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Abstract
Colorectal cancer (CRC) has an apparent hereditary 
component, as evidenced by the well-characterized 
genetic syndromes and family history associated with 
the increased risk of this disease. However, in a large 
fraction of CRC cases, no known genetic syndrome or 
family history can be identified, suggesting the pres-
ence of “missing heritability” in CRC etiology. The 
genome-wide association study (GWAS) platform has 
led to the identification of multiple replicable common 
genetic variants associated with CRC risk. These newly 
discovered genetic variations might account for a por-
tion of the missing heritability. Here, we summarize 
the recent GWASs related to newly identified genetic 
variants associated with CRC risk and clinical outcome. 
The findings from these studies suggest that there is a 
lack of understanding of the mechanism of many single 
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nucleotide polymorphisms (SNPs) that are associated 
with CRC. In addition, the utility of SNPs as prognostic 
markers of CRC in clinical settings remains to be further 
assessed. Finally, the currently validated SNPs explain 
only a small fraction of total heritability in complex-trait 
diseases like CRC. Thus, the “missing heritability” still 
needs to be explored further. Future epidemiological 
and functional investigations of these variants will add 
to our understanding of CRC pathogenesis, and may ul-
timately lead to individualized strategies for prevention 
and treatment of CRC.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: This review covers the recent advances in ge-
nome-wide association studies (GWASs) that have iden-
tified genetic variants associated with an altered risk of 
colorectal cancer (CRC). In this review, we summarize 
single nucleotide polymorphisms (SNPs) located in or 
near genes that play crucial roles in signal transduction 
pathways, genome stability, cell cycle control, and gene 
expression and regulation. SNPs that are found in gene 
desert regions are also discussed. The relationship be-
tween genetic variations and clinical outcomes in CRC 
is presented from epidemiological studies that have 
identified SNPs with methods other than GWASs.
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INTRODUCTION
It is estimated that 35% of  colorectal cancer (CRC) risk 
may be explained by heritable factors[1]. Heritable factors 
include well-characterized genetic syndromes inherited 
in a straightforward Mendelian manner, such as familial 
adenomatous polyposis and hereditary non-polyposis 
colorectal cancer, also known as Lynch Syndrome[2]. 
It is estimated that cumulatively, these and other well-
characterized genetic syndromes with Mendelian mode 
of  inheritance account for up to 10% of  all CRC cases. 
In an estimated further 25% of  cases, family history 
contributes to CRC risk in the absence of  one of  these 
identifiable genetic syndromes. The important role of  
family history in CRC risk is reflected in the guidelines 
published by the American College of  Gastroenterology 
and the American Cancer Society, which recommend 
starting screening colonoscopies at an age cutoff  that is a 
function of  family history[3].

The combined effect of  genetic syndromes and fam-
ily history may explain up to 30% of  CRC susceptibility, 
whereas the remaining genetic risk of  CRC may be ac-
counted for by a combination of  high-prevalence and 
low-penetrance of  common genetic variants. Recent 
advances using genome-wide association study (GWAS) 
have enabled the identification of  multiple CRC-related 
single nucleotide polymorphisms (SNPs)[4-10]. These 
genetic variants can be broadly classified into two cat-
egories: those that affect the risk of  developing CRC, 
and those that influence the clinical course of  CRC once 
established. In this review, we summarize these GWAS-
identified genetic variants - including functional charac-
terizations and implications for clinical applications - and 
discuss some of  the limitations and challenges of  these 
studies.

