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Abstract

The RING-in-between-RING (RBR) E3s are a curious family of ubiqu-
itin E3-ligases, whose mechanism of action is unusual in several
ways. Their activities are auto-inhibited, causing a requirement for
activation by protein-protein interactions or posttranslational
modifications. They catalyse ubiquitin conjugation by a concerted
RING/HECT-like mechanism in which the RING1 domain facilitates
E2-discharge to directly form a thioester intermediate with a
cysteine in RING2. This short-lived, HECT-like intermediate then
modifies the target. Uniquely, the RBR ligase HOIP makes use of
this mechanism to target the ubiquitin amino-terminus, by pre-
senting the target ubiquitin for modification using its distinctive
LDD region.
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Introduction

The role of E3-ligases in ubiquitin conjugation is to mediate the

transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to the

target. This step is uncoupled from the first steps in ubiquitination—

which involve the E1- and ATP-dependent activation of ubiquitin

and its transfer to E2 enzymes—because E1 and E3 use overlapping

surfaces of the E2 enzymes. The E3s are therefore involved solely in

the chemical transfer of the C-terminus of ubiquitin from a thioester

on a cysteine to the isopeptide linkage in the target.

Traditionally, the E3s have been separated into two classes, RING/

U-box and HECT type ligases, both of which activate the E2 reaction

and recognize the target molecule. The HECT E3-ligases form a thio-

ester-intermediate on an active-site cysteine before transferring it onto

its target, whereas RING E3-ligases facilitate the direct transfer of the

ubiquitin from the E2 cysteine (Fig 1). More recently, a third class of

E3-ligases was identified, the RING-in-between-RING (RBR) E3-ligases,

which contain a highly conserved catalytic unit consisting of a RING1,

an in-between RING (IBR), and a RING2 domain (Figs 1 and 2) [1].

The RBR class of proteins was first described in 1999 by two

separate groups that identified the conservation of a triple-RING/

zinc finger motif in eukaryotic species, including animals, plants,

fungi and protists [2,3]. Further analysis of the pattern of cysteines

and histidines in the RING/zinc fingers indicated that the RBR

domain has arisen only once in evolution [4]. There are 14 separate

human RBR proteins that have been assigned to 8 distinct subfami-

lies of the RBR family [5] (Table 1).

The RBR E3-ligases were shown to use both RING and HECT-like

mechanisms [1]. The ubiquitin transfer is initiated by the interaction

of an E2~ubiquitin with the RBR [1, 6, 7], similar to the interaction

between E2s and classical RING E3-ligases [5–7], but in RBRs this

interaction is used to facilitate the formation of a HECT-like thioester

intermediate between the C-terminus of the ubiquitin and an active-

site cysteine on RING2 before it is coupled to its substrate. Further-

more, most, if not all, of these ligases are distinguished by the tight

regulation of their enzymatic activity by auto-inhibition

[6–11]. In this review, we discuss how RBR E3-ligases transfer

ubiquitin to their targets.

Cellular functions of RBRs

The few RBRs that have been analyzed in detail—Parkin, HHARI,

TRIAD1, HOIP and HOIL-1L—are involved in important cellular

events: transcription and RNA metabolism, translation, subcellular

tethering, regulation of posttranslational modifications and protein

stability, cellular and stress signalling, cell-cycle control, and

response to microbial infection [12]. Consequently, the misregula-

tion of the activity of RBR proteins is important in disease [5,

13–15], which makes them interesting potential drug targets. Here,

we briefly discuss their function before a more in-depth analysis of

the molecular details of their enzymatic mechanisms.

Parkin
Parkin (PARK2) mutations cause familial autosomal-recessive

juvenile Parkinson disease and are a frequent cause of sporadic

early- and late-onset Parkinson disease (PD) [16–18]. Parkin is

found in many tissues, but is primarily expressed in the brain,

including the substantia nigra, indicating a possible involvement in

the loss of dopaminergic neurons that form the hallmark of PD [17].

In addition, it is a putative tumour suppressor [19,20].

