubiquitylated mitofusins diverted from proteasomal turnover

to promote mitochondrial fusion? Is ubiquitylation of Mfn1 and Mfn2

critical for embryonic viability?

(ii) How are ubiquitylated OM proteins degraded by 26S proteasomes?

Which additional components are involved and how are they regu-

lated?

(iii) Which properties distinguish Mfn1 from Mfn2, making them specific

targets for selective ubiquitylation in apoptosis, muscle wasting, and

cell cycle progression?

(iv) How are mitochondrial fusion and fission coordinated by ubiquitin and

other post-translational modifications, for example, during the cell

cycle? How does ubiquitin regulate cell proliferation and differentia-

tion?

(v) Is mitochondrial fusion controlled by the range of post-translational

modifications that regulate mitochondrial fission? Conversely, how

does ubiquitylation regulate mitochondrial fission?

(vi) How does ubiquitin regulate interorganellar contacts of mitochondria?

(vii) To which extent does the UPS-dependent turnover of mitochondrial

precursor proteins in the cytosol contribute to the regulation of mito-

chondrial biogenesis?

(viii) What is the precise role of ubiquitylation and OM protein turnover for

mitophagy? How does it affect aging and neurodegeneration?
(ix) What is the contribution of Pink1/Parkin-mediated mitophagy to mito-

chondrial quality control in vivo? How is Parkin activity regulated?

What are the pathophysiological implications of the modification of

its different targets?

(x) How critical is ubiquitylation of mitochondrial proteins for the cellular

immune response?

“Ubiquitylation: mechanism and functions” Review series

Previous issues of EMBO reports include:

• Building and remodeling Cullin-RING E3 ubiquitin ligases,

by Wade Harper et al

• Ubiquitin in the immune system, by Henning Walczak et al

• RBR E3 ligases at work, by Judith Smit and Titia Sixma

Other reviews in this series, which will be published in consecu-
tive issues of EMBO reports, will cover:

• Regulation of stem cell function by protein ubiquitylation,

by Iannis Aifantis et al

• Understanding ubiquitylation one structure at a time, by

Ronald Hay et al
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this active field hold the promise for more surprises to come, com-

pleting our picture of this master regulator of mitochondria. Future

studies will shed light on the pathophysiological mechanisms of

mitochondria-related diseases and thus define the contribution of

the different processes regulated by ubiquitin, possibly identifying

new therapeutic targets.
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