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Abstract

Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of

tongue tumors. However, precise localization of the surgical target and adjacent critical structures

can be challenged by the highly deformed intraoperative setup. We propose a deformable

registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative

CT or MR images with the intraoperative scene. The registration method combines a Gaussian

mixture (GM) model followed by a variation of the Demons algorithm. First, following

segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM

model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid

deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm

applied to distance map transforms of the (GM-registered) preoperative image and intraoperative

CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target

registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual

information (NPMI). Retraction of the tongue in the TORS operative setup induced gross

deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps

was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI

was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue

and in proximity to the hyoid (by virtue of GM registration of surface points on these structures).

The Demons step refined registration primarily in deeper portions of the tongue further from the

surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to

multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the

3D image registration to the fusion of image and planning data in stereo-endoscopic video is

anticipated to support safer, high-precision base of tongue robotic surgery.
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1. INTRODUCTION

Head and neck carcinoma is the sixth most common cancer worldwide and afflicts

approximately half a million people each year (Parkin et al., 2005). In the United States, the

incidence of cancers involving the oral cavity and pharynx has increased for at least six

consecutive years (2007–2012) as estimated by the American Cancer Society (Jemal et al.,

2007, Jemal et al., 2008, Jemal et al., 2009, Jemal et al., 2010, Siegel et al., 2011, Siegel et

al., 2012). In 2012, more than 40,000 individuals were diagnosed with oropharyngeal

cancer, resulting in nearly 8000 deaths (Siegel et al., 2012). Traditional surgical approaches

are invasive and involve high morbidity, including transcervical and transmandular

approaches with need for tracheotomy and feeding tube placement. Radiation with or

without chemotherapy offers an adjuvant or alternative treatment but may result in higher

rates of gastrostomy tube dependence due to chronic mucosal injury and tissue fibrosis

(Weinstein et al., 2010). Transoral robotic surgery (TORS) provides a minimally invasive

approach to resection of oropharyngeal cancer with reduced morbidity, elimination of

tracheostomy, decreased operative and hospitalization time, and improved postoperative

function (swallowing) in comparison to open procedures (Van Abel and Moore, 2012), and

reduced toxicity in comparison to chemo-radiotherapy (Weinstein et al., 2010). However,

precise localization of the surgical target (tumor) and adjacent critical tissues (lingual nerves

and arteries) can be challenging because these tumors tend to have significant submucosal

extension that are hidden from direct visualization. Furthermore, preoperative CT and/or

MR typically acquired in natural pose (neck in neutral position, mouth closed, and tongue in

repose), to define and visualize such structures before surgery are of limited value for

precise localization in the highly deformed intraoperative setup (neck flexed, mouth open,

and tongue retracted). Acquisition of the preoperative images in an anatomical pose similar

to the intraoperative setup would be impractical and painful (without anesthesia) due to

instrumentation and retraction of the tongue. Intraoperative cone-beam computed

tomography (CBCT) acquired with the patient in the operative setup could be used to

account for such deformation.

Addition of a C-arm capable of high-quality intraoperative 3D imaging to an already

crowded operating workspace is a challenge to collision-free setup. Integration of the robot

and C-arm in a manner permitting simultaneous operation during the procedure is an area of

ongoing research, offering the benefit of CBCT and fluoroscopy on demand during

intervention. A simple, feasible clinical workflow for CBCT-guided TORS is illustrated in

figure 1, bringing the C-arm and robot to the operating table at distinct points in the

procedure. Specifically, following patient setup (but prior to docking the robot), C-arm

CBCT is acquired as a basis for deformable registration of preoperative image and planning

data to the deformed, intraoperative context. Then, the C-arm is removed from tableside, and

the robot is docked and proceeds normally (but with the benefit of the CBCT image and

Reaungamornrat et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



deformably registered preoperative data for localization and guidance). Since the visibility

of soft tissues can be fairly limited in CBCT due to noise and artifacts, direct localization of

the target and critical tissues can be difficult. To overcome this challenge, the proposed

registration method uses CBCT as the basis to transform preoperative images and planning

data to the intraoperative scene, permitting visualization of such tissues in the (geometrically

registered) preoperative images, in planning data registered and overlaid on CBCT, and/or

by registration and fusion of planning data in stereo-endoscopic video.

Registration algorithms generally can be considered in two broad categories: feature-based

and intensity-based approaches. Feature-based approaches employ points, curves, surfaces,

and/or finite elements (Ong et al., 2010) in computing the deformation, rather than image

intensities directly. They therefore tend to operate independently of the underlying imaging

modality and can be robust against image artifacts; however, they can encounter difficulty in

feature detection and correspondence. The iterative closest point method, for example, is a

widely used, relatively fast point matching algorithm (Besl and McKay, 1992, Lange et al.,

2003, Woo Hyun et al., 2010, Woo Hyun et al., 2012) but requires one-to-one

correspondence between point features that can be difficult to achieve in real anatomy.

Other studies (Tsin and Kanade, 2004, Jian and Vemuri, 2005, Wang et al., 2008, Wang et

al., 2009, Chen et al., 2010, Tustison et al., 2011, Jian and Vemuri, 2011) have incorporated

robust statistics and information-theoretic measures to account for such unknown

correspondence, outliers, and noise in point set registration. Jian and Vemuri proposed a

robust point set registration based on the statistically robust L2 measure of the Gaussian

mixture (GM) representations of the point sets (Jian and Vemuri, 2005, Jian and Vemuri,

2011), allowing various transformation models (e.g., rigid, affine, thin-plate spline (TPS),

Gaussian radial basis functions, and B-Spline) in a computationally efficient manner due to

the closed-form solution of the L2 distance between two GMs.

Intensity-based approaches, on the other hand, maximize an image similarity metric and can

apply to single-modality (e.g., CT-to-CT) or multi-modality (e.g., MR-to-CT) image

registration. Implementations using statistical measures such as mutual information (MI)

(Wells Iii et al., 1996, Mattes et al., 2003, Coselmon et al., 2004) and its normalized variants

(Studholme et al., 1999, Rueckert et al., 1999, Rohlfing et al., 2003, Rohlfing et al., 2004)

can be modality-independent (i.e., similarity assessed in terms of image statistics, rather than

image intensity directly) but can be computationally expensive due to the estimation of

image intensity distributions at every iteration during optimization. Algorithms based on

sum of square differences (SSD) or absolute difference (AD) of intensity values, by

comparison, are relatively fast and parallelizable but require images with consistent intensity

values. To exploit the efficiency of SSD or AD type measures, input images can be encoded

to a consistent intensity space in which voxel values describe some characteristic of the

original images. The distance transformations (DT), for example, encode each voxel by the

shortest distance to the surface of the structure of interest, providing shape information (e.g.,

boundary and medial line) that can be used as a basis for registration, especially for low-

contrast images (e.g., subtle soft tissue variations in CT or CBCT). In (Cazoulat et al.,

2011), the distance transform computed on segmented organs of interest in CT planning

images for prostate radiotherapy were registered to daily CBCT using the Demons algorithm
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for surface matching between organ contours. Demons operating on distance map

transforms can therefore offer a computationally fast algorithm applicable to images varying

in image intensity (including CT, MR, and/or CBCT), provided a segmentation from which

the distance transform can be computed. Demons is intrinsically fast (Sharp et al., 2007,

Vercauteren et al., 2009, Nithiananthan et al., 2009, Nithiananthan et al., 2011) and

analogous to minimization of SSD in an approximate gradient descent scheme (Pennec et

al., 1999, Cachier et al., 1999). Variants of the Demons algorithm have been widely applied

in image-guided interventions, including image-guided head-and-neck surgery

(Nithiananthan et al., 2009, Nithiananthan et al., 2011, Nithiananthan et al., 2012), image-

guided neurosurgery (Risholm et al., 2009, Risholm et al., 2010), head-and-neck

radiotherapy (Hou et al., 2011), and prostate radiotherapy (He et al., 2005, Godley et al.,

2009). Castadot et al. conducted a study comparing the accuracy of deformable registration

methods, including Demons, free-form deformation, and level-set variants for head and neck

adaptive radiotherapy (Castadot et al., 2008), showing Demons variants to perform well in

terms of geometric volume overlap and image similarity.

