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Abstract

This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Multivariate phenotypes are frequently encountered in genetic association studies. The purpose of

analyzing multivariate phenotypes usually includes discovery of novel genetic variants of

pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the

underlying genetic mechanism. In recent years, there have been new method development and

application of existing statistical methods to such phenotypes. In this paper, we provide a review

of the available methods for analyzing association between a single marker and a multivariate

phenotype consisting of the same type of components (e.g., all continuous or all categorical) or

different types of components (e.g., some are continuous and others are categorical). We also

reviewed causal inference methods designed to test whether the detected association with the

multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some

phenotypes through affecting the others.

1. Introduction

Association studies, where the correlation between a genetic marker and a phenotype is

assessed, are useful for mapping genes influencing complex diseases. With reduction of

genotyping cost, completion of the HapMap Project [1], and more recently the 1000

Genomes Project [2], genome-wide association studies (GWAS) with several hundred

thousands to tens of millions genotyped and/or imputed single nucleotide polymorphisms

(SNPs) have become a common approach nowadays to search for genetic determination of

complex traits.

In the study of complex diseases, several correlated phenotypes, or a multivariate (MV)

phenotype with several components, may be measured to study a disorder or trait. For
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example, hypertension is evaluated using systolic and diastolic blood pressures; a person’s

cognitive ability is usually measured by tests in domains including memory, intelligence,

language, executive function, and visual-spatial function. The tests within and between

domains are correlated. Most published GWAS only analyzed each individual phenotype

separately, although results on related phenotypes may be reported together. Published

single phenotype GWAS have successfully identified a large number of novel genetic

variants predisposing to a variety of complex traits [3, 4]. However, majority of the

identified genetic variants only explain a small fraction of total heritability defined as

between individual phenotype variability attributable to genetic factors [4, 5]. It has been

hypothesized that current GWAS may be underpowered to detect many genetic variants of

moderate-to-small effects. Joint analysis of correlated phenotypes can exploit the correlation

among the phenotypes, which may lead to better power to detect additional genetic variants

with small effects across multiple traits or pleiotropy effects. Furthermore, joint analysis

avoids multiple testing penalty incurred in analyzing each phenotype separately. Therefore,

it is important to identify appropriate methods that fully utilize information in multivariate

phenotypes to detect novel genetic loci in genetic association studies.

In addition to discovery of novel loci of potential pleiotropy effects, it is also important to

detangle the complex relationship between phenotype components and genetic variants One

of the frequently asked questions is whether a genetic variant affects multiple phenotypes

simultaneously (pleiotropy) or affects one phenotype through affecting another phenotype.

In this paper, we review methods for both purposes.

2. Methods for Detecting Association Using Multivariate Phenotypes

For all the methods mentioned in this section, the null hypothesis is no association between

a single genetic marker and any components of a multivariate (MV) phenotype; the

alternative hypothesis is the genetic maker associated with at least one phenotype

component. Here we review methods for an MV phenotype consisting of all continuous, all

categorical, or all time-to-event components, and methods for MV phenotypes consisting of

a mixture of different types of components.

2.1. Regression Models

Regression models for clustered observations such as linear and generalized mixed effects

models, generalized estimating equations, and frailty models can be used to analyze the

association of a genetic marker with all continuous, categorical, or survival multivariate

phenotypes.

2.1.1. Mixed Effects Models—Mixed effects models such as linear mixed effects model

(LME) and generalized linear mixed effects model (GLMM) involve using fixed effects for

the genetic marker effect and random effects to account for correlation among multivariate

phenotypes [6, 7].

Let yjk denote the kth (k = 1,…, K) continuous component of the K-dimensional phenotype

of the jth (j = 1,…, J) individual. Let gj be the genotype of a genetic marker of the jth
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individual, and X(gj) a score of the genotype. The linear mixed effects model takes the

following form:

(2.1)

where β0 is the intercept or other genetic or environmental fixed effects; βk is the fixed

effect size of X(gj) on the kth phenotype; ηjk(k = 1,…, K) ~ N(0, Σ) are the random effects

correlated within jth person; ejk is the random errors iid. . Between any two

individuals, ηjk, k = 1,…, K are independent. Within a person, ηjk, k = 1,…, K are correlated.