GENETIC VARIANTS AND CRC RISK
By comparing the distributions of  millions of  tagged 
SNPs between CRC patients (cases) and cancer-free 
populations (controls), a large number of  common ge-
netic variants have been identified under the “common 
disease-common variant” premise. To date, more than 
40 chromosome regions harboring common variants 
conferring altered CRC risk have been identified by the 
GWAS approach. These variants are dispersed amongst 
almost every human chromosome and the vast major-
ity of  them exhibit a small effect size (Table 1). Most of  
these loci confer a modest increase in CRC risk, typically 
with an OR of  less than 1.20. Among the 48 SNPs listed 
in Table 1, eight had an OR of  more than 1.20, of  which 
only three exhibited an OR of  more than 1.30. A higher 
effect size (OR = 2.64) was reported for rs6038071 lo-
cated upstream of  the CSNK2A1 gene and validated in 
familial CRC populations, although only under a recessive 
genetic model with least statistical power[11]. The major-
ity of  GWAS-identified CRC risk variants are involved in 
known biological pathways; however, a few highly signifi-
cant ones reside in gene desert regions, and the mecha-

nism by which these variants contribute to colorectal car-
cinogenesis remains unclear. Here, we summarize these 
variants in relation to their implications in pathways of  
signal transduction, genome instability, cell cycle control, 
and gene expression and regulation (Table 1). These path-
ways and related significant SNPs identified by GWASs 
are also depicted in Figure 1. This figure was produced 
by combining pathways from various studies[12-15].

Genetic variants in signal transduction pathways
CRC GWASs have identified significant variants in signal 
transduction pathways such as those mediated by WNT/
β-catenin, transforming growth factor (TGF)-β/bone 
morphogenetic protein (BMP), and mitogen-activated 
protein kinase (MAPK). Somatic mutations in the WNT/
β-catenin signaling pathway were discovered in more 
than 95% of  CRC patient tissues[16], suggesting abnor-
malities of  genes in this pathway may play an important 
role in colorectal carcinogenesis. The risk allele rs59336 
located in the intron of  TBX3 gene, a downstream target 
of  WNT/β-catenin pathway, has been associated with a 
significantly higher risk of  developing CRC[8]. Changes in 
β-catenin and SMAD7 expression can influence WNT/
β-catenin pathway signaling[17]. Moreover, perturbation 
of  SMAD7 expression has been documented to affect 
CRC progression[18]. Three genetic variants of  SMAD7 
in chromosome 8q21 - rs4939827, rs12953717 and 
rs4464148 - confer an increased CRC risk[5]. These find-
ings and other WNT/β-catenin variants were further in-
dependently identified and validated[6,19]. BMPs are closely 
related to signal transductions mediated by TGF-β. Two 
independent GWASs[9,20] identified 14 CRC risk loci, of  
which three were adjacent to genes involved in BMP-
mediated signaling transduction, including rs4444235 
on BMP4, rs961253 on BMP2, and rs4779584 on DNA 
family BMP antagonist GREM1. BMP-related variants 
were further confirmed in another independent CRC 
population[21]. The MAPK-mediated signaling pathway is 
known to be crucial for several cellular mechanisms such 
as cell proliferation, survival, and resistance to apoptosis. 
A GWAS using German familial CRC patients[9] observed 
that CRC risk increases significantly with an increase 
in the number of  risk alleles in seven genes involved in 
MAPK signaling. The molecular basis of  these observed 
associations remains undetermined.

Genetic variants related to genome instability
Genome instability is known to be both a contributor to, 
as well as a consequence of, colorectal carcinogenesis. 
There are several major genomic instability-related mech-
anisms in colorectal carcinogenesis, such as chromosomal 
instability, microsatellite instability, and CpG island meth-
ylator phenotypes[22]. Several loci involving these mecha-
nisms were identified recently by GWASs. For example, 
Peters et al[10] identified rs11903757, a significant SNP in 
an intergenic locus on chromosome 2q32.3, proximal to 
NABP1, which encodes human single-stranded DNA 
binding protein 2 and plays a role in a diverse array of  
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Table 1  Genome-wide association study-identified common genetic variants associated with colorectal cancer risk