To resolve the large deformation associated with the operative setup in transoral base of

tongue surgery as opposed to patient positioning for pre-operative CT or MR imaging, we

propose a deformable registration method that hybridizes a feature-based initialization

(using GM models) followed by a Demons refinement (operating on distance transforms).

The combined registration is intensity-invariant and thereby allows registration of

preoperative CT and/or MR to intraoperative CBCT. Other aspects of the system, such as

image quality and dose in C-arm CBCT (Daly et al., 2006, Fahrig et al., 2006, Bachar et al.,

2007, Daly et al., 2011, Schafer et al., 2011, Schafer et al., 2012) and overlay of registered

planning data in stereoscopic video (Liu et al., 2012), are the subject of other work. Section

2 details the registration method, and Sections 3 and 4 analyze the resulting registration

performance in cadaver studies, with a detailed sensitivity analysis of algorithm parameters

provided in the Appendix. Section 5 concludes with discussion of the advantages and

limitations of the registration method and outlines future work required for clinical

translation.

2. REGISTRATION METHODS

2.1 Overview of the Method

A deformable registration framework was implemented to solve the nonrigid transformation

from the moving image (pre-operative CT or MR, denoted I0) to the fixed image

(intraoperative CBCT, denoted I1). The framework comprises four main steps as shown in

figure 2 and summarized as follows. First, the volume of interest (VOI) (i.e., tongue and

hyoid bone) is segmented in both the moving image (I0) and the fixed image (I1). The

resulting segmentation “masks” provide surface meshes from which point clouds are

defined. Second, GM registration is used to compute a rigid initial alignment of point clouds

(GM rigid), followed by a deformation (GM nonrigid) using a thin-plate spline. The use of

continuous probability distributions to model the discrete point sets and minimization of L2

distance as a measure of distribution similarity makes the algorithm invariant to

permutations of points within the set (Kondor and Jebara, 2003) and less sensitive to
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outliers, missing data, and unknown correspondences. Finally, a fast-symmetric-force

variant of the Demons algorithm (Vercauteren et al., 2007) is applied to the DT images

(Maurer et al., 2003) computed from the moving and fixed masks after GM registration.

Because the Demons step operates on the DT images (and not directly on image intensities),

the entire registration process is independent of image intensity and therefore allows

registration of preoperative CT or MR to intraoperative CBCT. The proposed registration

framework was implemented based on the Insight Segmentation and Registration Toolkit

(ITK) (Ibanez et al., 2002, Ibanez et al., 2005) and open-source point set registration using

GM (Jian and Vemuri, 2011). The four steps in the registration framework are detailed in the

following sections, and notation of parameters pertinent to each step is summarized in table

I.

2.2. Segmentation of Model Structures

The VOI is first segmented in both I0 and I1. Automatic segmentation can be challenging

due to image artifacts and the low contrast of soft tissues in CT or CBCT, and simple region

growing and active contour methods were found to result in erroneous segmentation

boundaries. Advanced segmentation algorithms (Commowick et al., 2008, Qazi et al., 2011,

Shyu et al., 2011, Zhou et al., 2011) are areas of ongoing research, and since the focus of

initial work reported below was the registration process (not the segmentation process), we

employed semi-automatic segmentation to identify the VOIs (denoted S0 and S1) by active

contour region growing refined by manual contouring. Segmentation included the superior

surface of the tongue (air-tissue boundary) and extended laterally within the bounds of the

mandible (bone-tissue boundary) and inferiorly to the hyoid (more challenging soft tissue

boundaries) using ITK-Snap (Yushkevich et al., 2006). A fill-holes operation was applied,

followed by isosurface extraction based on Delaunay triangulation (Gelas et al., 2008b) to

generate meshes of the VOI from S0 and S1. The meshes were downsampled using

incremental edge-collapse decimation (Gelas et al., 2008a) for computational efficiency.

Finally, the mesh vertices (  and ) were extracted as input to GM registration.

2.3. Gaussian Mixture Registration

2.3.1 Gaussian Mixture Models—The GM registration steps (i.e., GM rigid and

nonrigid) started with “normalization” of the moving and fixed point sets (  and ) to

provide initial alignment and scaling of each set such that each point can be treated

approximately equally (Hartley, 1997, Tustison et al., 2011). To normalize , for example,

each point  was transformed to an object-centered coordinate system by subtracting the

centroid location ( ), followed by isotropically scaling with (Kanatani, 2005, Tustison et

al., 2011):

(1)

where  represents a 3×n matrix of the moving points,  is a 3×n matrix whose column

vector elements are , and ||·||F denotes the Frobenius norm.

Reaungamornrat et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



GM models are widely used to describe the underlying distribution of point sets (Wang et

al., 2008, Myronenko and Song, 2010, Sandhu et al., 2010, Jian and Vemuri, 2011). A GM

is defined as a linear combination of Gaussian densities:

(2)

where x is a position vector in R3, Θ = (w1, …, wn, μ1, …, μn, Σ1, … Σn) is a set of mixture

parameters of the n Gaussian density components, wi is a weighting coefficient satisfying

, and φi(x|μi, Σi) is a Gaussian component i:

(3)

where μi is a mean vector for component i, Σi is a 3×3 covariance matrix, and |·| denotes the

determinant. We modeled each normalized point set using an overparameterized GM (Jian

and Vemuri, 2011). The set of normalized moving points P0 = [x0,1, x0,2, … x0,n], for

example, was modeled as a linear combination of n equally-weighted isotropic Gaussian

densities:

(4)

where the 1/n term implies equal weighting, and φ0,i(x|x0,i, σ2I) denotes an isotropic

Gaussian component i with a mean vector marking a point x0,i in P0 and a width of σ (units

mm). The full covariance matrix (including off-diagonal elements) was not needed for the

overparameterized mixture, since the combination of a large number of Gaussian

components is sufficient to capture the underlying unknown distribution of P0. Similarly, the

GM representation of P1 was the sum of n equally-weighted isotropic Gaussian densities

with isotropic covariance σ2I.

A statistically robust L2 distance was used to measure dissimilarity between two mixtures,

defined as (Williams and Maybeck, 2006, Jian and Vemuri, 2011, Scott, 2001):

(5)

where Θ0(T) is a set of mixture parameters of P0 after transformation T, and Θ1 is the set of

mixture parameters for P1. The L2 distance cost function only involved terms coupling φ(x|

Θ0(T)), since φ(x|Θ1) was fixed during optimization. The remaining integrals were further

simplified using the Gaussian identity ∫ φ(x|μ0, Σ0) φ(x|μ1, Σ1) dx = φ(0|μ0 – μ1, Σ0 – Σ1) as

in (Wand and Jones, 1995) to Gaussian kernels, which were evaluated in closed form (Jian

and Vemuri, 2011).

2.3.2 GM Rigid—The registration process is initialized by rigid transformation computed

in the GM rigid step. The rigid transformation (TR,t) describes the rotation (R) and

Reaungamornrat et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



translation (t) of P0 with respect to P1 and can be applied to a normalized moving point x0,i

in P0 as:

(6)

TR,t was estimated by minimizing the L2 distance between the GM models of P0 and P1.

Since the L2 norm of the moving mixture is invariant under rigid transformation (i.e., ∫ φ(x|

Θ0(TR,t))2 dx = ∫ φ(x|Θ0)2 dx, the cost function only involved the inner product between the

two mixtures:

(7)

where Θ0(TR,t) is a set of the GM parameters for the rigidly transformed mixture of P0, and

Θ1 is the set of the GM parameters of the mixture of P1. Minimizing d in equation (7)

maximizes the similarity between the two mixtures, since the integral represents the overlap

of the two mixtures (Williams and Maybeck, 2006).

Minimizing the cost function was performed iteratively using the limited memory Broyden-

Fletcher-Goldfarb-Shanno method with bounded constraints (L-BFGS-B) (Byrd et al., 1995,

Zhu et al., 1997) in a hierarchical multiscale scheme to improve robustness against local

minima. The nominal number of hierarchical levels was set to 3, and the number of

iterations per level was [10, 20, 30]. The coarser levels involved a larger width of the

distribution ( ), and the width at subsequent levels ( ,ℓ > 1) was reduced at

each level. An increased number of iterations was used at the finer levels to better capture

the underlying point sets, since execution time per iteration at each level was approximately

equal - i.e., the execution time depended on the number of points (which was similar at

every level), not on the width of the distribution. (See also the sensitivity analysis of such

parameters in the Appendix.)