The null hypothesis that the genetic marker is not associated with any phenotype component

corresponds to H0 : β1= ,…, βK = 0. The estimation of variance parameters and fixed effect

parameters can be obtained using restricted maximum likelihood method (REML) [8, 9].

When yjk is categorical, it can be modeled with generalized mixed effects model (GLMM)

as follows:

(2.2)

where μ is a link function and μ−1 is its inverse. For Gaussian distributed traits, μ is the

identity link, thus (2.2) is identical to the linear mixed effects model (2.1); for binary traits, μ

is the logit link μ(x) = ln(x/1 − x). For links other than identity function, the likelihood for

this model contains integrals without a close form solution. All existing algorithms for

likelihood maximization are either based on theoretical or numerical approximation [10, 11].

The null hypothesis under the LME or GLMM can be tested using the likelihood ratio test or

Wald chi-squared test. They can be implemented using SAS PROC Mixed or R lme4

package function lmer(). TheWald chi-squared test statistic takes the form

, where β = (β1,…, βK) is estimated using (2.1) or (2.2). For example,

Kraja et al. [12] have employed a model similar to (2.1) to the analyses of bivariate

continuous metabolic traits. We can also fit a model assuming β1 = ··· = βK = β, that is, E(yjk

| ηk) = μ−1(β0 + βX(gj) + ηjk), where a single degree-of-freedom (df) test β̂/se(β̂) can be used

to test the null hypothesis. This test can be more powerful than the multi-df Wald chi-

squared test if the effect sizes are in the same direction and not very different. It, however,

may lack power if the β1,…, βK are very different, especially have different signs and cancel

each other out.

2.1.2. Frailty Models—When the phenotypes are correlated survival times, frailty models

can be used to fit the association model. Suppose the survival or censoring times are tkj for

the kth (k = 1,…, K) phenotype of the jth (j = 1,…, J) individual. Let gj be the genotype of a

genetic marker of the jth individual, and X(gj) a score of the genotype as follows:

(2.3)

where ηkj(j = 1,…, J) are subject specific random effects following N(0, Σ), and Σ is a K-

dimensional correlation matrix. This is the Gaussian frailty model. There is another class of

frailty models where exp(ηkj) follows a gamma distribution. A Gaussian or gamma frailty
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model assuming an exchangeable correlation within a person can be fitted using coxph() in

the survival package of R by including a frailty() term in the regressor. In addition, including

a cluster() term in coxph() fits generalized estimating equations (GEE) type of model that

assumes an independent working correlation matrix [13]. Frailty models with an arbitrary

prespecified Σ can be fitted with the coxme() in R coxme package for Gaussian random

effects model.

Fitting a mixed effects (frailty) model requires predetermining the correlation matrix Σ of

random effects ηjk within jth person. The correlation between the phenotypes yjk within a

person is attributable to the random effects ηjk and the fixed effects of the genetic marker.

However, since the fixed effects are unknown, it is impossible to directly infer the

correlation among the random effects. Misspecifying the correlation among random effects

may result in bias in the inference on fixed effects. But the bias seems to be small for genetic

association studies [14, 15].

2.1.3. Generalized Estimating Equations—Different from mixed effects model is a

class of models called marginal models. Instead of having random effects as regressors in

addition to random errors to model correlation in multivariable response, marginal models

collapse the random effects and random residual errors in the model. Generalized estimating

equations (GEE) [16] solve the quasi-likelihood score function as follows:

(2.4)

where , and R(α) is the working correlation matrix for the residual

correlation. The variance and covariance of β is estimated with the so-called robust variance

estimator [16]. Similar to the LME, single- or multi-df Wald test statistic can be usually used

to test that the genetic marker is not associated with any of the phenotypes.

In our experience, GEE results are inflated with low minor frequency SNPs and not as

powerful as LME in general [15, 17]. However, GEE is robust to misspecification of

response distribution or association model and thus can be used when the LME shows bias

or inflation due to these reasons.