SNP Loci Gene Full name of gene OR P value Pathway/function Ref. Method

Common biological pathway-related
rs12701937 7p14.1 GLI3 and 

INHBA
GLI family zinc finger 3 

and inhibin, beta A
  1.36 3.50E-05 MAPK signaling pathways [11] G

rs11014993 10p12.1 MYO3A Myosin ⅢA   1.22 2.00E-03 MAPK signaling pathways [11] G
rs59336 12q24.21 TBX3 T-box3   1.09 2.46E-06 Wnt pathway [10] G + M
rs4444235 14q22.2 BMP4 Bone morphogenetic 

protein 4
  1.09 1.95E-11 BMP pathway [21] G

rs1957636 14q22.2 BMP4 Bone morphogenetic 
protein 4

  1.08 1.36E-09 BMP pathway [21] G

rs16969681 15q13.3 GREM1 DAN family BMP 
antagonist

- 5.33E-08 BMP pathway [21] G

rs4779584 15q13.3 GREM1 DAN family BMP 
antagonist

- 5.27E-03 BMP pathway [21] G

rs11632715 15q13.3 GREM1 DAN family BMP 
antagonist

- 2.30E-10 BMP pathway [21] G

rs4939827 18q21 SMAD7 SMAD family member 7 1.2 7.80E-28 TGF-β1 pathway, cell arrest, 
cell proliferation

[5,6,19] G

rs12953717 18q21 SMAD7 SMAD family member 7   1.17 9.10E-12 TGF-β and Wnt signaling [5] G
rs4464148 18q21 SMAD7 SMAD family member 7   1.15 6.66E-08 TGF-β and Wnt signaling [5] G
rs961235 20p12.3 BMP2 Bone morphogenetic 

protein 2
  1.12 4.45E-16 BMP pathway [21] G

rs4813802 20p12.3 BMP2 Bone morphogenetic 
protein 2

  1.09 7.52E-11 BMP pathway [21] G

rs6038071 20p13 CSNK2A1 Casein kinase 2, alpha 1 
polypeptide

  2.64 3.00E-04 MAPK signaling pathways [11] G

Genome instability-related
rs11903757 2q32.3 NABP1 Nucleic acid binding 

protein 1
  1.16 9.50E-08 DNA repair, genomic 

stability
[10] G + M

rs647161 5q31.1 PITX1 Paired-like homeodomain 
transcription factor 1

  1.11 1.22E-10 RAS pathway; activate TP53; 
telomerase activity

[29] G + M

rs1321311 6p21 CDKN1A Cyclin-dependent kinase 
inhibitor 1A

1.1 1.14E-10 Microsatellite instability, 
DNA repair, genomic 

instability

[26] G + M

rs3824999 11q13.4 POLD3 Polymerase 
DNA- directed δ3

  1.08 3.65E-10 DNA mismatch and base-
excision repair

[26] G + M

rs78378222 17p13 TP53 Promotor region of TP53 
gene

  1.39 1.60E-04 TP53 [63] G

Cell cycle control-related
rs10911251 1q25.3 LAMC1 Laminin gamma 1   1.09 5.90E-08 Gene transcription [10] G + M
rs6691170 1q41 DUSP10 Dual-specificity 

phosphatase
  1.06 9.55E-10 Inactivates p38 and SAPK [9] M

rs6687758 1q41 DUSP10 Dual-specificity 
phosphatase

  1.09 2.27E-09 Inactivates p38 and SAPK [9] M

rs886774 7q31 LAMB1 Laminin β1   1.17 3.00E-08 Anchoring the single-
layered epithelium, 

ulcerative colitis

[33] G

rs3802842 11q23 POU2AF1 POU class 2 associating 
factor 1

1.1 5.80E-10 Growth of multiple 
myeloma cells

[6] G

rs10774214 12p13.32 CCND2 Cyclin D2   1.09 3.06E-08 Cell-cycle transition [29] G + M
rs3217810 12p13.32 CCND2 Cyclin D2 1.2 3.70E-07 Cell-cycle transition [10] G + M
rs3217901 12p13.32 CCND2 Cyclin D2 1.1 < 5.0E-7 Cell-cycle transition [10] G + M
rs11169552 12q13.13 DIP2 Disco-interacting protein 