The final transformation (TGMRigid) is the concatenation of the inverse normalization of ,

the resulting rigid transformation (TR,t), and the normalization of :

(8)

where TGMRigid is a 3×4 affine transformation matrix, ω0 and ω1 are the scales of  and

, and  are the centroids of  and , R is the rotation matrix, and t is the translation

vector of TR,t.

2.3.3 GM Nonrigid—Following the GM rigid step, deformation of the point sets was

computed using the GM nonrigid registration (step ➂ in figure 2). The deformation defined

a nonrigid mapping from the moving point set after GM rigid ( ) to the fixed point

set ( ). Normalization of  comprised a scale of ω1 (equal to the scale of ) and a

centroid of . The final deformation was a concatenation of the normalization and
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TPS transformation estimated using GM models of the point sets after normalization

(P0|GMRigid and P1). The TPS transformation was parameterized by affine components (A

and t) and a warp component (WU) which can be applied to each point in P0|GMRigid as:

(9)

where x0,i|GMRigid is a point i in P0|GMRigid, A is a 3×3 affine coefficient matrix, t is a 3×1

translation vector, W is a 3×n warp coefficient matrix, and U(x0,i|GMRigid) = [U(x0,i|GMRigid,

x0,k|GMRigid)] is a n×1 vector of TPS basis functions. The TPS basis function for 3D was

defined as U(qi, qk) = −||qi – qk|| where qi and qk are points in R3 and ||·|| is the Euclidean

distance (Jian and Vemuri, 2011).

The TPS was estimated with the regularization term involving bending energy proportional

to WKWT(Bookstein, 1989, Belongie et al., 2002). The kernel K is the n×n matrix containing

ki,j = U(x0,i|GMRigid, x0,j|GMRigid). The cost function was the combination of a distance

measure and the bending energy represented by:

(10)

where Θ(TW,A,t) is the set of GM parameters of the warped mixture of P0|GMRigid, and Θ1 is

the set of GM parameters of the mixture of P1.

The cost function was iteratively minimized using the limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) method (Liu and Nocedal, 1989) in a hierarchical multiscale

manner, with the number of levels fixed at three and the number of iterations per level fixed

to [50, 150, 300]. In addition to adjusting the width of the Gaussian kernel ( ) in

each step of the hierarchy, the strength of regularization was also adjusted at each level

though variation of λGMNonRigid. The larger the value of λGMNonRigid, the smoother the

resulting deformation (i.e., the more affine and less deformed).

The final deformation (TGMNonRigid) was the concatenation of the inverse normalization of

, the resulting TPS transformation (TW,A,t), and the normalization of :

(11)

where  is a point i in , ω1 and  are the scale and centroid of , A and t
are the affine components of TW,A,t, WUis the warp component of TW,A,t, TGMRigid is the GM

rigid transformation as in equation (8), and  is the centroid of . The

resulting TGMNonRigid was used to interpolate a displacement for each voxel in the moving

volume to a corresponding voxel in the fixed volume, with the GM nonrigid displacement

field denoted DGMNonRigid.
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2.4. Demons Registration

2.4.1 Distance Transformation—A DT of the segmented mask assigns each voxel a

value given by the distance to the closest feature voxel (i.e., to voxels on the boundary of the

mask). Although DT is fairly computationally expensive, we used the fast DT algorithm of

Maurer et al. based on dimensionality reduction and partial Voronoi diagram construction

(Maurer et al., 2003). DTs were computed for both the fixed mask (S1) and the moving mask

after GM rigid and nonrigid registration (denoted simply as S0|GM). As a result, voxels in the

deeper aspects of the tongue (away from the boundary) exhibit increasing DT values. Voxels

at the boundary and external to the mask were assigned to zero. A histogram equalization

transform (Nyul et al., 2000) was applied to the DT images prior to Demons registration to

normalize voxel values (i.e., image intensity in the DT image).

2.4.2 Multi-resolution Demons Registration—Demons provides a non-parametric

mapping of voxels from the moving image space to the fixed image space (Thirion, 1998)

described as a displacement field DDemons containing a displacement vector for each voxel.

Calculation of displacement vectors was based on an optical flow equation assuming small

displacements and a similar intensity space between images (Thirion, 1998, Sharp et al.,

2007). The Demons process alternates between iterative estimation of an update field and

regularization using Gaussian filters to impose smoothness on deformation.

Variants of Demons have been proposed to increase the convergence rate (Vercauteren et

al., 2007), reduce the dependence on image intensities (Guimond et al., 1999, Nithiananthan

et al., 2011), improve the update field computation (He et al., 2005, Vercauteren et al.,

2009), and incorporate a stopping criterion (Nithiananthan et al., 2009, Peroni et al., 2011).

We used the symmetric force variant (i.e., an update field computed from the average

gradient of the fixed image and the moving image) (Thirion, 1995, Vercauteren et al., 2007)

and the hybrid regularization scheme (Cachier et al., 2003). Vercauteren et al. improved the

convergence rate of the symmetric force variant by using the efficient second-order

minimization — referred to as fast-symmetric force Demons (Vercauteren et al., 2007). An

update displacement vector at a voxel x of an update field  at the current iteration it is

computed for the symmetric force variant as:

(12)

where  is an update displacement vector at the voxel x at the iteration it,

A is the fixed image (in this work, the DT image of the fixed mask, DT[S1]), B is the moving

image (i.e., the DT image of the moving mask after GM registration, DT[S0|GM]), the term |

B(it)(x) − A(0)(x)| estimates the image difference (including noise), and ∇⃗A(0)(x) and ∇⃗B(it)(x)

are gradient images of A and B, respectively. The normalization K (Vercauteren et al., 2009,

Cachier et al., 2003) is:

(13)
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where the mean squared value of the voxel size of DT[S1] makes the force computation

invariant to voxel scaling at each multi-resolution level (detailed below) (Nithiananthan et

al., 2009), and MSL is the maximum update step length (Godley et al., 2009), which was

bounded by  (Cachier et al., 1999, Vercauteren et al., 2009).

Following estimation of the update field, a regularization is applied incorporating two

deformation models - fluid and elastic models (Cachier et al., 2003) as follows:

(14)

where * denotes convolution,  is the estimated displacement field at the current

iteration it,  is the update field at the current iteration, GσUpdateField is a Gaussian

filter with a width of σUpdateField, and GσDisplacementField is a Gaussian filter with a width of

σDisplacementField. The kernel GσUpdateField results in a fluid-like deformation model capable

of resolving large deformations but usually does not preserve topology. The kernel

GσDisplacementField, on the other hand, regularizes the displacement field and results in

elastic-like deformation that preserves topology but may not resolve large deformations

(Cachier et al., 2003). The original Demons (Thirion, 1998) could be considered as an

elastic deformation model since only the displacement field was regularized.

A multiresolution pyramid was used to improve robustness and increase computational

efficiency (Cachier et al., 1999, He et al., 2005, Nithiananthan et al., 2009). Both DT[S0|GM]

and DT[S1] were repeatedly downsampled to coarser resolution by a factor of 2 (e.g.,

downsampling factors of 8, 4, 2, and 1). The convergence criterion was based on the percent

change in mean square error (MSE) of voxel values between the current and previous five

iterations (Peroni et al., 2011), specifically MSE less than a threshold of PT(1) = 0.01% for

the coarsest level and PT(ℓ) = PT(ℓ−1) × 4 for the subsequent levels ℓ > 1.

3. EXPERIMENTAL METHODS

3.1. Cadaver Setup

Registration accuracy and the sensitivity to various algorithm parameters were analyzed in

cadaver studies. A cadaver head specimen of a male adult without teeth was lightly

preserved using a phenol-glycerin solution to maintain flexibility of joints and soft tissues.