Parkin recruitment to the outer mitochondrial membrane is

dependent on Pink1 [21] and its own ligase activity [22]. The Parkin

E3-ligase activity is crucial for its function, and possible targets

include a-synuclein [23], CDCrel-1 [24], Pael-R [25], and misfolded
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DJ1/PARK7 [26], which accumulate in patients with PD. Therefore,

the Parkin E3-ligase activity is thought to be crucial for the preven-

tion of PD pathogenic Lewy body formation, which mainly contain

ubiquitin and a-synuclein [27]. Furthermore, Parkin plays important

roles in mitophagy upon stimulation by the mitochondrial uncoupler

CCCP and possibly in other forms of autophagy in the cell, such as

the susceptibility to intracellular bacterial pathogens [21, 28, 29]. A

growing number of targets are being identified, including mito-

fusin-1, mitofusin-2 and HKI, which are involved in maintaining

mitochondrial integrity [30–32]; the p38 subunit of aminoacyl-tRNA

synthase [33]; RanBP2, which is part of the nucleocytoplasmic trans-

port machinery [34]; transcription factor SIM2 [35]; anti-apoptotic

and autophagy inhibitory protein Bcl-2 [36]; and Parkin itself [1,

24]. An in-depth proteomics analysis of the Parkin dependent prote-

ome will be important to validate and identify more direct Parkin

targets [37]. Although the understanding of most Parkin interactions

is still superficial, a major role for the Parkin E3-ligase function

seems to be the protection of cells against the accumulation of mis-

folded and unfolded proteins.

HHARI
Parkin and HHARI share substantial sequence identity [38]. In PD

with mutated Parkin, the E3-ligase activity of Parkin is abolished in

all cells. Nevertheless, only the dopaminergic neurons in the brain

seem to be sensitive to the loss of Parkin function. Thus, it is likely

that other cells express a redundant E3-ligase to compensate for the

loss of Parkin. HHARI is a likely candidate, as it binds many of the

same protein partners, such as CDCrel-1, synphilin-1, and CASK

[39], and may target synphilin-1 and SIM2 for degradation in cells

[35]. Interestingly, HHARI is also found in Lewy bodies in dopami-

nergic neurons in PD, indicating that it cannot compensate the loss

of Parkin activity in these cells [39]. Nevertheless, HHARI is not

mutated in patients with PD.

Glossary

4EHP Translation initiation factor 4E homologous
protein

DUBs De-ubiquitination enzymes
E1 Ubiquitin activating enzyme
E2 Ubiquitin conjugase
E3 Ubiquitin ligase
Gfi1 Growth factor independence 1
HECT Homologous to the E6-AP carboxy terminus
HHARI Human homologue of Drosophila Ariadne
HOIL-1L Heme-oxidized IRP2 ubiquitin ligase-1
IBR In-between RING
LDD Linear ubiquitin chain determining domain
LUBAC Linear ubiquitin chain assembly complex
NEMO NF-jB essential modulator
NF-jB Nuclear factor kappa-light-chain-enhancer of

activated B cells
NZF Npl4 zinc-finger
RBR RING-IBR-RING ligase
RING Really interesting new gene
UBAN Ubiquitin-binding domain in ABIN and NEMO
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Figure 1. RBR E3-ligases have a unique mode of transferring ubiquitin to a target.
The ubiquitin (Ub) C-terminus is activated in an ATP-dependent manner by an E1 activating enzyme, and is subsequently transferred to form a thioester intermediate on an
E2 conjugase. The final transfer of ubiquitin onto its target is mediated by E3-ligases that either form a thioester intermediate with the ubiquitin (HECT E3-ligases), mediate a
direct transfer of the ubiquitin from the E2 onto its target (RING E3-ligases), or function as RING/HECT-type hybrids (RBR E3-ligases). Through this cascade of E1, E2 and E3
enzymes, the ubiquitination machinery mediates the formation of mono-ubiquitination, multi-mono-ubiquitination, or ubiquitin chain formation on its targets. The
ubiquitin signal can be removed by de-ubiquitination enzymes (DUBs).
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In addition to the description of the possible overlapping interac-

tions of HHARI and Parkin, two studies have analyzed the cellular

function of HHARI. First, HHARI is suggested to play a role in the

regulation of protein translation by targeting the eukaryotic mRNA

cap-binding protein 4EHP for proteasomal degradation [40]. Second,

HHARI has been shown to positively regulate cellular proliferation,

which functionally correlates with its over-expression in head-and-

neck squamous cell carcinoma biopsies [41]. Neddylated Cullin-

RING ligase complexes have been recently shown to bind and

activate HHARI, which has important implications for its cellular

function [42].

TRIAD1
Loss of TRIAD1 in mice is associated with embryonic death and

causes the degradation of nuclear IjBb, leading to excessive NF-jB
signalling in dendritic cells [43]. Furthermore, the depletion of

TRIAD1 causes a defect in membrane trafficking that leads to the

accumulation of the growth hormone receptor and the epidermal

growth factor receptor in intracellular vesicles and at the plasma

membrane [44]. Finally, TRIAD1 plays a role in the regulation of

myeloid progenitor cell proliferation, by modulating HoxA10

activity [45] and stabilizing proteins such as Gfi1B and p53 [46,47].