2B
  1.09 1.89E-10 Cell morphogenesis [9] M

rs1728785 16q22 CDH1 E-cadherin,   1.17 2.80E-08 Epithelial restitution, repair 
following mucosal damage, 

active colitis

[33] G

rs10411210 19q13.33 RHPN2 Rho GTPase binding 
protein 2

  1.15 5.00E-09 Actin cytoskeleton [20] G + M

rs4925386 20q13.33 LAMA5 Large laminin A5   1.08 1.89E-10 BMP pathway [9] M
rs5934683 Xp22.2 SHR00M2 Shroom family member 2   1.07 7.30E-10 Cell morphogenesis [26] G + M
Gene expression and regulation-related
rs16892766 8q23.3 EIF3H Eukaryotic translation 

initiation factor 3, subunit 
H

  1.25 3.30E-18 Translation initiation [8] G

rs7014348 8q24 POU5FIP1 POU class 5 homeobox 1B   1.19 8.60E-26 Weak transcriptional 
activator

[6] G
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275 kb apart within a large poorly-defined haplotype 
block covering the DIP2 gene, which encodes a protein 
with putative role in epithelial cell fate determination[9]. 
Another SNP, rs10911251, is proximal to the promoter 
of  encoding laminin gamma 1 (LAMC1) and confers a 
significantly increased CRC risk by virtue of  influenc-
ing LAMC1 gene expression[10]. SNPs in two additional 
laminin genes (laminin beta1 in 7q31 and laminin alpha 5 in 
20q13) were also identified in recent CRC GWASs[9,21,33]. 
Laminins are known to be involved in a variety of  cel-
lular mechanisms such as regulation of  cell adhesion, dif-
ferentiation, and migration[34,35]. Another important cell 
cycle-related SNP was reported by Dunlop et al[26] using 
five GWAS datasets. This SNP, rs5934683, is on chromo-
some Xp22.2 and proximal to encoding shroom family 
member 2, a human homolog of  the Xenopus laevis APX 
gene that is known to have broad functions in cell mor-
phogenesis during endothelial and epithelial tissue de-
velopment[36]. Missense mutations in this gene have been 
detected in a large-scale screening for recurrent mutations 
in cancer cell lines[37]. The relationship between Xp22.2 
and CRC risk represents the first evidence for the role of  
X-chromosome variation in the predisposition to a non-
sex-specific cancer.

Genetic variants related to gene expression and 
regulation
Thousands of  transcription factors, cofactors, and chro-
matin regulators establish gene expression patterns and 
maintain specific cell stages in humans. Barrett et al[33] 
identified a significant association between CRC risk and 
SNP rs6017342 which maps to a recombination hot spot 
on chromosome 20q13 containing the 3’-untranslated 
region of  the HNF4A gene. HNF4A encodes the tran-
scription factor hepatocyte nuclear factor 4α, which regu-

cellular processes such as DNA replication, recombina-
tion, transcription, and maintenance of  genomic stabil-
ity[23-25]. Another variant, rs1321311, is in linkage disequi-
librium with a region that encompasses the CDKN1A 
gene[26], which encodes the p21 protein that mediates 
p53-dependent growth arrest, and affects multiple tumor 
suppressor pathways. The p21 protein also interferes 
with the activity of  proliferating cell nuclear antigen 
(PCNA)-dependent DNA polymerase, thereby regulating 
DNA replication and repair. It has been demonstrated 
that down-regulation of  p21 inversely correlates with 
microsatellite instability status[27,28]. Two additional CRC 
risk variants - rs248999 and rs647161 - could also po-
tentially interact with p21[26,29]. Other genome instability 
related SNPs include rs248999, located in an intron of  
the POLD3 gene which encodes a component of  the 
DNA polymerase-δ complex of  PCNA, and rs647161 
in a putative tumor suppressor homeodomain 1 gene 
PITX1, which has been reported to encode a protein that 
activates p53 protein and maintains genome stability[30,31].