Six 1.5 mm diameter Teflon spheres were glued to the surface of the tongue (figure 3), and

eight 1.5 mm Teflon spheres were implanted within the tongue (figure 4). The Teflon

spheres provide unambiguous fiducial markers for analysis of target registration error

(TRE). The cadaver was mounted on a CT-compatible board incorporating nylon string to

open the mouth and retract the tongue in a manner simulating the TORS setup as shown in

figure 3. The setup placed the anatomy in a realistic intraoperative pose but did not include

the mouth gag and tongue retractor typical of a clinical TORS procedure that would be

expected to cause additional artifact in CBCT. Modifying such devices to a CT-compatible

form (e.g., Al, Ti, or carbon fiber) and application of various artifact reduction techniques

(under development) were not considered in the current experiments, since the focus was the
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registration process, assuming a CBCT image of quality sufficient for definition of the S1

mask.

3.2. Image Acquisition

CT images (I0) of the cadaver in preoperative state (mouth closed and tongue in repose)

were acquired (Philips Brilliance CT, Head Protocol, 120 kVp, 277 mAs) and reconstructed

at (0.7×0.7×1.0) mm3 voxel size. An example sagittal slice of the preoperative CT is shown

in figure 4. Subsequently, intraoperative CBCT images (I1) were acquired in intraoperative

state (mouth open and tongue extended by nylon strings) using a mobile C-arm prototype

(100 kVp, 230 mAs) and reconstructed at (0.6×0.6×0.6) mm3 voxel size. The mobile C-arm

(figure 3(a)) incorporated a flat-panel detector, motorized rotation, geometric calibration,

and 3D reconstruction software (Siewerdsen et al., 2005, Siewerdsen et al., 2007,

Siewerdsen, 2011). A sagittal slice CBCT image with the head in the intraoperative pose is

shown in figure 4.

3.3. Analysis of Registration Accuracy

3.3.1. Entropy Correlation Coefficient and Normalized Pointwise Mutual
Information—Mutual information (MI) is a similarity metric common to multimodality

image registration since it does not assume functional relations between intensity spaces. MI

can be measured in terms of the Shannon entropies. The join entropy of the images A and B,

for example, is represented by H(A, B) = − Σi p(i) log p(i) where p(i) is a joint probability

density and i = [iA, iB] is a pair of intensities from two corresponding voxels in A and B.

Since MI lacks a fixed upper bound and is sensitive to changes of the overlapping region

between the two images (Maes et al., 1997, Studholme et al., 1999, Pluim et al., 2000, Pluim

et al., 2001, Maes et al., 2003, Pluim et al., 2003), two normalized variants of MI have been

introduced: i) normalized mutual information (Studholme et al., 1999); and ii) entropy

correlation coefficient (ECC) as (Maes et al., 1997, Maes et al., 2003):

(15)

ECC ranges from 0 (independence) to 1 (dependence) with direct relation to NMI as ECC(A,

B) = 2 − 2/NMI(A, B)(Pluim et al., 2003). In the results below, ECC was used as a global

similarity metric due to its intuitive upper and lower bounds.

Local similarity can be evaluated using pointwise mutual information (PMI) to measure the

B statistical dependence between a pair of intensities (i) from two corresponding voxels in A

and B (Rogelj et al., 2003). PMI is represented as the ratio of the actual joint probability

over the expected joint probability if the two intensities are independent:

(16)
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The voxel intensities iA and iB are statistically independent if the joint probability density is

the product of the marginal probability densities i.e., p(i) = p(iA) p(iB). PMI is sensitive to

low-frequency intensities and lacks fixed bounds (Bouma, 2009, Jurić et al., 2012). Bouma

therefore proposed normalized PMI (NPMI) as (Bouma, 2009):

(17)

where normalization by − log p(i) gives lower weight to low frequency intensity pairs.

NPMI ranges from −1 (no co-occurrence), to 0 (independence), to 1(co-occurrence) (Fan et

al., 2012). Since we measured the extent to which iA and iB specify each other (i.e., image

similarity), we were interested in cases for which NPMI > 0. The NPMI was evaluated

locally throughout the VOI.

3.3.2. Target Registration Error—The geometric accuracy of the registration

framework was assessed in terms of TRE using the fourteen Teflon spheres mentioned

above and two unambiguous anatomical features on the hyoid bone (left and right

prominences) as shown in figure 4. TRE measures the distance between each corresponding

target point defined in the fixed image and the moving image after registration:

(18)

where  is a target point defined in the fixed image, and  is the corresponding

target point in the moving image after registration. Thus  was used to

measure TRE following GM rigid (➁ in figure 2),  was used to

measure TRE following GM nonrigid (➂), and  was used to measured

TRE following Demons (➃).

3.4. Registration Accuracy and Sensitivity to Algorithm Parameters

The sensitivity of the registration process to the individual parameters in table 1 was

investigated in univariate analysis for a single image pair (preoperative CT and

intraoperative CBCT), where each parameter was varied over a broad range holding all other

parameters fixed. In each case, a reliable operating range and nominal value were identified

by considering the effect on TRE and runtime.

First, the sensitivity of the GM rigid step (➁ in figure 2) was analyzed as a function of the

parameters n (number of surface points in the GM models) and σGMRigid (width of the

isotropic Gaussian components). The first was varied over a range n = 200–3000, and the

second was varied across the three levels of hierarchical pyramid (denoted [Level1, Level2,

Level3]) from σGMRigid = [0.125, 0.075, 0.025] to [32.0, 19.2, 6.4] mm in steps of ×2 for

each set. In addition, the sensitivity of the algorithm to  at each level ℓ was

investigated by varied  in steps of ×2 over the range

, and .
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Second, the sensitivity of the GM nonrigid step (➂ in figure 2) was analyzed as a function

of the parameters n, σGMNonRigid (width of the Gaussian kernels), and λGMNonRigid

(regularization). As above, the number of points was varied from n = 200–3000, and

σGMNonRigid was varied in the hierarchical pyramid over the range [0.0625, 0.0125, 0.00625]

to [4, 0.8, 0.4] mm in steps of ×2. The width of the isotropic Gaussians at each level was

investigated by varying  in steps of ×2 over the ranges

, and

. Similarly, the regularization was varied across the three

levels of the pyramid as λGMNonRigid = [0.175, 0, 0], [0.175, 0.175, 0.175], and [0.175,

0.175/2, 0.175/4], and varied at only level 1 over the range  with no

regularization at the other levels (  for ℓ >1).

Finally, the sensitivity of the Demons registration step (➃ in figure 2) was analyzed as a

function of the parameters σUpdateField (width of the Gaussian filter for smoothing the

update field), σDisplacementField (width of the Gaussian filter for smoothing the displacement

field), and MSL. For fair comparison in analysis of σUpdateField and σDisplacementField, the

number of iterations per pyramid level was fixed to [100, 50, 25] rather than using separate

stopping criteria. The three-level hierarchical pyramid was constructed with downsampling

factors of [4, 2, 1] voxels. The parameter ranges investigated were σDisplacementField = 0–5

voxels, σUpdateField = 0–5 voxels, and MSL = 0.5–8 voxels.

3.5. Overall Registration Performance

Five preoperative CT images and five intraoperative CBCT images acquired with complete

readjustment of the cadaver head between each acquisition (i.e., relaxing and repositioning

the head and retraction of the nylon string in figure 3) yielded 25 pairs of CT and CBCT

images. Overall geometric accuracy of registration was measured in terms of TRE, and

image similarity was measured in terms of NPMI (evaluated locally) and ECC (evaluated

globally) using the nominal values of algorithm parameters suggested by the sensitivity

analysis.

4. RESULTS

4.1. Registration Accuracy and Sensitivity to Algorithm Parameters

The Appendix details the analysis of the sensitivity of the registration process (e.g., TRE

evaluated as a function of each parameter in table 1), and results are summarized in table 2.

The table shows the operating range (i.e., the range of values for each parameter for which

the registration was stable and provided registration accuracy within ~2 mm) as well as the

nominal value (i.e., the value of each parameter giving acceptable registration accuracy

(e.g., TRE ~2 mm) and consistent with other considerations of computational complexity

and runtime) for each parameter.