TRIAD1 cellular concentrations seem to be tightly regulated.

TRIAD1 levels are up-regulated during granulocytic and monocytic

differentiation [48,49]. In contrast, it is negatively controlled by

proteasomal degradation, for which it is ubiquitinated by, for

example, Mdm2 [46, 48].

Direct targets of the TRIAD1 E3-ligase activity have not been

identified in vivo, but it seems to regulate the stability of various

proteins indirectly, in the sense that it does not directly ubiquitinate

them for degradation. For example, TRIAD1 inhibits the proteasome-

dependent degradation of Gfi1B in myeloid progenitor cells through

an interaction between its RING2 domain and Gfi1B, thereby inhibit-

ing myeloid progenitor cell proliferation [47, 50]. This interaction

possibly competes with binding of other E3-ligases that target Gfi1B,

or it might recruit DUBs that deubiquitinate Gfi1B. In addition,

TRIAD1 has been suggested to compete with Mdm2 for p53 binding,

thus preventing the ubiquitin-dependent degradation of p53 [46].

TRIAD1 has also been linked to the regulation of the activity of

HoxA10. High expression levels of HoxA10 correlate with a poor

prognosis in acute myeloid leukemia (AML) [51,52], and induce

TRIAD1 levels in myeloid progenitor cells, which increases total pro-

tein ubiquitination levels [45, 53]. Interestingly, TRIAD1 antago-

nizes HoxA10-induced cellular proliferation, but whether HoxA10 is

a direct target for TRIAD1 remains to be determined [51, 52, 54].

Nevertheless, the inhibitory effect of TRIAD1 on the proliferation of

myeloid progenitor cells critically relies on its RING domains and is

inhibited by proteasome inhibitors [50]. Therefore, the TRIAD1 E3-

ligase activity is likely to target HoxA10 or regulators of HoxA10 for

proteasomal degradation. Finally, it has recently been shown that

TRIAD1 is recruited to and activated by CUL5-RBX2 complexes,

which might be critical for identifying additional cellular functions

[42].

HOIP and HOIL-1L
Two RBR E3-ligases, HOIP and HOIL-1L, are part of the linear

ubiquitin assembly complex (LUBAC), which is essential for the

activation of the NF-jB pathway. LUBAC comprises SHARPIN, HOIP

and HOIL-1L, of which HOIP forms a critical catalytic centre [55–59].

LUBAC has the unique capability to mediate the formation of linear

ubiquitin chains [57]. Interestingly, HOIP contains the linear

ubiquitin chain specificity of the complex [57, 60], but either

HOIL-1L or SHARPIN are needed to release its autoinhibited state

and direct the activity of the complex towards its targets. Weak lin-

ear chain-forming activity was also reported for HOIL-1L [7], based

on the fact that His-Ub could not be modified. However, as HOIL-1L

requires an intact N-terminus also on the donor ubiquitin [61],

further experiments are required to elucidate its independent

activity. The LUBAC E3-ligase targets its activity towards NEMO,

RIP1, RIP2 and K63-linked ubiquitin chains in the NF-jB pathway

[55, 58, 62–64]. Modification of NEMO with linear chains under

stress conditions is further regulated by Parkin, which interacts with

the LUBAC complex [65]. Mechanistically, besides the RBR of

HOIP, the catalytic cysteine in the RBR domain of HOIL-1L is

required for the attachment of the first ubiquitin of the linear ubiqu-

itin chain to NEMO [61].

In the NF-jB pathway, conjugated linear ubiquitin chains are

selectively recognized by the UBAN domain of NEMO and the NZF

domains of HOIL-1L and SHARPIN [55, 66–69], which are believed

to stabilize the TNF-R1/NEMO/LUBAC signalling complex, co-

localize LUBAC with the TAK1-complex, recruit additional NEMO

molecules, and facilitate NF-jB-dependent gene expression. How-

ever, the DUBs A20 and OTULIN/Gumby are also recruited to the

linear ubiquitin chains to negatively regulate LUBAC-induced NF-jB
activation by preventing the interaction between NEMO and LUBAC

[64, 70–72]. The role of LUBAC in the immune response is reviewed

in this EMBO reports ubiquitin series [73].

