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Abstract

It has been forty years since the discovery of Fc Receptors and their function. Fc Receptors

include the IgG receptors (FcγR), high-affinity IgE receptor (FcεRI), IgA and IgA/IgM receptors,

and neonatal Fc receptor for IgG (FcRn). In particular, the FcγRs have been well known to play

an important role in many biologic processes including those associated with the response to

infection and cancer as well as in the pathogenesis of immune-mediated diseases. Both positive

and negative regulatory function has ascribed to Fc receptors and FcγRs in particular which serve

to establish a threshold for immune cell activation. In other cases, Fc receptors such as FcRn

possess a novel structure and function by playing a major role in the transport of IgG across

polarized epithelial barriers at mucosal surfaces and in the regulation of IgG half-life. These

diverse functions highlight the potential effectiveness of targeting Fc receptors for therapeutic

purposes. This review summarizes new information available in the therapeutic applications of

this biology.
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INTRODUCTION

Fc receptors, the receptors for the Fc portion of immunoglobulins, play an essential role in

antibody-dependent immune responses [1]. Fc receptors are detected on many types of

hematopoietic cells including macrophages, neutrophils, dendritic cells, eosinophils,

basophils, mast cells, and NK cells [2]. Plasma cells produce five classes of antibodies, IgA,
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IgD, IgE, IgG and IgM. Fc receptors with an Ig superfamily related structure exist that

correspond to each of these classes of immunoglobulins. They include the IgG receptors

(FcγR), high-affinity IgE receptor (FcεRI), IgA receptor and polymeric immunoglobulin

receptor for IgA and IgM. The second category of Fc receptors is the neonatal Fc receptor

for IgG (FcRn), which is a unique FcR that has three major functions with respect to IgG;

IgG transport across epithelial barriers, protection of IgG from catabolism and antigen

presentation. This review focuses on the functions of the common Fc receptors (FcγRs) and

FcRn and summarizes the application of this information to the therapy of human diseases.

THE FAMILY OF FCγ RECEPTORS AND THEIR FUNCTION

Fcγ receptors include four different classes of receptors in mice that are known as FcγRI,

FcγRIIB, FcγRIII, FcγRIV. Functionally, these receptors are classified in two types of Fc

receptors; those that are activating as opposed to those that are inhibitory. These receptors

transmit their signals via immunoreceptor tyrosine-based activation motifs (ITAMs) or

immunoreceptor tyrosine-based inhibitory motifs (ITIMs), respectively [3]. Activating

FcγRs that possess ITAMs include FcγRI, FcγRIII and FcγRIV. Ligation of these

receptors leads to activation of downsteam-signalling pathways. In contrast, the inhibitory

FcγR, FcγRIIB, is a unique FcγR that directs an inhibitory program via ITIMs. The

composite expression of activating and inhibitory FcγRs regulates the immune response by

establishing a threshold for immune cell activation. In many murine models, the aberrant

expression of FcγRs can result in uncontrolled immune responses and the initiation of

autoimmune diseases [4–6]. Mice which are deficient in the Fcγ-chain, a subunit that is

common to the FcγRI, FcγRIII, FcγRIV, FcεRI and FcαRI receptors exhibit an inability to

activate all such FcRs. This results in abrogated or heavily impaired immune complex (IC)-

mediated immune responses, such as antibody-dependent cell mediated cytotoxicity

(ADCC), release of inflammatory mediators and cytokines, and phagocytosis of ICs [7, 8].

The inhibitory receptor FcγRIIB is the most broadly expressed FcγR, and is present on all

leukocytes with the exception of NK cells and T cells. There are two different isoforms of

FcγRIIb that are named FcγRIIB-1 and FcγRIIB-2. FcγRIIB-1 is specifically expressed on

B cells and negatively regulates B cell activation. In comparison, FcγRIIB-2 is widely

expressed on cell types that express FcγRIIB and functions in the inhibition of dendritic

cells (DC) and macrophages as manifest by diminished antigen uptake, antigen presentation

and cellular activation. Mice deficient in FcγRIIB exhibit spontaneous glomerulonephritis

and an enhancement of many types of autoimmune responses. It is believed that the lack of