For the GM rigid and nonrigid steps (➁–➂), an identical operating range and nominal

value was identified for the number of points (specifically, range n = 800–2000 and nominal
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value n = 800) in order to directly connect the GM rigid and nonrigid steps without having

to redefine the point sets. GM rigid exhibited better alignment of structures at the base of

tongue for σGMRigid set to [0.25, 0.15, 0.05] mm in the three respective levels of the

hierarchical pyramid, with a stable operating range of [0.25, 0.15, 0.05] to [16.0, 9.6, 3.2]

mm. Similarly for GM nonrigid,  was set to [0.25, 0.05, 0.025] mm with an

operating range of  (in the first level) followed by

 or  in subsequent levels. To

resolve large deformations, a fairly small degree of regularization (λGMNonRigid) was applied

in the first level of GM nonrigid registration (range ~0.005–0.32), followed by no

regularization, giving nominal regularization of λGMNonRigid = [0.16, 0, 0] in the three

levels.

Finally, for the Demons step (➃), registration was most accurate given a fluid deformation

model (i.e., smoothing the update field, σUpdateField) rather than an elastic model (i.e.,

smoothing only the displacement field, σDisplacementField). A stable operating range in

σUpdateField was identified as 3.5–4.5 voxels, with a nominal value of 4 voxels. Meanwhile,

σDisplacementField exhibited an operating range of 0–2 voxels, with a nominal value of 0

voxels. Demons was fairly insensitive to MSL in terms of TRE, with an operating range of

6–8 voxels and a nominal value of 6 voxels selected to speed convergence. The runtime of

the Demons step was further reduced to ~2 minutes using a three-level hierarchical pyramid

with downsampling factors of [8, 4, 2] voxels, since the fourth (full-resolution) level gave

negligible improvement but carried the highest computational load.

Figures 5 and 6 and table 3 summarize the registration results associated with each step (➁
– ➃ in figure 2) evaluated from a single image pair (preoperative CT and intraoperative

CBCT) at the nominal parameters shown in table 2. Note this single image pair was distinct

from the 25 pairs evaluated in the next section. Figure 5 shows sagittal slices corresponding

to steps ➀ – ➃. The moving image following GM rigid ( ) is overlaid in green,

that following GM nonrigid ( ) is overlaid in orange, and that following

Demons ( ) is overlaid in pink. Comparing each to the fixed CBCT image

(  overlaid in cyan) shows the evolution of the registration at each step. At step ➁ we

see gross rigid alignment of the center of mass. At step ➂, the GM nonrigid displacement

field (DGMNonRigid) shows the transformation mapping the tongue onto the fixed CBCT

image. Note the large (~30 mm) displacement at the tip, bringing  into fairly

close overall alignment with . The Demons displacement at step ➃ (motion vectors

superimposed with magnitude scaled by a factor of 2 for easier visualization) is seen to

refine the registration primarily in deeper portions of the base of tongue (i.e., at points far

from the surface and hyoid points that drove the GM registration in steps ➁–➂).

A difference in air infiltration in the cadaver tongue was clearly evident, with air expulsed

from vessels and fissures upon retraction and reinfiltrating upon relaxation. The difference

in air-tissue content is most evident along the inferior aspect of the tongue; however,

because these features were not included in the point clouds for GM registration, and
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because the Demons registration operated on DT images, the discrepancy did not affect the

registration process, and fairly good alignment was achieved. (The mismatch was evident in

reduced values of NPMI and ECC, as noted below, but not in registration accuracy.) The CT

and CBCT images overlaid as background context in each step of figure 5 also illustrate the

differences in image quality in each modality (typically sharper and noisier for CBCT with a

higher degree of shading artifacts, compared to smoother and more uniform for CT). Again,

since the image intensities are not directly used in the registration (i.e., the framework is

independent of the underlying intensity or modality), the registration process was robust

against such differences in image intensity.

The registration accuracy and runtime associated with each registration step (➁–➃) are

summarized in figure 6 and table 3. The TRE improved from 7.8±7.3 mm (median 4.4 mm)

following GM rigid (step ➁) to 2.3±1.1 mm (median 2.1 mm) following GM nonrigid (step

➂), and 1.3±0.7 mm (median 1.1 mm) following Demons (step ➃). The semi-opaque

overlays of volumes show that the Demons step not only refined the GM registration in

deeper tissues (as evident in the Demons deformation field of figure 5) but also in surface

matching. Similarity analyzed between the moving and fixed images showed corresponding

improvement, with global ECC improving from 0.500 following GM rigid (➁) to 0.698

following GM nonrigid (➂) and 0.740 following Demons (➃). The sagittal slices of NPMI

maps show similar improvement throughout the VOI, from 0.40±0.31 (median 0.46)

following GM rigid (➁) to 0.58±0.27 (median 0.66) following GM nonrigid (➂) and

0.62±0.25 (median 0.67) following Demons (➃). Although the differences in air infiltration

did not affect the registration accuracy, the expulsion of air from the tissue during tongue

retraction was responsible for the relatively low value of image similarity (ECC and NPMI).

The total runtime of the initial implementation was measured on a desktop workstation (Dell

Precision T7500, Intel Xeon E5405 2x Quad CPU at 2.00 GHz, 12-GB RAM at 800 MHz,

Windows 7 64-bit). For images of size (512×512×168) and (300×320×230) voxels for I0 and

I1, respectively, the nominal algorithm parameters of table 2, and with a hierarchical

pyramid of size [8, 4, 2] in each step, the total runtime was ~5 minutes – including 12 s for

point-cloud extraction, 1.3 s for the GM rigid step, 2.2 min for the GM nonrigid step, and

2.6 min for the Demons step. Although the runtime was relatively slow, and there is room

for improvement in the implementation and parallelization of the algorithm, it is potentially

within logistical requirements of the serial workflow depicted in figure 1.

4.2. Overall Registration Performance

Figures 7 and 8 summarize the overall registration performance evaluated using 25 image

pairs (preoperative CT and intraoperative CBCT) and using the nominal values of

registration parameters in table 2. Figure 7 illustrates the performance of each registration

step (➁ – ➃) using box-and-whisker plots showing the median (red line), interquartile (box

plot), and range (whiskers). Considering the first and third quartiles of the data (q1 and q3,

respectively), outliers were defined outside the upper bound [q3 + 2(q3 − q1)] and marked as

asterisks. The TRE evaluated from 16 target points (spheres and hyoid) in 25 image pairs

improved from 4.6 ± 3.8 mm (median 3.3 mm) following the GM rigid step (➁) to 2.1 ± 1.1

mm (median 1.9 mm) following GM nonrigid (➂), and 1.7 ± 0.9 mm (median 1.5 mm)
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following Demons (➃). The interquartile range in TRE following Demons (➃) was 1.06 –

2.21 mm, and the range was 0.09 – 4.51 mm. The fairly broad range (and upper bound) in

TRE was primarily due to target points at the tip of the tongue. Adjustment of registration

parameters within the proposed operating range was possible to allow more deformation

(e.g., increasing the number of points (n) in GM registration and/or reducing λGMNonRigid)

and improve overall TRE, particularly at the tip of the tongue. For example, setting n = 900

and λGMNonRigid = [0.005,0,0] improved overall TRE from (2.3 ± 1.5) mm to (1.6 ± 0.8)

mm at the cost of runtime (increasing from 4.9 min to 7.6 min).

Image similarity also improved globally at each step, with ECC increasing from 0.57 ± 0.01

(median 0.564) following GM rigid (➁) to 0.70 ± 0.01 (median 0.701) following GM

nonrigid (➂), and finally 0.73 ± 0.01 (median 0.729) following Demons (➃). NPMI

exhibited similar improvement throughout the VOI from (➁) 0.46 ± 0.31 (median 0.515) to

(➂) 0.57 ± 0.24 (median 0.650) and finally (➃) 0.60 ± 0.23 (median 0.653) at the output of

the full registration process. In each case, the fairly low absolute value in image similarity

was due to mismatch in CT and CBCT image characteristics and – more importantly – the

expulsion / re-infiltration of air from vessels and fissures in the tongue upon retraction /

relaxation.