The RBR mechanism

RBR E3-ligases follow a two-step mechanism whereby the interac-

tion of a ubiquitin-charged E2-enzyme with RING1 promotes the

transfer of ubiquitin to a cysteine on RING2, to form a thioester

Figure 2. Domain arrangements in RBR E3-ligases.
A) Domain organization of the RBR E3-ligases Parkin, HHARI, TRIAD1, HOIP and HOIL-1L. The domain borders are drawn to scale according to Uniprot definitions (www.
uniprot.org). Ubiquitin like domain (UBL), acidic region (Acidic), glycine-rich region (Gly), zinc finger (ZF), ubiquitin-associated domain (UBA). The RBRs are represented in
RING1:cyan (R1), purple (IBR) and blue (R2). The Parkin RING0, C-terminal Ariadne domain and linear ubiquitin determining domain (LDD) are represented in pale green and
the Parkin linker/tether helix (also called PUB or REP) is yellow. B) Crystal structure of full-length Parkin (surface representation) (PDB 4k95). The RBR (cartoon) is
autoinhibited by the N-terminal regions of Parkin. The colors correspond to the colors in the schematic representation in Figure 2A. C) Surface representation of the crystal
structure of full length HHARI (PDB 4kbl). The RBR is shown as cartoon. D) A cartoon of superposed RBR domains of Parkin and HHARI (SSM (WinCoot 0.7.1) superposition of
RING2 domain of HHARI on the RING2 domain of Parkin). Parkin RING1:light grey80, IBR:dark grey40, PUB domain: yellow, RING2:black. HHARI RING1:cyan, IBR:purple,
RING2:blue. E) Crystal structure of HOIP RING2-LDD (PDB 4ljo).
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intermediate, prior to the transfer of ubiquitin to its target protein.

Since the thioester intermediate is reminiscent of the HECT

E3-enzymes, the mechanism has been named HECT-like, although it

should be noted that the structures of these domains do not resemble

HECT domains (see below). This combined RING/HECT-like

molecular mechanism underlying the RBR-mediated ubiquitination

of proteins was uncovered in HHARI based on a study on Parkin

and HHARI in 2011 [1], and confirmed for HOIP in 2012 [6,7] and

Parkin in 2013 [22]. As several RBR E3-ligases have been shown

to function via this two-step mechanism, it is likely that all RBR

E3-ligases function in this manner.

The RBRs share a number of features that distinguish them from

other RING E3s. First, the requirement for an E2 in vitro is less strict

than in most other E3-ligases. RBRs are able to use the E1 as the

donating thioester directly, in a step that is also independent of the

RING1 domain of the RBR [6, 7, 74]. Second, the thioester bond

between ubiquitin and the cysteine on the RING2 domain is very

transient and difficult to detect, indicating that this step is not rate-

limiting in the reaction. Finally—unlike classical RING E3-ligases in

which the interaction between the RING domain and the E2

activates the E2~ubiquitin thioester [75,76]—the RBR RING1 is not

sufficient to allow the discharge of ubiquitin from the E2, but

additionally requires the presence of the RING2 catalytic cysteine

[1, 6, 77]. Altogether, this suggests that the RING1 domain may not

facilitate the allosteric activation of the E2~ubiquitin as occurs in

classical RINGs [78–80], but possibly catalyzes the transfer of the

ubiquitin onto RING2 by a different mechanism.

RBR structures

Recent structural information of the RBR regions of Parkin, HHARI

and HOIP provides insight into the molecular details of the architec-

ture of the RBR proteins (Fig 2) [9–11, 77, 81]. The crystal struc-

tures of Parkin and HHARI show that the relative orientation of the

RING1, IBR and RING2 domains of the RBR unit is highly variable.

The RBR of Parkin was crystallized in its auto-inhibited form as a

compact structure with extensive inter-domain interactions [9–11],

while the RBR of HHARI adopts an extended conformation in its

autoinhibited state [77]. A HOIP construct lacking RING1 and the

IBR reveals the tight interaction between RING2 and the C-terminal

linear ubiquitin chain determining domain (LDD) [82].

In the crystal structures of Parkin, the RING2 domain of the RBR

is positioned at the opposite side of the protein from the IBR, placing

the two domains 49 �A apart by a linker. In this conformation, the

E2~ubiquitin bound to RING1 is positioned > 50 �A away from the

active- site C431 in RING2, too far for trans-thiolation of the

ubiquitin from the E2 onto the E3 [9–11]. In HHARI, the C-terminal

Ariadne domain blocks the active-site cysteine in RING2, preventing

the transfer of the ubiquitin from an E2 onto the RBR RING2 [77].

Thus, the RBRs require conformational changes for their activation.

Additional studies are needed to reveal the precise orientation of the

RING1, IBR and RING2 domains in catalytically active forms of the

RBR proteins, and it remains to be seen how long-lived such states

will be.