FcγRIIB leads to a breakdown in immunologic tolerance. In humans, the FcγR system is

more complex, as exemplified by the existence of the high-affinity IgG receptor FcγRI

(FcγRIA, FcγRIB, FcγRIC) and low-affinity IgG receptors FcγRII (FcγRIIA, FcγRIIB

and FcγRIIC) and FcγRIII (FcγRIIIA and FcγRIIIB) and the presence of several allelic

FcγR variants [9]. FcγRI and FcγRIIB are structurally and functionally similar between

human and mice. With the exception of human FcγRIIA and FcγRIIC, activating FcγR’s

typically consist of a ligand-binding FcγR α-chain and a signal-transducing γ-chain dimer,

which carries immunoreceptor tyrosine based activating motifs (ITAMs). In addition,

humans have a glycosylphosphatidylinositol (GPI)-linked receptor that is exclusively

expressed by neutrophils, called FcγRIIIB. Moreover, a variety of human FcγR alleles with
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altered functionality exist. Specifically, FcγRIIA131H and the FcγRIIIA158V have a higher

affinity for certain IgG subclasses compared to their allelic counterparts. The FcγRIIB232T

variant is unable to associate with lipid rafts and is therefore strongly impaired in its

negative regulatory activity. There are many differences between the Fcγ receptors of mice

and those of humans. However, observations in mouse have in general mirrored those of

human systems.

FC RECEPTORS AND INFECTION

There are many reports describing the role of activating Fc receptors in defending against

infection [10–12]. We recently reported, for example, on the role of FcγRs in the colonic

inflammation induced by infection with Citrobacter rodentium [13]. C. rodentium, a murine

model pathogen for enteropathogenic Escherichia coli, specifically colonizes the epithelium

of the colon utilizing attaching and effacement structures to adhere to the luminal surface of

intestinal epithelial cells and as such cause mucosal inflammation. CD4+ T cells, B cells and

IgG, but not secretory IgA or IgM, have been shown to play a critical role in eradicating this

pathogen. Therefore, C. rodentium has served as an appropriate model to assess the role of

IgG and FcγRs in defending against infections. FcRγ-chain deficient mice, which disables

activating FcγRs, are more susceptible to C. rodentium induced colitis. This occurs through

a decrease in the efficiency of FcγR-mediated endocytosis and associated maturation of

DCs. As a consequence, in the absence of the FcRγ chain, the activation of antigen specific

T cells is significantly diminished. Moreover, in the absence of FcγRs, phagocytosis by

macrophages is significantly impaired. Therefore, activating FcγRs play an important role

in defending against C. rodentium infection supporting a critical role for IgG and the

importance of FcγRs in the control of this model of infection. Consistent with this, mice that

are deficient in the inhibitory receptor, FcγRIIB, exhibit significantly less inflammation of

the distal colon during C. rodentium infection (MY and AM, unpublished observations).

Macrophages from FcγRIIB deficient mice display increased phagocytic function in

comparison to those obtained from wild type mice. These observations with FcγRIIB mice

suggest that targeting this receptor can be envisioned as a means to enhance the function of

activating FcγR in the treatment of infectious diseases.

FC RECEPTORS AND CANCER

FcγRs play an important role in determining the therapeutic activity of monoclonal IgG

antibodies (mAbs) by their ability to activate the cytotoxic activity of FcγR-positive cells

such as NK cells, monocytes, macrophages and neutrophils and by increasing antigen

presentation by DC when ligated by the Fc portion of therapeutic antibodies [14–17]. Recent

studies in Fc receptor-deficient nude mice show that the anti-tumor effects of mAbs such as

those directed at-CD20 (Rituximab) and HER2 (Herceptin) require the presence of the

signal transducing Fcγ chain that is involved in the activation of FcγRI and FcγRIII

receptors that are expressed on monocytes, macrophages, and NK cells [18]. In the B16

metastatic tumor model, FcγR [19] and FcγRIV in particular [20] have been shown to play

a significant role in the therapeutic activity of the TA99 antibody specific for the gp75 tumor

antigen.
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FcγRIIB has been examined in lymphoid tissues and B cell lymphomas suggesting an

important role in these contexts. FcγRIIB expression has been described in reactive

lymphoid follicles. Mantle cells of secondary follicles exhibit strong plasma membrane

expression of FcγRIIB in contrast to the absence of detectable expression in germinal

centers and specifically on follicular dendritic cells, tingible bodies macrophages or

lymphoid cells. In the interfollicular region of lymph nodes, immunoblasts are negative for