2.2. Variable Reduction Method

Variable reduction approaches are in general only applicable to MV phenotype consisting of

all continuous phenotypes that are approximately normal distributed. It derives a single or a

few new phenotypes that are linear combinations of the original phenotypes, for example,

(2.5)

Existing methods include principal components analysis (PCA) where for the first

component, ai, i = 1,…, K are coefficients that maximize the variance of Ỹ; principal

component of heritability (PCH) with coefficients maximizing the total heritability of Ỹ [18]

and penalized PCH applicable to high-dimensional data [19, 20]; and principal components
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of heritability with coefficients maximizing the quantitative trait locus (QTL) heritability

(PCQH) of Ỹ [21–24], that is, the variance explained by the genetic marker. The PCQH

approaches are designed to maximize the individual phenotype variation explained by the

genetic marker and thus may be more powerful than PCA and PCH in genetic association

studies.

2.2.1. PCQH Approaches—The approaches proposed by Lange et al. [21, 25] and Klei et

al. [23] involve using a subset of the sample to estimate the coefficients in (2.5) that

maximize the correlation between Ỹ and the genetic marker. Specifically, in the estimation

sample, the total phenotype variance is partitioned into QTL variance and residual variance

as follows:

(2.6)

where Vp is the K × K total phenotype variance-covariance matrix, Vq the QTL variance

matrix, and Vε the residual variance matrix. Let A = (α1,…, αK), then the variance of Ỹ =

AtY explained by the genetic marker is

(2.7)

A that maximizes  can be obtained by solving the following generalized eigen system

[18]:

(2.8)

Vq = var(β1X,…, βKX) can be approximated by Γ11tΓ, where Γ = diag(|β1|σx,…, |βK|σx), σx

is the sample standard deviation of the score of genotype X(g) across all individuals, βi is

estimated using the least squared estimator of Yi = α + βiX(g) + ε, and 1 = (sign(β1),…,

sign(βK)).

Lange et al. [21, 25] approaches are only applicable to family-based association design.

They suggest using the noninformative families or parental genotypes to estimate A because

these data will not contribute directly to the family-based association tests (FBAT). Then

perform FBAT of Ỹ on X(g). However, FBAT has low power in the absence of population

stratification [26] compared to population based approaches. Klei et al’s. [23] is a

population-based association approach where they randomly split the sample into two

subsets: one used to estimate A, the other used to test the association of Ỹ with X(g) via a

linear regression model: Ỹ α + βX(g) + ε. This ensures valid P value in the association test.

2.2.2. Canonical Correlation Analysis—Canonical correlation analysis seeks

coefficients so that the squared correlation between Ỹ in (2.5), and the score of genetic

marker, X(g), is maximized. Here ρ̂ = corr(Ỹ,X) is called estimated canonical correlation. To

obtain ρ̂, the covariance matrix of Y and X is partitioned as follows:
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(2.9)

where ΣYY is the K × K matrix of the variance-covariance matrix of Y, ΣYX and its transpose

ΣXY are K × 1 and 1 × K matrix of the covariance matrix between Y and X, ΣXX is the

variance of X, a scalar. All these submatrices can be estimated using the respective sample

co-variance matrix. The canonical correlation, ρ̂ = ΣXYA/(AtΣYYAΣXX)1/2, is solved as the

squared root of the largest eigenvalue of , and the corresponding

eigenvector A contains the coefficients for constructing Ỹ. multivariate analysis of variance

(MANOVA) tests correspond to evaluating canonical correlation. Table 1 details the

relationship between ρ̂ and commonly reported test statistics in MANOVA of a multivariate

phenotype Y on X(g) [27].

These tests are implemented in SAS PROC GLM and R function summary.manova(). As

part of the PLINK package specifically developed for genetic analysis, Ferreira et al. [24]

implemented the Wilks lambda, and its P value is obtained from F-approximation F =

(ρ̂2/K)/((1 − ρ̂2)/(n − K − 1)).