If one analyzes the individual domains in these structures, the

RING1 domain in HHARI and Parkin has the typical C3HC4

topology of classical RING domains, coordinating two zinc-ions in

a cross-brace structure that contains all the necessary features for

the interaction with E2s. Neither the IBR domain nor the RING2

domain has a RING fold, but they are zinc fingers that coordinate

two zinc ions in a similar manner. They share a common IBR-fold

that is also found in the APC/C inhibitors Emi1 (FBXO5) and Emi2

(FBXO43) [83]. Interestingly, the RING2 of HOIP differs from other

RBR proteins, since it has an additional zinc finger incorporated

near the end of RING2 (Fig 2E), which is structurally important for

the positioning of the target ubiquitin in linear ubiquitin chain

formation [82].

The crystal structures of Parkin and HHARI show that the IBR

forms multiple interactions with RING1, as well as with regions

N- and C-terminal of the RBR unit. Furthermore, models of the

E2-bound RBR unit suggest that parts of the IBR contribute to the

RING1 binding surface of the E3 on which the E2~ubiquitin docks

[11]. Therefore, the IBR forms an important structural part of the

RBR that is probably involved in the regulation of the activity and

accessibility of the RBR unit.

The RING2 domain is the catalytic unit of the RBR. It contains a

conserved cysteine residue, which forms the active site with which

the ubiquitin C-terminus can form a thioester bond during the

transfer of the ubiquitin from the E2 onto the substrate. The final

transfer of the ubiquitin from the E2 cysteine onto the E3 RING2

domain is suggested by the crystal structure of Parkin and HHARI to

be facilitated by a catalytic triad that consists of C431 (catalytic cys-

teine), H433 and E444 (numbering according to the Parkin

sequence) [9–11, 77]. These residues are not conserved throughout

the RBR family and the details of the reaction of the subsequent

step, the transfer of a donor ubiquitin from the RING2 cysteine onto

a target ubiquitin, seem to be subtly different between Parkin (or

HHARI) and HOIP. In the latter, the arrangement of the catalytic site

is different, due to the addition of a second zinc finger at this

position, and only the corresponding RING2 C885 and H887 of the

proposed catalytic triad are essential, whereas Q896 (which aligns

with Parkin E444) is not involved in the chain-forming reaction [6,

11]. In addition, the residues around the N-terminus on the target

Table 1. Human RBR E3-ligases

Subfamily Name Alternative names Uniprot

Ariadne ARIH1 ARI1, HHARI Q9Y4X5

Ariadne ARIH2 ARI2, TRIAD1 O95376

Ariadne CUL9 PARC, H7-AP1, KIAA0708 Q8IWT3

Ariadne ANKIB1 KIAA1386 Q9P2G1

Parkin PARK2 PRKN, PARKIN O60260

RNF144 RNF144A KIAA0161, hUIP4, UBCE7IP4 P50876

RNF144 RNF144B P53RFP, IBRDC2 Q7Z419

XAP3 RBCK1 HOIL-1L, RNF54, XAP3 Q9BYM8

Dorfin RNF19A DORFIN Q9NV58

Dorfin RNF19B NKLAM, IBRDC3, DJ174N9.1 Q6ZMZ0

Paul RNF31 HOIP, PAUL, ZIBRA Q96EP0

TRIAD3 RNF216 ZIN, TRIAD3, UBCE7IP1 Q9NWF9

ARA54 RNF14 ARA54 Q9UBS8

Not assigned RNF217 C6orf172, IBRDC1, FLJ16403 Q8TC41
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ubiquitin, to which the C-terminus of the donor ubiquitin is attached,

may contribute to the chemistry of the reaction [61, 82]. Despite these

differences in the catalytic site, all three RBRs can react with ubiquitin

that is modified with a reactive group on its C-terminus, such as VME

or propargyl [11], indicating that they share features that differ from

other thioester forming molecules such as E2s and HECT E3s.

Autoinhibition and regulation of the RBR domain

The activity of the different RBR E3-ligases is highly regulated

(Fig 3). The proteins can be regulated at the transcriptional level,

but are also activated and inactivated by posttranslational modifica-

tions and protein-protein interactions.

All of the characterized RBR E3-ligases are autoinhibited by

domains surrounding the RING1, IBR and RING2 domains. The

E3-ligase activity of Parkin is embedded within the RBR domain in

its C-terminus. Its catalytic activity was reportedly auto-inhibited by

its N-terminal ubiquitin-like domain (UBL) [8], which binds to a

linker/tether region between the IBR and RING2 of the RBR domain.