FcγRIIB expression in comparison to plasma cells which commonly exhibit strong

membrane expression of this receptor [21]. A number of lymphomas however express

FcγRIIB [21]. A recent study in mice examined an anti-human FcγRIIB antibody (2B6) in a

xenograft model of FcγRIIB expressing lymphomas. The activity of this antibody is Fc-

dependent and triggers ADCC. Despite its inhibitory properties, the expression of FcγRIIB

on lymphomas led to eradication of the Daudi cell line as a human lymphoma tumor model

in a manner that was as effective as targeting CD20 [22]. The outcome of 2B6 infusion in

humans with lymphoma remains to be established. Therefore, the ectopic expression of

FcγRIIB in human DLBCL (diffuse large cell lymphoma) and follicular lymphomas should

be considered as a therapeutic opportunity.

FC RECEPTORS AND AUTOIMMUNE DISEASES

Autoimmune diseases are a complex group of diseases that depend on both genetic and

environmental factors for their development. One group of environmental factors that are

particularly important are those related to infections and the possibility that they may initiate

abnormal immune responses [23, 24]. Consistent with a potential pathogenic origin of

autoimmune diseases, recent studies have revealed links between innate immune responses

to pathogens and auto-immunity in diseases such as systemic lupus erythematosus [25, 26].

Innate immune responses initiated by pathogens are moreover further linked to adaptive

immune responses by a variety of mechanisms. For example, after the activation of innate

immune cells such as macrophages, DC, B cells and NK cells by pathogens, the antigen

presenting processes that are initiated are important to subsequent T cell activation and B

cell maturation including class switching of B cells from IgM to IgG. IgG antibodies

including those that are directed at autoantigens play a central pathogenic role in

autoimmune diseases. Sequestration of antigen in immune complexes on the surface of

follicular dendritic cells may promote class switching, selection of high affinity B cells and

control of antibody responses via co-ligation of FcγRIIa and FcγRIIb [27]. Alternations of

FcγRs may be linked to autoimmunity in three ways: 1. failure to clear immune complexes

from the circulation and from specific sites such as synovial joints and kidneys, 2. hyper-

responsiveness to circulating immune complexes through interaction with activating FcγRs

and 3. lack of control of antibody production leading to immune complex formation [28].

Anti-inflammatory drugs that inhibit FcγRIIa function are a potentially novel means to

block autoimmune disease development early on before the activation of the inflammatory

cascade. It has recently shown for example that small molecules and antibody fragments that

were designed to bind to the human FcγRIIa could inhibit collagen II induced arthritis in the

FcγRIIa transgenic mice [29, 30]. These latter mice develop a spontaneous destructive

arthritic disease that is characterized by erythema, swelling and joint ankylosis in up to 50%

of animals over 25 weeks of age [31]. The FcγRIIa specific small molecules suppressed
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disease in the FcγRIIa transgenic mice longer than that achieved with methotrexate, a

treatment widely used for rheumatoid arthritis. Synthetic FcR mimetics have also been used

to block the function of FcγRII in vitro [32] and the modulation of FcγRIIa and FcγRIIb

function in humans [33]. Thus, FcγRII offers a valid target for the treatment of patients with

auto-immune disease.

FCRN, THE NEONATAL FC RECEPTOR FOR IGG

FcRn was originally functionally identified in suckling rats as the receptor involved in the

transport of IgG (derived from milk) across the intestinal epithelium into the bloodstream

[34–36]. More recently, it has been shown that FcRn not only delivers IgG across the

maternofetal barrier during gestation [37, 38 ] but is also responsible for the maintenance of

serum IgG levels [39–42]. The gene encoding rat FcRn was first isolated by Simister and

Mostov in 1989 [43]. FcRn is structurally related to MHC class I molecules and consists of a

heterodimer that is composed of a glycosylated heavy (α) chain that is associated

noncovalently with the β2-microglobulin (β2m) light chain [43]. The structural similarity to