Figure 8 illustrates the spatial distribution of (median) TRE at each of the 16 target fiducials

evaluated from 25 pairs of CT and CBCT images. On the left, a semi-opaque overlay of one

of the CBCT volumes is shown with the 16 target points colored according to the magnitude

of median TRE. On the right is a sagittal image representation of median TRE interpolated

from the measured value at each target point over the VOI. A contour of the hyoid is shown

in white for context. The 3D interpolation of the measured median TRE used multiquadric

radial basis functions with a shape parameter selected using the method suggested by Foley

(Foley, 1987, Rippa, 1999). The accuracy of registration is best (~1–2 mm) in the middle

portion of the tongue and worst (~2.5–3.0 mm) at the tip of the tongue. Deep caudal aspects

of the base of tongue exhibited median TRE ~2 mm, suggesting fairly good geometric

accuracy in the main region of interest for TORS.

5. CONCLUSION AND DISCUSSION

A registration framework integrating two well-established methodologies — GM models

and the Demons algorithm — was developed to resolve the large deformations associated

with base of tongue surgery. The method forms an important component of a system under

development for CBCT-guided TORS, where intraoperative CBCT provides a basis for

deformably registering preoperative images and planning data into the highly deformed

intraoperative context. The framework includes surface points to initialize the rigid and

deformable registration of segmented subvolumes followed by a refinement based on the

Demons algorithm applied to distance transformations (rather than image intensities

directly). The method is therefore insensitive to image intensities and choice of imaging

modality, allowing application to preoperative and/or intraoperative CT, CBCT, and/or MR.

The sensitivity analysis yielded nominal values of algorithm parameters and a

knowledgeably selected operating range over which the algorithm behaved within desired
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levels of geometric accuracy, stability, and runtime. The analysis showed that the Demons

algorithm applied to distance map transforms performed better for a fluid deformation

model over an elastic deformation model due to the inherently small gradients in the

distance map images and the fairly large displacements to be accommodated in the retracted

tongue. A hierarchical pyramid with downsampling of [8, 4, 2] in combination with a simple

stopping criterion improved the convergence rate and geometric accuracy by preventing

excessive iterations, resulting in total runtime of ~5 min and TRE of ~2 mm in its initial

implementation. The overall registration performance evaluated in cadaver studies

demonstrated mean TRE of 1.7 mm, mean NPMI of 0.60, and mean ECC of 0.73 (the latter

similarity metrics exhibiting fairly low values due to content mismatch (air expulsion) rather

than geometric misalignment). Registration error was highest at the tip of the tongue;

considering only the 8 targets in the base of tongue, the TRE was improved to 1.49 ± 0.69

mm. Recent studies in transoral surgery demonstrate improved surgical outcomes with

increased local tumor control from surgical resection with adequate negative margins, and

support that close margins (2 – 5 mm) may be equivalent to widely negative margin (> 5

mm) (Nason et al., 2009, Hinni et al., 2012, Hinni et al., 2013). The increased accuracy of

this TORS system under development (allowing precision to < 2 mm) will likely improve

the surgeon’s ability to achieve negative margins.

The complete registration process with nominal parameters in table 2 performed better than

or similarly to alternative variations of the framework – for example: i.) a hybrid fluid-

elastic Demons (σUpdateField = σDisplacementField = 2 voxels) applied to the entire CT and

intraoperative CBCT image volumes directly (each scaled to Hounsfield units but without

segmentation of the VOI, definition of point clouds, or any GM registration) and initialized

with a basic MI-based rigid registration gave TRE of 59.3 ± 36.1 mm, showing the

challenge associated with registering the entire bulk anatomy and the utility of working with

a relevant subvolume; ii) GM rigid (➁) followed by Demons (➃) (and eliminating the GM

nonrigid step (➂)) yielded TRE of 2.5 ± 2.1 mm; iii) GM rigid (➁) followed by Demons

operating directly on the CT and CBCT image subvolumes (rather than on their distance

map transforms) yielded TRE of 4.5 ± 3.9 mm; iv.) GM rigid (➁) and GM nonrigid (➂)

followed by Demons operating directly on image subvolumes (rather than distance maps)

yielded a TRE of 3.8 ± 2.8 mm; and v) similar to iv) using ➁ and ➂ but followed by

elastic Demons (σDisplacementField = 4 voxels) operating directly on image subvolumes

yielded TRE of 1.5 ± 0.8 mm. While the last case performed comparably to the nominal

framework, the accuracy would be expected to degrade in the presence of artifacts (e.g.,

streaks from dental fillings), whereas Demons applied to a distance map transform would

not. An alternative method in which the distance map transforms are recalculated during the

iterative optimization process of the Demons algorithm was not investigated in the current

work but could have a benefit (at the cost of increased computation time) in that the distance

values in the DT images would not be affected by the tri-linear interpolation step. Since the

DT images tend to lack fine-detailed features, error due to blur in the interpolation step was

believed to be small. The overall finding regarding Demons operating on distance map

transforms suggests a useful implementation in which the process is insensitive to image

intensity differences and robust against artifacts and noise, provided a consistent

segmentation of the VOI.
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The registration framework involves a combination of methods reported by various

investigators in previous work - in this case, model-based (GM) initialization (analogous to

work by (Jian and Vemuri, 2011) and (Tustison et al., 2011)) followed by Demons

refinement (analogous to (He et al., 2005),(Suh et al., 2011), and (Nithiananthan et al.,

2012)). An analogous two-step strategy was shown previously to resolve large soft tissue

deformations in CBCT images of the inflated and deflated lung in thoracic surgery - in that

case employing a mesh evolution (rather than a GM model) for initialization and refined by

an intensity-corrected Demons variant (Uneri et al., 2012, Uneri et al., 2013). Such

combination of disparate approaches within an integrated framework could potentially apply

to other soft-tissue contexts as well.

Various alternative methods have been proposed to transform multimodality images into a

common intensity space and could be used in place of the distance map transformation

employed in this work. Wachinger and Navab encoded the input images in terms of Shannon

entropy images and Laplacian eigenmaps based on manifold learning to represent

information content and image structure, respectively (Wachinger and Navab, 2012).

Similarly, local phase can be used to represent structural information in input images while

eliminating intensity dependence (Mellor and Brady, 2004, Mellor and Brady, 2005). Local

frequency maps of images computed using Gabor filters and the Riesz transform were used

in nonrigid registration based on a robust L2E estimator in (Liu et al., 2002) and (Jian et al.,

2005), respectively. These structure-based encoding methods, however, are best suited to

images that exhibit strong contrast differences in structures of interest (e.g, white and gray

matter in MR, bone and soft tissue in CT, etc.) and can be of limited use with low-contrast

images. Analogous to distance map transform, level set representation is computed from

segmentation of a region of interest. It provides boundary information well suited for surface

registration - for example, Suh and Wyatt’s level-set registration of colon boundaries

defined in CT acquired in patient prone and supine positions, using the Demons algorithm to

improve detection of polyps in CT colonography (Suh and Wyatt, 2006). Level-set

representations combined with the Demons algorithm have also been used to study

peripheral arterial disease in SPECT-CT of murine skeletal structures and body contours

(Suh et al., 2011). However level-set representations provide relatively less shape

information compared to distance transformations.

Although other registration methods were not explicitly compared in the current work, and a

fair, quantitative comparison among registration schemes is beyond the current scope, there

are numerous methods reported in the literature that may be applicable in whole or part to

the tongue surgery context. For example, a coherent point drift (CPD) algorithm could be

employed in the point set registration (Myronenko and Song, 2010). The algorithm solved

the point matching by maximizing the likelihood between GM models of the transformed

moving point set and fixed points in an expectation maximization framework. Since the

maximum likelihood estimator can be sensitive to outliers, the algorithm included an

additional Gaussian component to reduce outliers and improve robustness (Hu et al., 2010,

Jian and Vemuri, 2011). Jian and Vemuri et al. demonstrated improved performance of their

proposed method over the CPD algorithm (Jian and Vemuri, 2011). Tustison et al. proposed

a labeled point-set registration algorithm to estimate B-Spline transformation by minimizing

the Jensen-Havrda-Charvet-Tsallis divergence between the GM representations of the
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labeled point sets — i.e., each labeled point subset represented specific anatomy (Tustison et

al., 2011). The algorithm included a parameter adjusting the degree of robustness against

noise and outliers in the divergence measure. Large-scale soft-tissue deformation was

addressed by Bondar et al., who developed a symmetric thin-plate spline robust point

matching (S-TPS-RPM) algorithm for CT image registration in the context of cervical

cancer (Bondar et al., 2010). The method estimated symmetric deformation by computing

forward and backward transformations using unidirectional TPS-RPM (Vasquez Osorio et

al., 2009) to ensure inverse consistency and demonstrated the ability to resolve large

deformations with improved accuracy in comparison to TPS-RPM. This method presents a

possible alternative to the nonrigid point set registration described above; however, the

authors noted sensitivity of the method to noise, outliers, missing data, and difficulty with

unknown correspondences, and Myronenko et al. demonstrated improved robustness for

CPD in comparison to TPS-RPM (Myronenko and Song, 2010). Moreover, finite element

methods have been employed to resolve large deformations in the liver (Brock et al., 2008a,

Dumpuri et al., 2010), lungs (Zhang et al., 2004, Adil et al., 2011), prostate (Crouch et al.,

2003, Chi et al., 2006, Brock et al., 2008b), and even in multi-organ systems (thorax and

abdomen) (Brock et al., 2005) and could potentially yield accurate registration employing

biomechanical modeling of the tongue (Buchaillard et al., 2007, Stavness et al., 2011).