This interaction is important for Parkin function, as multiple patho-

genic mutations are found in the UBL [8]. At least three targets of

Parkin contain domains that interact with the auto-inhibitory UBL

domain, suggesting a target-induced Parkin activation [84,85].

Structural studies reveal that the linker/tether region obstructs E2

enzyme access to the RING1 domain even in the absence of the

UBL, indicating that this linker region is critical to relieve the

autoinhibition [9–11, 77] (Fig 3). In addition, RING0 was found to

obstruct access to the catalytic cysteine and ligase activation

requires its rearrangement [9–11].

Alternative activation may occur through the posttranslational

modification of Parkin with Nedd8, which was reported to induce

its E3-ligase activity [86]. Also phosphorylation of Ser65 by PINK1

activates Parkin [87–89], in a mechanism where the ubiquitin-ligase

Fbxo7 is important [28]. In contrast, tyrosine-phosphorylation by

c-Abl seems to inhibit Parkin [90]. Furthermore, Parkin activity is

regulated by the modification of multiple cysteines within its IBR

with nitric oxide (s-nitrosylation) [91,92], which is possibly induced
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Figure 3. Regulation of the E3-ligase activity of Parkin, HHARI, TRIAD1 and HOIP.
Schematic representation of the RBR E3-ligases. The domains involved in autoinhibitory interactions are shown in red, whereas activators are shown in green. Autoinhibitory
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by the increased levels of nitrosative stress in PD [93]. However,

the precise effects of the s-nitrosylation on Parkin activity remain to

be resolved.

In HHARI, the Ariadne domain that is C-terminal to its RBR

provides an auto-inhibitory function. This autoinhibition is released

upon interaction of the N-terminus of HHARI with a NEDD8-CUL1-

RBX1 Cullin-RING complex [42] (Fig 3). The Ariadne RBR E3-ligase

TRIAD1 is also strongly activated upon an interaction with a

Neddylated Cullin-RING complex consisting of NEDD8-CUL5-RBX2

(Fig 3) [42]. The interaction with Neddylated Cullin-RING

complexes might be a common feature of Ariadne RBR E3-ligases,

which would link their function to that of Cullin-RING complexes.

Interestingly, the details of the autoinhibition of HHARI and TRIAD1

must be different from Parkin autoinhibition, as E2 interaction is

not impeded [42].

The RBR of HOIP is inhibited by domains that are located

N-terminally to the RBR [6,7]. HOIP activation takes place through

interactions between its UBA-domain and/or NZF2 domains with

the UBL-domain of either HOIL-1L or Sharpin, its partners in the

LUBAC complex (Fig 3) [7,56,57,59]. In the absence of its N-termi-

nal domains, the RBR unit is constitutively active and HOIL-1L no

longer provides additional activation, indicating that the N-terminal

domains mediate the auto-inhibition. However, NEMO ubiquitina-

tion still requires the presence of additional LUBAC components

[61]. The precise mechanism by which the HOIP N-terminus blocks

the RBR activity is uncertain, as the RBR is not inhibited when the

N-terminus is added to in vitro reactions in trans and there are no

crystal structures of inhibited HOIP available. Consequently, the

exact mechanism by which the catalytic domain is kept in an inac-

tive state in full length HOIP remains to be resolved.

Interestingly, in both Parkin and HOIP, the domains N-terminal

and/or within the RBR autoinhibit the catalytic activity [6–11],

whereas in HHARI the C-terminal domain constrains the active

conformation of the RBR unit by blocking the RING2 domain

[77]. Thus, regulation of RBR activity by domains outside the

RBR is a general feature of this class of E3 ligase, but the spe-

cific mechanism by which the catalytic activity is inhibited var-

ies for each individual protein. Nevertheless, the interactions of

Parkin, HOIP, HHARI and TRIAD1 N-termini with other proteins

may release the auto-inhibitory state of the RBRs [42,84,85].

Chain formation specificity by RBRs

The formation of the HECT-like ubiquitin~E3 intermediate by RBR

proteins would suggest that the target specificity of the RBRs resem-

bles that of the HECT E3-ligases, in which the E2s do not play a role

in the final transfer of the ubiquitin onto its target. Indeed, this is

the case for HOIP, for which the linear-chain-forming ability over-

rules the E2 chain-type specificity [57].