Genetic variants related to cell cycle control 
Genetic pathways mediating cell-cycle control are com-
monly implicated in colorectal carcinogenesis. Polymor-
phisms of  several cell cycle-related genes have been re-
ported to be associated with CRC risk in recent GWASs, 
including two independent SNPs (rs3217810 and 
rs3217901) located in the introns of  CCND2. Jia et al[29] 
identified another SNP, rs10774214, located in 12q13.32, 
proximal to CCND2 in Asian populations. CCND2 en-
codes cyclin D2, a member of  the D-type cyclin family 
which plays a critical role in cell cycle control, specifically 
at the G1/S boundary by activating cyclin-dependent 
kinases (CDKs), primarily CDK4 and CDK6[32]. Two 
significant SNPs, rs7136702 and rs11169552, lie about 

rs7136702 12q13.13 ATF1 Activating transcription 
factor 1

  1.06 4.02E-08 Transcription [9] M

rs6017342 20q13.12 HNF4A Transcription factor 
hepatocyte nuclear factor 

4α

  1.11 3.20E-17 Transcription [33] G

Gene desert and others
rs7524102 1p36.12 - - 1.1 3.10E-07 - [33] G
rs16823149 1q31 Clorf21 - - 5.50E-08 - [11] G
rs4574118 2q12 PLGLA Plasminogen-like A, non-

coding RNA
- 1.80E-07 - [11] G

rs10936599 3q26.2 MYNN Myoneurn gene   1.08 3.39E-08 Unknown [9] M
rs4140904 4p15.3 NCAPC Non-SMC 

condensing Ⅰ complex, 
subunit G

- 1.40E-07 - [11] G

rs7758229 6q26-27 SLC22A3 organic cation transporter   1.28 7.92E-09 Transport of cationic drugs, 
toxins, and endogenous 

metabolism

[19] G

rs6983267 8q24 - -   1.18 1.51E-08 - [19] G
rs7837328 8q24 - -   1.17 7.44E-08 - [19] G
rs2209907 9q21.3 TLE4 Transducin-like enhancer 

of spit 4
- 3.40E-08 - [11] G

rs10795668 10p14 - -   1.12 2.50E-13 - [8] G
rs9548988 13q13.3 - - 1.1 2.70E-07 - [33] G
rs2423279 20p12.3 PLCB1 Phospholipase C-beta 1 1.1 6.64E-09 Unknown [29] G + M

SNP: Single nucleotide polymorphisms; G: Genome-wide association study; M: Meta-analysis; G + M: Combination of GWAS and meta-analysis; BMP: 
Bone morphogenetic protein; MAPK: Mitogen-activated protein kinase; TGF-β: Transforming growth factor; GWAS: Genome-wide association study.
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lates the expression of  multiple organ development-relat-
ed genes. In addition, HNF4A has also shown to interact 
with β-catenin to regulate cell-cell adhesion and gene 
transcription[38]. Another significant SNP, rs11169552, is 
close to activating transcription factor 1 (ATF1)[9], which 
belongs to the ATF subfamily and basic-region leucine 
zipper family. The protein product of  ATF1 influences 
cellular processes by regulating the expression of  many 
downstream target genes involved in cellular growth and 
survival. Previous studies have demonstrated that ATF1 
protein interacts with EWSR1 to form a unique chime-
ric fusion protein complex which is important in the 
development of  clear cell sarcoma[39,40]; however, its role 
in colorectal carcinogenesis remains to be established. 
Moreover, ATF1 may also form cyclin-dependent kinase 
3-mdiated activating transcription factor 1 complex that 
is critical in cellular proliferation and malignant transfor-
mation[41].