Canonical correlation analysis shares similarity with PCQH [23] in that both estimate a

linear combination of original phenotypes, so that the genotype score explains most of the

variation (in terms of percent of total variance and squared correlation, resp.) of the new

phenotype. The difference between the two approaches is that the canonical correlation

analysis evaluates squared correlation using whole sample, while PCQH estimates the

loadings using a subset of the sample and test the association in the rest of the sample.

Extensive simulation studies performed in [28]. The author of [28] showed that MANOVA

viaWilk’s lambda was substantially more powerful than PCQH [23] with K = 5 phenotypes.

2.3. Combining Test Statistics from Univariate Analysis

An alternative way to analyze multivariate phenotypes is to perform univariate phenotype-

genotype association test for each phenotype individually and then combine the test statistics

from the univariate analysis. The advantage of such approach is the simplicity, that is, the

methods to deal with univariate phenotypes are generally simpler than methods for MV

phenotypes. It is especially useful for analyzing multivariate phenotype consisting of

components of different types of distributions such as continuous, dichotomous, and

survival. Regression methods for analyzing such multivariate phenotype are generally

complicated and not trivial to implement for MV phenotype with dimension > 2, see for

example, [29, 30].

In recent years, researchers have generated large amount of univariate GWAS results for a

variety of complex traits. Methods that combine the univariate results of multiple traits to

detect genetic markers associated with multiple phenotypes are appealing.

2.3.1. Methods for Homogeneous Genetic Effects across Phenotypes—Assume

that T = [T1, T2,…, TK]T is a vector of K test statistics obtained from association analyses of
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each individual component phenotype against the genetic marker. Assume that T follows a

multivariate normal distribution with mean τ = (τ1, τ2,…, τK)T and a nonsingular covariance

matrix Σ. For example, T can be the β coefficients from least squared regression model for

individual components or the t-test statistics from the regression models. The null hypothesis

of no association to any phenotypes isH0: τ = (τ1, τ2,…, τK)T = 0. O’Brien [31–33]

suggested the following linear combination of T1, T2,…, TK, with weight e = (1, 1,…, 1)T of

length K:

(2.10)

when τ1 = τ2 = ··· = τK ≠ 0 (2.10) is the most powerful test among a class of tests statistics

that are linear combinations of T1, T2,…, TK. Under the null hypothesis, S follows the

normal distribution with mean 0 and variance eTΣ−1e. To estimate Σ with GWAS results,

Yang et al. [34] suggested using the sample covariance matrix of the statistics on a large

number of SNPs genomewide with little or no linkage disequilibrium among them (say

HapMap r2 < 0.1).

The power of O’Brien’s method depends on the assumption τ1 = τ2 = ··· = τK. When the

means are very different or with opposite signs, O’Brien’s method may not be efficient.

Yang et al. proposed a sample splitting approach that replaces the uniform weight eT by

weights w estimated using a portion of the sample and only used the remaining sample to

estimate T in (2.10), that is, S = wTΣ−1T. To overcome the variability introduced by a

random sample splitting, Yang et al. also evaluated a cross-validation approach that

averages the test statistics of 10 random splitting samples. The results showed that when τ1,

τ2,…, τK are of different magnitude or in opposite directions, O’Brien’s method is less

powerful than Yang et al., which indicates room for improvements for O’Brien’s method.

However, the sample splitting and cross-validation methods are less powerful than

O’Brien’s method with homogeneous effect sizes.

2.3.2. Methods for Heterogeneous Genetic Effects across Phenotypes—The

limitation of O’Brien statistic is that it is not powerful for heterogeneous effects across

multiple phenotypes, especially if some effects are of opposite directions. Another class of

statistics that takes a quadratic form of the vector of the individual association statistic may

overcome the limitation. For example, the following Wald chi-squared type test statistic was

mentioned in Xu et al. [32].

(2.11)

The difference between (2.10) and (2.11) is that the vector e = (1, 1,…, 1)T is replaced by the

T in (2.11). S follows a chi-squared distribution with degree of freedom equal to the number

of the phenotypesK or rank of Σ if it is not full rank. Due to the “curse of dimensionality,”

power of (2.11) is diminishing with the increased number of phenotypes. Similar problem

has been extensively studied and discussed in high-dimensional data analysis field and most

recently in the analyses of multiple rare variants. Borrowing ideas from these fields, we
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propose the following test statistic that may be more powerful than (2.10) and (2.11) with

heterogeneous effects.