Table 2. E2 interactions with human RBR E3-ligases

Name E3 Activitya Y2Hb Pull down/interactionsc Functionald
Ubiquitin
Chain typese References

HHARI Yes L3, L6 L3 (R1+20AA),
L6 (R1,IBR)

D3, L3 [1, 38, 40, 103, 106]

TRIAD1 Yes D1, D2, D3, D4, E1, E2,
E3, L3, L6, R2, T, V1

L3 (R1), E1 (R1),
N (R2)

D3, E1, E2, L3, N/V2 K48 (L3), K63
(N/V2), K* (D3)

[42, 47, 48, 50, 107, 108]

PARC Yes L3 [109]

ANKIB1 nd

PARKIN Yes L3(R2), L6(R2) A, D2, D3, L3, L6 K48, K63 (N/2V) [1, 24–26, 36, 94,
95, 99, 100, 110]

RNF144A nd H, L3, L6, V1, V2 L3(R1), L6(R1) [108, 111]

RNF144B Yes I, L3, L6, T, U, Z L3 (RBR), L6(RBR) [108, 112–114]

HOIL-1L Yes D4, G1, L3, L6, N, S, U D3 [108, 115]

RNF19A Yes L3(RBR), L6(RBR) [116–118]

RNF19B Yes L3(FL), L6(FL) [119,120]

HOIP Yes L6 (FL) D3, L3 Linear (all tested E2s) [6, 121]

RNF216 Yes L3, L6 K48 (E2 not
identified)

[122]

RNF14 Yes D1, D2, D3, D4, E1,
E2, E3, U, V1,W

E1(R1), E2(R1), E3(R1) E1, E2, E3 [108, 114, 123, 124]

RNF217 nd

LUBAC Yes B, D1, D2, D3, K, L3 Linear (all tested E2s) [55, 57, 58, 62]

aExperimental evidence for E3-ligase activity yes/not done.
bE2 interaction-partners identified by yeast-two-hybrid, Ube2 names are shown.
cE2 interaction-partners identified by pull down assays or by other methods, the column contains the Ube2 names and the RBR interaction-sites between
brackets.
dUbe2 names of the E2s that have been shown to be functionally active with the RBR E3.
eUbiquitin chain types formed in cooperation with specific E2s of which the Ube2 name is shown between brackets.
K* various different ubiquitin chain types formed.
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HOIP ligase activity, either in the context of LUBAC or as

an N-terminal deletion construct that is constitutively active

(HOIPRBR-LDD), is induced by a variety of E2-enzymes. All E2s

induce the selective formation of linear ubiquitin chains, indicating

that the E2s do not contribute to the chain formation specificity of

HOIP (Table 2). Instead, the transfer of the ubiquitin from the E3

onto the N-terminal amine-group of the target ubiquitin is mediated

by the specific positioning of the target ubiquitin by the HOIP

C-terminal LDD [6,7] (Fig 4). The structure of the HOIP RING2-LDD

region in complex with ubiquitin was recently solved [82], and

interestingly it reveals that the LDD embraces the RING2 domain.

The RING2 and LDD together create the binding site for the target

ubiquitin and position it to present the amino-terminus to the

RING2~donor ubiquitin thioester for the formation of a peptide bond

between the two ubiquitins (Fig 4). This LDD extension to the RBR

domain is not found in other RBR E3-ligases, suggesting that this

mechanism of chain formation is unique to HOIP.

The targeting of a lysine in NEMO by the HOIP/HOIL-1L com-

plex requires NEMO recognition sites in LUBAC [58] as well as

the presence of both an active HOIP RBR and an active HOIL-1L

RING2 catalytic site [61]. Thus, also in this case the E3 deter-

mines which lysines are modified. Understanding the details of

this two RBR mechanism will require further studies but, intrigu-

ingly, the process also depends on an intact amino terminus of

the donor ubiquitin [61], as modifications at the N-terminus or

mutation of the adjacent E16 affect the process. If other RBRs

have such a requirement, studies using tagged ubiquitin may not

reveal their true activity. Lysine targeting by LUBAC could be

rare in cells, as most of the linear chains on NEMO are attached

to K63 chains, conjugated to the ubiquitin amino-termini in these

chains [63].

In contrast to the E3-dependent targeting of LUBAC, the current

literature suggests that ubiquitin chain formation by the RBRs

ARIH2, Parkin, and RNF216 relies on the ubiquitin chain formation

specificity of the E2 that is used in the reaction (Table 2).