Genetic variants in the gene desert regions and others
Although the majority CRC risk variants are related to 
well-established biological pathways, the functions of  
some reported loci remain elusive. Various independent 
studies have reported that multiple SNPs in chromosome 
region 8q24 are associated with altered risk of  several 
solid tumor malignancies, including CRC. Three SNPs in 
this region, namely rs7014348, rs6983267, and rs7837328, 

have been significantly associated with CRC risk in recent 
GWASs[4,6,19,42]. In addition, variants in the 8q24 region 
have also been associated with cancers of  breast, prostate, 
ovarian, bladder, pancreas, and brain[6,42-49]. Nonetheless, 
majority of  the significant SNPs identified in this region 
are not located in, or close to, any well annotated genes 
because the 8q24 region is largely a gene desert. There-
fore, details of  the molecular mechanisms underlying the 
observed effect of  these SNPs remain largely unknown. 
It has been speculated that these SNPs may function 
through their long-range linkage with causal variants 
within other oncogenes or tumor suppressor genes. Oth-
ers have conjectured that some SNPs may influence gene 
expression through long-range cis-regulatory elements. 
Wasserman et al[50] used an in vivo bacterial artificial chro-
mosome enhancer-trapping strategy to scan the 8q24 gene 
desert region and found that a highly significant CRC risk 
variant, rs6983267, resides within an in vivo prostate en-
hancer whose expression mimics that of  the nearby MYC 
oncogene[51]. Another discovery illustrated a gene encod-
ing a novel non-coding RNA, CCAT2, also mapped to 
the 8q24 gene desert region. Encompassing the rs6983267 
SNP, this long non-coding RNA transcript is highly 
overexpressed in microsatellite-stable CRC, promoting 
tumor growth, metastasis, and chromosomal instability[52]. 
Another 8q24 locus, rs7014346, in high linkage disequi-
librium with rs6983267, resides within 3 kb upstream 
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of  POU5F1P1, a pseudogene of  POU5F1 that encodes 
an important stem cell-related protein regulating cellular 
pluripotency and self-renewal[53]. However, no functional 
implication of  this SNP has been reported and it remains 
to be assessed whether it influences the development of  
CRC stem cells, a suspected small portion of  cancer cells 
that are responsible for tumor progression and drug re-
sistance[54]. In all, the identification of  the large number 
of  bona-fide risk variants in gene desert regions indicates 
that candidate-gene and pathway-based strategies may 
not be adequate to capture and understand the complete 
spectrum of  common risk variants of  CRC. Unbiased 
genome-wide interrogation in adequately powered studies, 
combined with meta-analysis and functional characteriza-
tion is more likely to help us understand how common 
genetic variations play a role in CRC carcinogenesis.

GENETIC VARIANTS AND CRC CLINICAL 
OUTCOME
There have been reports of  genetic variants associated 
with the clinical outcome of  CRC patients which can be 
used to categorize patients with different survival pat-
terns or responses to specific treatments. However, the 
majority of  reported outcome-related SNPs are gener-
ated from candidate gene or pathway-based studies. As 

of  yet, no GWAS has been reported to examine a direct 
relationship between genetic variations and CRC clinical 
outcome. The findings of  some of  recently published 
studies are summarized in Table 2.

Three recent studies have examined the relationship 
between GWAS-identified CRC risk variants and the clin-
ical outcome of  the disease[55-57]. Based on the data from 
five GWAS populations of  2611 CRC patients, Phipps 
et al[55] assessed 16 SNPs and found rs4939827, a SNP in 
the SMAD7 gene, to be significantly associated with re-
duced overall survival of  patients (HR = 1.16, P = 0.002) 
and disease-specific survival (HR = 1.17, P = 0.005). Dai 
et al[56] used a Caucasian population of  285 stage Ⅱ or Ⅲ 
CRC patients receiving fluorouracil-based chemotherapy 
to evaluate 26 CRC risk variants derived from 10 GWAS-
identified chromosome loci. Although no SNP was found 
to be associated with the survival of  all patients, they 
found that different SNPs might be associated with the 
clinical outcome of  patients in specific stages. In another 
study of  380 Chinese CRC patients, Xing et al[57] reported 
two GWAS-identified CRC risk variants - rs4779584 on 
chromosome 15q13 and rs10795668 on 10p14 - were as-
sociated with reduced risk of  both death and recurrence. 
Moreover, stratified analysis indicated that the beneficial 
effect of  chemotherapy in this patient cohort was evi-
dent only in patients with the variant rs10795668, but not 