(2.12)

The difference between (2.12) and (2.11) is that there is no variance-covariance matrix in

(2.12). This statistic was first proposed by Pan [35] to analyze multiple rare or common

variants against a single phenotype, where the ti is the beta coefficient for the ith genetic

variant. Different from Pan [35], here ti is the association statistic for the ith phenotype with

a single marker. Based on the groundwork of Zhang [36], Pan [35] pointed out that the

distribution of (2.11) is a mixture of single degree-of-freedom chi-squared variates,

 where cis are the eigen values of Σ, that is, the variance-covariate matrix of ti.

The distribution of (2.12) can be well approximated by  with

(2.13)

The P value is calculated as . The degree of freedom of the Ssq may be

less than K with highly correlated phenotypes. In addition, (2.12) does not have the problem

of instability observed for (2.10) and (2.11) when some of the components are highly

correlated (in one of our applications, a correlation ~0.7 has resulted in inflated results for

(2.10) and (2.11)). We have developed an R package CUMP (combining univariate results

of multivariate phenotypes) that have implemented all the aforementioned combining

statistics approaches. The software can be downloaded at (http://people.bu.edu/qyang/), and

a short report of this software is submitted [37].

3. Identifying Pleiotropy

All the aforementioned methods can be used to detect association that is potentially due to

pleiotropy. But they do not answer the question if the detected association is truly

pleiotropy, that is, the marker locus affects all components of the MV phenotype directly.

The detect association can affect some of the phenotypes and/or mediate through these

phenotypes to affect the other phenotypes. Vansteelandt et al. [38] illustrated potential

confounding mechanism between the genotype of a genetic marker and a phenotype using a

causal diagram (Figure 1): the association between the genotype, denoted as G, and the

response phenotype Y can occur through the paths connecting the two variables along all

unbroken sequences of edges regardless of the direction of the arrows, given that there are

no colliders (i.e., variables in which two arrows converge, e.g., variables K and L in Figure

1) in the sequence [39].
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The genotype G may be associated with Y due to (1) direct causal effect, that is, G → Y; (2)

through intermediate phenotype or risk factors, that is, G → K → Y or G → L → K → Y;

(3) because of confounding factors, that is, G ← U → Y or G ← U → L → K → Y.

The authors showed that two commonly used approaches to detangle the complex

relationship between phenotypes, genotype, and traditional risk factors are flawed. The first

commonly used approach derives the residuals of Y regressing on K, say Ỹ = Y−βK, and then

the association between G and Ỹ is tested. The disadvantage of this approach is that not only

the direct causal effect of K on Y is removed but also any indirect effect of K on Y through G

(e.g., K ← G → Y and Y ← U ← L ← G → K) and other factors (e.g., K ← L → U →
Y). Therefore β may be biased in the presence of confounding factors which leads to biased

test of G with Ỹ.

The second commonly used approach tests the direct effect of G on Y in a regression model

including K and L as covariates. Adjustment of K removes the relationship between G and Y

through G → K → Y; however, becauseK is a collider (Figure 1), the adjustment of K

induces a spurious association [39, 40] along the path G → K → L ← U → Y.

Additionally, adjusting for L induces spurious associated through the path G → L ← U →
Y.

To overcome the limitation of the two commonly adapted approaches, Vansteelandt et al.

[38] proposed a least squared regression model to estimate the direct effect size of K on Y.

This regression model includes the suspected intermediate phenotype, the score of the

genetic marker genotype, X(G), and other common risk factors between the two phenotypes

as regressors:

(3.1)

The estimated effect size of the phenotype represents the direct effect of theK on Y, that is,

not confounded by the effect of X mediated through any of the covariates. Then, a new

phenotype is created as the residual of the response subtract the effect of K only

. Then, whether the G only exerts its effect on Y through K can be

tested using any standard association test statistic between the residual and the X. A negative

result indicates that G only exerts its effect on Y through K while a positive result indicates

that the G has a direct effect on Y and/or a spurious effect through other confounders.