The Parkin RBR domain is functionally active with the E2s

Ube2A [94], Ube2D2 [95], Ube2D3 [1,24,96], Ube2L3 [86,97–99],

and Ube2L6 [24], with which it mediates the formation of vari-

ous ubiquitin signals (Table 2). Parkin mediates the formation of

K63-linked ubiquitin chains in cooperation with the K63-specific E2

Ube2N/Ube2V2 [100,101], to target misfolded DJ1 for dynein-

mediated transport to aggresomes [26]. It also catalyses the forma-

tion of K48-linked ubiquitin chains [100,101], and works with

Ube2L3 to target RanBP2 for degradation [86]. Finally, Parkin has

been suggested to mediate the mono-ubiquitination of targets in an

IBR-RING2 dependent manner in cooperation with Ube2L3 and

Ube2N/Ube2V2 [98], targeting p38 [97], Hsp70/Hsc70 [102], and

Bcl-2 [36]. A comparison of the Parkin-mediated ubiquitin chain

formation activities in the various studies suggests that the E2s play

a major role in the specificity of ubiquitin chain formation. Conse-

quently, the E2 enzyme that is used by Parkin strongly determines

the cellular outcome of the proteins that are targeted.

The E3-ligase HHARI has been shown to interact through its

RING1/IBR domains to the E2s Ube2L3 and Ube2L6 (Table 2) [38,

40,103]. However, only the functionality of the E2/HHARI interac-

tion with Ube2L3 has been validated [1]. Interestingly, also Ube2D3

has been shown to be functionally active with HHARI, even though

is has not been identified as a binding partner in yeast two-hybrid

studies [1,38,40]. Unfortunately, there are no data available about

the ubiquitin chain formation specificity and target selection by this

E3, leaving the precise mechanism by which HHARI ubiquitinates

its targets to be resolved.
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Figure 4. Linear ubiquitin chain formation by HOIP.
The positioning of the target ubiquitin (yellow) by the HOIP LDD (green) is critical for the transfer of the donor-ubiquitin (orange) from the E2 (blue), via a cysteine on RING2
onto the N-terminus of the target ubiquitin. The crystal structure of HOIP RING2-LDD in complex with a donor and a target ubiquitin (PDB 4ljo) shows a snapshot of the
orientation of the proteins just before the two ubiquitins are linked together by HOIP. IBR = in between ring; LDD = linear-ubiquitin-chain determining domain; R = RING;
UBA = ubiquitin associated domain; ZF = zinc finger.
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The E3-ligase activity of TRIAD1 in cells can potentially be medi-

ated by a large variety of E2s that have been found as TRIAD1 inter-

action partners (Table 2). Of these E2s, Ube2L3 and Ube2E1 have

been shown to interact with the TRIAD1 RING1 domain, and Ube2N

binds to TRIAD1 RING2 [50]. The functional relevance of the

interaction has been validated for several E2s in auto-ubiquitination

and free ubiquitin chain formation assays, showing that TRIAD1

mediates the formation of K48-ubiquitin chains with Ube2L3, K63-

ubiquitin chains in cooperation with Ube2N/Ube2V2, and various

different chains in cooperation with Ube2D3 [42, 47, 48]. Thus, the

E3-ligase activity of TRIAD1 follows the ubiquitin chain formation

specificity of the E2 that is used in the reaction. Nevertheless, it

is not clear if TRIAD1 follows the E2 chain-type choice on its

cellular targets.

So far, many of these assays rely on autoubiquitination as a

read-out for activity. Moreover, most have been performed without

the full activation of the E3 ligase, as details of the activation

mechanisms of RBRs have only recently been revealed. It will be

interesting to reconstitute reactions with the different E2 enzymes in

the activated states of the RBR enzymes and follow the behaviour

on genuine targets. Thus far, it appears as if the final transfer of the

ubiquitin by these RBR E3-ligases is mediated by the E2 determining

the chain type, despite the dependence on a HECT-like transfer to

the target. This suggests that the E2s stay in the complex to facilitate

chain formation, which puts an interesting mechanistic constraint

on the reaction. Possibly, the E2s cooperate directly with RING2 to

position the target ubiquitin close to the active site cysteine of the

RBR E3-ligase. Alternatively, the role for the E2 in the ubiquitin

chain formation specificity might be explained by a mechanism in

which the E2 and E3 collaborate to mediate the specific formation of

ubiquitin chains on the E2 active site cysteine [104], before the RBR

RING2 mediates the en-bloc transfer of the ubiquitin chain from the

E2 onto the target protein. These options require further studies. In

addition, the precise role of the RING domains in the RBR needs

further analysis, as interaction studies identified that some RBRs

interact with E2s through their RING2 domains (Table 2), or bind

possible targets via the RBR [24, 35, 105]. Consequently, the

combined RING/HECT type mechanism might be modulated in

these reactions, and further studies are needed to elucidate their

functional significance.
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