Table 2  Common genetic variants associated with colorectal cancer clinical outcome

Genes/loci     SNP1 Patient population Clinical outcome HR (95%CI) P  value Ref.

MTHFR glu429ala Mixed colorectal cancer (CRC) patients OS 1.71 (1.18-2.49)   0.005 [64]
ESR2 rs2987983 Postmenopausal women with CRC OS 0.77 (0.60-0.99)   0.002 [65]
SCN1A rs3812718 Stage Ⅱ/Ⅲ patients with adjuvant 5-fuorouracil (5-FU) 

based chemotherapy
TTR 2.26 (0.89-5.70)   0.039 [66]

SMAD7 rs4939827 Mixed CRC patients OS 1.16 (1.06-1.27)   0.002 [55]
mir608 rs4919510 Stage Ⅲ patients with 5-FU based chemotherapy RE 1.65 (1.13-2.41) 0.01 [67]

rs4919510 OS 1.96 (1.19-3.21)   0.008
15q13.3 rs10318 Stage Ⅱ patients with 5-FU based adjuvant chemotherapy ER 2.98 (1.27-6.99)   0.012 [56]
11q23.1 rs10749971 Stage Ⅲ patients with 5-FU based adjuvant chemotherapy ER 0.46 (0.27-0.80)   0.006
20p12.3 rs961253 ER 0.46 (0.22-0.96)   0.038

OS 0.24 (0.09-0.68)   0.007
20p12.3 rs355527 ER 0.48 (0.23-0.99)   0.048

OS 0.29 (0.10-0.81)   0.019
18q21.1 rs4464148 OS   4.34 (1.46-12.89)   0.008
8q24.21 rs6983267 OS   4.20 (1.13-15.64)   0.032

rs10505477 OS   4.20 (1.13-15.64)   0.032
15q13 rs4779584 Chinese CRC patients OS 0.33 (0.15-0.72)   0.007 [57]
10p14 rs10795668 RE 0.55 (0.30-1.00) 0.05
pre-mi-423 rs6505162 Mixed CRC patients OS 2.12 (1.34-3.34)   0.001 [68]

rs6505162 RFS 1.59 (1.08-2.36)   0.019
pre-mi-608 rs4919510 RFS 0.61 (0.41-0.92)   0.017
CLOCK rs3749474 Resected CRC patients OS 0.55 (0.37-0.81)   0.003 [69]

rs1801260 OS 0.31 (0.11-0.88) 0.03
SCD rs7849 Stage Ⅱ patients with 5-FU based adjuvant chemotherapy RE 2.89 (1.54-5.41)   0.001 [70]
VEGF -2578 Stage Ⅱ TTR 2.01 (1.13-3.56) 0.02 [71]

-460 TTR 0.50 (0.29-0.89) 0.02
KDR rs10013228 Resected CRC patients RE 0.53 (0.30-0.95)   0.032 [72]
CD44 rs8193 Stage Ⅲ and high risk stage Ⅱ patients with 5-FU based 

chemotherapy
TTR 0.51 (0.35-0.93)   0.022 [73]

ALCAM rs1157 TTR 0.56 (0.33-0.94)   0.024
LGR5 rs17109924 TTR 0.33 (0.12-0.90)   0.023

1Only the most significant single nucleotide polymorphism (SNP) was shown. OS: Overall survival; RE: Recurrence; RFS: Recurrence free survival; TTR: 
Time to recurrence.
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in those with the wild-type genotype of  this SNP. This 
indicates that rs10795668 may potentially be useful in 
selecting patients for chemotherapy treatments. Taken to-
gether, these findings suggest that genetic variants associ-
ated with CRC risk may also predict the clinical outcome 
of  CRC patients. However, these studies are limited by 
small sample size and heterogeneous patient population 
and treatments. Therefore, their findings need to be in-
terpreted with caution and warrant further validations.