Extensions of the method to dichotomous and time-to-event outcomes have been proposed

[41, 42].

4. Discussion

In this paper, we reviewed methods available for joint analyzing correlated phenotypes in

genetic association studies. Some of these methods are designed to detect potential

association with multiple phenotypes (pleiotropy), while the others are designed to test

whether the detected association with the MV phenotype is truly pleiotropy or the genetic

marker exerts its effects on some phenotypes through affecting the others.
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For methods designed to detect association, each method has its own pros and cons. Random

effects model requires knowledge of residual correlation, and misspecifying the correlation

may incur inflation or power loss. Generalized estimating equations are robust to

misspecification of residual correlation, but it is inflated for low-frequency variants and less

powerful than random effects model in our experience. Variable reduction approaches are

appealing because correlated outcomes are reduced to a single or fewer number of

uncorrelated outcomes. However, in the presence of missing data in the outcomes,

individuals with missing data do not contribute to the analysis, which may result in power

loss. The approaches combining univariate association results are more flexible than the

other methods especially when MV phenotypes consist of a mixture of continuous, discrete,

and/or time-to-events data. Regression approaches have been developed to deal with such

phenotypes. But they are generally complicated and few available software implements

these methods. Since univariate association results are used, individuals with incomplete

observations still contribute to the analysis of available phenotypes. Simulations on all

continuous phenotypes indicated that the power of O’Brien’s method, one of the approaches

combining univariate association results is similar to regression and variable reduction

methods when the effects size are similar across multiple phenotypes [34].

All the approaches introduced here for population based approaches assume unrelated

individuals. When there are related individuals in the data, not accounting for family

structure can result in inflation or power loss. Extension of introduced-methods to account

for family data are possible. For example, one may add a random effect in mixed effects

model to account for family structure. For approaches combining univariate association

results, a model that account for family structure need be used in the univariate analyses.

In terms of computational cost, mixed effects models may be most time consuming since

maximization of likelihood is required.

Finally, it has been shown that traditional causal inference is useful in distinguishing true

pleiotropy from other mechanisms that also result in genetic association with multiple

phenotypes. A related causal inference in recent genetic literature is Mendelian

randomization test [43–45]. This approach can be used to infer whether an intermediate

phenotype has a causal effect on an outcome phenotype, using genetic marker(s) in

association with the intermediate phenotype. Unlike a phenotype that is subject to the

influence of uncontrolled environmental factors and/or reverse causation of another

phenotype, genotype(s) of genetic marker(s) is(are) free of influence of environmental

factors and reverse causation. For this approach, marker genotype(s) is(are) used as an

instrument variable. This test requires that there is no pleiotropy effect of the genetic marker

on outcome phenotype. Association of the genotype and outcome phenotype indicates that

the intermediate phenotype may causally affect the outcome phenotype.

5. URLs to Software Mentioned in This Paper

SAS: http://www.sas.com/,

R: http://www.r-project.org/,
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CUMP: http://cran.r-project.org/web/packages/CUMP/index.html,

coxme: http://cran.r-project.org/web/packages/coxme/index.html,

gee: http://cran.r-project.org/web/packages/gee/index.html,

survival: http://cran.r-project.org/web/packages/survival/index.html,

lme4: http://cran.r-project.org/web/packages/lme4/index.html,

PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/.
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Figure 1.
Causal diagram showing potential confounding mechanisms for the association between the

genotype of a genetic marker G and the phenotype Y. The variable K denotes the

intermediate phenotype, L the collection of known environmental and genetic risk factors,

and U the unknown environmental and genetic risk factors such as population stratification

and unknown genetic variants in linkage disequilibrium with G.
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Table 1

Relationship between MANOVA test statistics and canonical correlation for association test of multivariate

phenotype and a genetic marker.

MANOVA test f(ρ̂)

Roy’s largest root ρ̂2

Hotelling-Lawley trace ρ2̂/1 − ρ̂2

Wilks lambda 1 − ρ̂2

Pillai-Bartlett trace ρ2̂
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