Hualiang et al. integrated a finite-element and Demons approach to resolve soft-tissue

deformation in 4DCT of the lungs and CBCT of the prostate (Hualiang et al., 2012). The

method used the Demons algorithm to compute displacements at boundary nodes defined in

the high-contrast region, where Demons is likely to achieve accurate registration. This

method could similarly apply to the tongue, invoking Demons for nodes defined at the air-

tissue interface along the superior aspect of the tongue and at the tissue-bone interface about

the hyoid and inner boundary of the mandible.

The runtime of the initial implementation was relatively slow (~5 min) but was potentially

within logistical requirements of the workflow depicted in figure 1. A more integrated

arrangement of a C-arm and robot (allowing CBCT and fluoroscopy on demand during the

intervention) could similarly employ the registration framework described here to register

preoperative images and planning data to the most up-to-date CBCT and would benefit from

faster implementation of the algorithm. Improvements underway include a modified GM

nonrigid step using compact-support radial basis functions (Yang et al., 2011), incorporation

of a stopping criterion in the GM nonrigid step, and GPU implementation of the GM

nonrigid and Demons calculations (Sharp et al., 2007, Xuejun et al., 2010). Alternative

algorithms for nonrigid point set registration will also be investigated, such as the labeled

point set registration using B-Spline transformation (Tustison et al., 2011). A variant in

which the DT images are recalculated within the Demons optimization process is an area of

possible future investigation. Routine application of the method in practice will require

streamlined, semi-automatic segmentation of the tongue, without manual refinement of

contouring as employed in this initial work. Future work could also include the addition of

internal features to the segmentation point sets and distance maps — e.g., the lingual vessels

— to provide increased internal constraint and potentially improve registration performance

in deeper tissues.
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Appendix: Sensitivity to Algorithm Parameters

The sensitivity of the registration process was evaluated in terms of TRE and runtime as a

function of parameters intrinsic to the GM Rigid, GM Nonrigid, and Demons registration

steps shown in figure 2. In each case, the TRE and runtime are reported at the output of a

particular registration step (not necessarily the entire process), giving a basic univariate

analysis in which each individual parameter was freely varied holding all others fixed to

their nominal value. Results were analyzed from a single CT-CBCT image pair distinct from

the 25 pairs forming the main body of results reported in Section 4.2. The same 16 target

points as shown in figure 4 were used, except for the GM Rigid case, where distinct

behavior was observed between the base and tip of the tongue, and the former was analyzed

as the more pertinent region of interest. Runtime was measured for the workstation and

volume sizes detailed in section 4.1. Nominal values and reasonable operating range in

algorithm parameters are summarized in table 2.

A.1 Sensitivity Analysis: GM Rigid

The sensitivity of the GM rigid step to its intrinsic parameters is summarized in figure A.1.

As shown in figure A.1(a), GM rigid registration was insensitive to the number of points

(minimal change in TRE) for n > 400 points. Since the GM rigid calculation was relatively

fast (compared to the nonrigid steps) and did not depend strongly on n (i.e., runtime in

seconds) as shown in figure A.1(b), in order to directly connect the GM rigid and nonrigid

steps (without redefining points), the operating range and nominal value of n for the GM

rigid step were taken as identical to those for GM nonrigid (n = 800–2000 and a nominal

value of 800; see below). Figure A.1(c) shows that smaller values of σGMRigid (ranging

[0.125, 0.075, 0.025] – [0.5, 0.3, 0.1] mm) allowed better modeling of motion at the base of

the tongue, whereas larger values (ranging [1.0, 0.6, 0.2] – [16.0, 9.60, 3.20] mm) more

easily aligned the tip of the tongue (and increased error at the base). Figure A.1(d,e) shows

that GM rigid was insensitive to  and  in terms of TRE. However, as shown

in figure A.1(f), the value of  at the final level was more important — large enough

to suppress mismatch features but small enough to capture the underlying points. Therefore,

given a value of  in level 1, the value in subsequent levels (ℓ > 1) was

, where s was in the range 1.5 – 6. Taking smaller nominal values of

σGMRigid = [0.25, 0.15, 0.05] mm better aligned structures at the base-of-tongue, while

larger values up to σGMRigid = [16.0, 9.6, 3.2] mm increased accuracy at the tip of the

tongue.
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Figure A.1.
Sensitivity analysis and selection of registration parameters for GM rigid registration. The

box-and-whisker plots show median TRE (red line), interquartile, and range. (a,b) TRE and

runtime measured as a function of the number of points (n) in the GM models. (c–f) TRE

measured versus the width (σGMRigid) of the isotropic Gaussian for various hierarchical

pyramids. Blue arrows mark values selected as nominal.

A.2 Sensitivity Analysis: GM Nonrigid

Figure A.2 summarizes the sensitivity of the GM nonrigid step. As illustrated in figure A.

2(a,b), the process demonstrated a slight improvement in TRE with higher values of n but a

significant increase in runtime due to the thin-plate spline (Morse et al., 2005, Zagorchev

and Goshtasby, 2006). To achieve TRE ~ 2 mm, the operating range was set to n = 800–

2000 points, with the nominal value selected to be 800 points for runtime ~2 minutes. Figure

A.2(c,d) demonstrates that small (but nonzero) regularization ( ) at the first level

of the hierarchical pyramid provided reasonable affine constraint, and subsequent levels (ℓ >
1) benefited from a lack of regularization, allowing larger deformation and giving a nominal

λGMNonRigid = [0.16, 0, 0]. As shown in figure A.2(e), σGMNonRigid in the range of [0.25,

0.05, 0.025] – [2.0, 0.4, 0.2] mm minimized TRE, implying σGMNonRigid smaller than this

range could not suppress mismatch features and outliers, while larger σGMNonRigid could not

capture the underlying points. Unlike GM rigid, the GM nonrigid step was sensitive to

 and  but insensitive to , because the “action” was primarily

in the first two levels: maximum deformation of 22.1 mm, 9.3 mm, and 1.6 mm after levels ℓ
= 1, 2, and 3, respectively. Smoothness of the GM models was therefore important at the

first two levels to allow such deformation. The resulting operating range was
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, followed by  or

 in the subsequent level ℓ, with a nominal setting of [0.25,

0.05, 0.025] mm.

Figure A.2.
Sensitivity analysis and selection of registration parameters for GM nonrigid registration.

The box-and-whisker plots show median TRE (red line), interquartile, and range. (a,b) TRE

and runtime measured as a function of the number of points (n) in the GM models. (c,d)

TRE measured versus regularization ( ) in the hierarchical levels ℓ = [1, 2, 3]. (e–

h) TRE measured versus the width (σGMNonRigid) of the isotropic Gaussian for the three-

level pyramids. Blue arrows mark values selected as nominal.

A.3 Sensitivity Analysis: Demons

The sensitivity of the Demons step to its intrinsic parameters is summarized in figure A.3.