In addition to those GWAS-identified CRC risk loci, 
other epidemiological studies have also identified genetic 
variations associated with clinical outcome of  CRC (Table 
2). All of  these studies are based on candidate gene or 
pathway-based approaches instead of  GWAS. This is 
largely because compared to case-control studies, clinical 
outcome studies are generally based on cancer patients 
with highly heterogeneous characteristics and treatments 
that confound the very modest effect of  genetic variants 
on patient outcomes. This issue could be partly resolved 
by the use of  clinical trial patients that have more homo-
geneous characteristics and treatments, or consortium 
studies with much larger number of  patients.

CONCLUSION
Findings from the first wave of  GWASs seem to promise 
greater understanding of  the genetic component of  CRC 
pathogenesis on a molecular level. However, there are 
several major limitations in current GWAS approaches 
which may also pose challenges for future studies. First, 
the vast majority of  currently identified SNPs lack known 
functional significance. Thus, whether they are causal 
variants or just surrogates that are in linkage disequilib-
rium with the functional loci remains largely unknown. 
Therefore, a major task ahead is to conduct fine-mapping 
in the immediate regions surrounding these loci, and 
narrow down the regions of  association to pinpoint the 
causal variants[58]. Second, although the statistical signifi-
cance of  most GWAS-identified SNPs is high, the utility 
of  these bona-fide variants in a clinical setting to predict 
the risk of  developing cancer remains to be assessed. 
This is largely due to the modest effect size associated 
with most of  the specific individual variants. Wacholder 
et al[59] reported a very modest increase in the power to 
predict breast cancer risk by adding 10 highly significant 
GWAS-identified breast cancer risk variants to the com-
monly recognized self-reported risk factors. Moreover, 
they found that the level of  predicted breast cancer risk 
among most women barely changes by the addition of  
the GWAS-generated genetic information. Similarly, Park 
et al[60] reported that the combined use of  all current ge-
netic information derived from GWASs only has modest 
discriminative power (about 63.5% area under curve) in 
breast, prostate, and colorectal cancers. Therefore, fur-
ther identification of  additional low-penetrance common 
variants, especially the causal variants, is necessary to 
improve the clinical utility of  GWAS-generated genetic 
information. Third, it is estimated that the currently vali-

dated SNPs in aggregate still explain only a small fraction 
of  total heritability in most complex-trait diseases[61]. Sev-
eral possible reasons may further account for this “missing 
heritability”. These include unidentified common vari-
ants, the unexplored territory of  rare genetic variants that 
have high-penetrance but low-prevalence, and the largely 
un-assessed gene-gene and gene-environment interac-
tions[21,62]. All of  these issues could be partially addressed 
by increasing population size and thus statistical power. 
Thus, meta-analysis and combined analysis of  multiple 
study populations are effective means to tackle these is-
sues in the near future. In addition, using novel technolo-
gies such as the next generation sequencing to identify 
rare causal variants may also help address the missing 
heritability.

Despite these limitations, the identification of  a host 
of  specific genetic variants associated with elevated CRC 
risk through the GWAS approach does suggest the pos-
sibility of  tailoring colorectal screening strategies such as 
age at first colonoscopy, and interval between surveillance 
colonoscopies. By better appreciating the mechanism by 
which these genetic variants alter CRC risk, morbidity 
and mortality could be reduced in higher risk sub-groups 
by more aggressive surveillance and cost could be re-
duced in low-risk groups requiring less intensive testing.
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