As shown in figure A.3(a,b), smoothing the update field using σUpdateField (i.e., a “fluid”

deformation model) yielded improvement in TRE but increased runtime. An operating range

of σUpdateField = 3.5–4.5 voxels was selected to minimize TRE, with a nominal value of 4

voxels. On the other hand, figure A.3(c,d) shows that smoothing the displacement field

using σDisplacementField (i.e., an “elastic” deformation model) did not improve TRE (in fact,

slightly degraded TRE) but increased runtime. Therefore, an operating range of

σDisplacementField = 0–2 voxels was selected, with a nominal value of 0 voxels (i.e., no

smoothing). The improved performance for a more fluid deformation model is believed to

be due to the fairly small gradients of the DT images. Figure A.3(e,f) shows the algorithm to

be fairly insensitive to changes in MSL in terms of TRE, but lower values of MSL increased

runtime, requiring more iterations to converge and suggesting an operating range MSL = 6 –

8 voxels. The computation time was further reduced by using a three-level hierarchical

pyramid with downsampling factors of [8, 4, 2] voxels instead of 4 levels [8, 4, 2, 1] or 3

levels [4, 2, 1], eliminating the full-resolution level without significant loss in TRE. For

example, the [8, 4, 2, 1] and [8, 4, 2] pyramids achieved TRE of 1.27±0.64 mm and

1.31±0.67 mm, respectively, at runtimes of 11.9 and 2.6 minutes, respectively.
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Figure A.3.
Sensitivity analysis and selection of registration parameters for Demons registration. The

box-and-whisker plots show median TRE (red line), interquartile, and range. (a,b) TRE and

runtime measured as a function of the Gaussian filter width (σUpdatetField) in smoothing the

update field. (c,d) TRE and runtime measured as a function of the Gaussian filter width

(σDisplacementField) in smoothing the displacement field. (e,f) TRE and runtime measured as a

function of MSL. The runtime is shown in (f) for both [4,2,1] and [8,4,2] pyramids. Blue

arrows mark values selected as nominal.
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Figure 1.
Potential clinical workflow for CBCT-guided TORS. Preoperative steps include (I) CT or

MR imaging, (II) planning and segmentation, and (VI) endoscopic video calibration.

Intraoperative steps include (III) patient setup and C-arm CBCT prior to docking the robot,

(IV) segmentation, (V) deformable registration of preoperative images and intraoperative

CBCT, and (VII) robot-assisted tumor resection with stereoscopic video visualization. Note

the large deformation associated with the TORS operative setup, evident in images (I–II)

and (III–IV). The proposed method for 3D deformable image registration (V) is detailed in

this paper. Endoscopic video calibration (VI) and CBCT-to-robot registration (VII) are the

subject of ongoing and future work (Liu et al., 2012).
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Figure 2.
Deformable registration framework for CBCT-guided TORS. ⓪ Acquisition of

preoperative image (I0) and intraoperative CBCT (I1). ➀ Segmentation of the VOI and

extraction of surface point clouds. ➁ GM rigid and ➂ GM nonrigid registration. ➃
Refinement using the Demons algorithm applied to distance map transforms of the moving

and fixed images.
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Figure 3.
Cadaver setup emulating the intraoperative setup for CBCT-guided TORS. (a) Prototype

mobile C-arm for intraoperative CBCT. (b) Cadaver mounted in a CT-compatible frame

using nylon strings to retract the jaw and tongue. (c) A foam pad separated the tongue

slightly from the lower lip to simplify segmentation. (d) Six Teflon spheres attached on the

surface of the tongue. Eight additional spheres were implanted within the tongue (figure 4).
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Figure 4.
Images and segmentation of a cadaver specimen. (left) Preoperative CT (I0) and segmented

subvolume ( ) showing 16 target points. (right) Corresponding CBCT (I1) in the

intraoperative state (mouth open and tongue retracted) and subvolume ( ).
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Figure 5.
Sagittal slices illustrating the moving image at each step (➀ – ➃) of figure 2. Step ➀
shows the fixed CBCT image (contour overlay in cyan shown at each step). Step ➁ shows

the GM rigid initialization (contour in green) along with the moving CT image. Step ➂
shows both the deformation field (DGMNonRigid) and the resulting image from the GM

nonrigid step (contour overlay in orange). Step ➃ shows the deformation field (vector

magnitudes scaled by a factor of 2 for purposes of visualization) and the final resulting

image arising from the Demons step (contour overlay in pink).
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Figure 6.
Registration accuracy. The TRE, global ECC, and local NPMI are shown following each

step of the registration framework: ➁ GM rigid; ➂ GM nonrigid; and ➃ Demons. The

first row shows semi-opaque overlays of the VOI in fixed and moving images, and the

second row shows sagittal slices of NPMI maps.
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Figure 7.
Overall registration performance as a function of registration step (➁, ➂, and ➃) evaluated

from 25 pairs of CT and CBCT images. The TRE, global ECC, and local NPMI improved

with each step, yielding mean geometric accuracy within ~2 mm.

Reaungamornrat et al. Page 36

Phys Med Biol. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
Median TRE at each of 16 target fiducials measured from 25 CT-CBCT image pairs for the

complete registration process (➁–➃). (left) Target fiducials colored by magnitude of

median TRE (colorbar), with a semi-opaque overlay of a CBCT volume and fiducial

diameters scaled for depth perspective. (right) A sagittal slice of the 3D interpolated median

TRE showing overall spatial dependence of registration accuracy.
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Table 1

Summary of notation and registration parameters.

Step Symbol Definition

Images

I0 Moving image (e.g., preoperative CT or MR)

I1 Fixed image (intraoperative CBCT)

I|transformation

An image I after a given transformation (e.g.,
GM rigid, GM nonrigid, distance
transformation, Demons)

➀Pre-processing

Model structures

Sk
Segmentation of the volume of interest (VOI)
i.e. tongue and hyoid bone in Ik

VOI in Ik

Point cloud extraction

A set of n surface points extracted from
components in Sk (i.e., tongue and hyoid bone)

Pk=[xk,1,xk,2,…,xk,3]
 after normalization.

Spatial location of a point in  in R3

xk
 after normalization.

n Number of points in Pk

Gaussian mixture registration

Gaussian Mixture (GM) φ(x|Θk)
Gaussian mixture density of Pk with a set of
mixture parameters Θk.

➁ GM Rigid

Width of the isotropic Gaussian components at
each registration level ℓ.

TGMRigid GM rigid transformation

➂ GM Nonrigid

Width of the isotropic Gaussian components at
each registration level ℓ.

Regularization parameter at each registration
level ℓ.

TGMNonRigid GM nonrigid transformation

DGMNonRigid GM nonrigid displacement field

GM
Concatenation of GM rigid and GM nonrigid
registrations (combined transform of steps ➁
and ➂)

➃ Demons registration Demons

DT Distance transformation

σUpdateField
Width of the Gaussian filter to regularize the
update field

σDisplacementField
Width of the Gaussian filter to regularize the
displacement field

MSL Maximum update step length

DDemons Demons displacement field

Phys Med Biol. Author manuscript; available in PMC 2014 July 21.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Reaungamornrat et al. Page 39

Table 2

Summary of sensitivity analysis. For each step in the registration process of table 1, a stable operating range

and nominal value were determined as detailed in the Appendix.

Step Parameters Operating Range Nominal Values

➁ GM Rigid

n 800–2,000 800

σGMRigid [0.25, 0.15, 0.05] to [16.0, 9.6, 3.2] [0.25, 0.15, 0.05]

➂ GM Nonrigid

n 800–2,000 800

σGMNonRigid

ℓ = 1: 

[0.25, 0.05, 0.025]
ℓ>1: 

to 

λGMNonRigid

ℓ = 1: 
[0.16, 0,0]

ℓ > 1: 

➃ Demons

σUpdateField 3.5–4.5 4

σDisplacementField 0–2 0

MSL 6–8 6
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Table 3

Registration accuracy and runtime of the registration framework (total runtime of ~5 minutes).

Metric ➁ GM Rigid ➂ GM Nonrigid ➃ Demons

TRE 7.8±7.3 mm (median 4.4 mm) 2.3±1.1 mm (median 2.1 mm) 1.3±0.7 mm (median 1.1 mm)

NPMI 0.40±0.31 (median 0.46) 0.58±0.27 (median 0.66) 0.62±0.25 (median 0.67)

ECC 0.500 0. 698 0.740

Runtime 1.3 seconds 2.2 minutes 2.6 minutes
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