MHC class I molecules has been confirmed by solution of the X-ray crystallographic

structure of the extracellular domains of FcRn together with IgG [44]. FcRn binding of IgG

requires three critical amino acids within the CH3–CH2 domain interface of the Fc fragment

(Ile253, His310, and His435) in humans and rodents [45]. FcRn homologues have been

identified in rat [43], mouse [46], human [47], cow [48], pig [49], and sheep [50]. Although

FcRn was originally described as being developmentally regulated in rodent intestine in that

its functional expression at birth was notably downregulated within the intestinal epithelium

at the time of weaning [39], it has recently been demonstrated that FcRn is also expressed in

many human and non-human adult tissues and cell types including hepatocytes [51],

endothelial cells [52], a variety of epithelial cell subtypes [53–58], monocytes, macrophages,

and dendritic cells but not other hematopoetic cell lineages [59]. In various species, these

findings have predicted that the functions of FcRn extend to adult mammalian (including

human) life.

FcRn has been linked to four major cell biologic pathways: IgG transcytosis across polarized

epithelia such as epithelial cells of the placenta [47, 60, 61], intestine [53] and lung [62, 63];

the protection of IgG from catabolism in the circulation [64]; the protection of albumin from

catabolism in the circulation as FcRn serves as the albumin receptor [65], and; immune

complex mediated antigen presentation in dendritic cells [66]. These functions are driven by

the characteristic binding features of IgG to FcRn, allowing for an “on–off” relationship

between the receptor (FcRn) and cargo (IgG). IgG binding to FcRn is strongly pH dependent

with high-affinity binding at acidic pH (pH<6.5) and weak to no binding at or above neutral

pH (pH>7.0), which is consistent with the presence of histidine residues within IgG that are

involved in FcRn binding [67]. Using β2m-deficient mice that lack FcRn function [41, 42,

68] and more recently FcRn-deficient mice [69], several groups have shown that FcRn

expression is associated with all of these aforementioned functions. At the cellular level, it

has been hypothesized that FcRn binds IgG either on the cell surface as driven by the acidic

properties of certain cell surfaces (e.g., apical cell surface of epithelia due potentially to the

presence of the Na+–H+ exchanger) [70] or in an acidic compartment such as early

endosomes [55]. This binding between FcRn and IgG directs monomeric IgG away from
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degradation in either late endosomes and/or lysosomes with either subsequent recycling into

the extracellular milieu (protection function) [71] or to the opposite side of a polarized

epithelial cell (transfer function) [72–74]. Such a process is important in protecting IgG

from catabolism and shuttling IgG across polarized epithelial barriers in the process known

as transcytosis. In contrast, binding of FcRn to polymeric IgG antigen-antibody complexes

results in the mobilization of these to the lysosomes and enhancement of antigen

presentation [66].

FCRN AND INFECTION

The bidirectional transport of IgG confers a unique ability upon FcRn to to be able to

retrieve intestinal luminal antigens as a complex with IgG and to deposit these into the

intestinal mucosa where the antigen/IgG complexes can be captured by DCs for subsequent

presentation to CD4+ T cells either locally or within regional lymphoid structures [75].

These properties of FcRn define a unique mechanism by which absorptive epithelia, which

cover the majority of the surface of the intestines, can specifically acquire and transport

antigens into the lamina propria and regional lymphoid structures. Consistent with this,

recent studies have indicated that intestinal bacterial antigens are required to direct the

maturation of immune responses [76] and that such immune responses are induced

throughout the intestine rather than within restricted regions such as Peyer’s patches [77,78].

Therefore, these recent observations have raised a potential possibility that epithelial cell-

mediated sampling of luminal bacterial antigens throughout the intestinal surface contributes

to the regulation of mucosal and systemic immune responses. It is interesting to note that

FcRn−/− mice exhibit more body-weight loss and higher bacterial concentrations in the feces

at 21 days after C. rodentium infection compared to FcRn−/+ mice [79]. Consistent with

these clinical changes, FcRn−/− C57BL/6 mice that were infected with C. rodentium exhibit

increased cellular infiltration with mononuclear cells and neutrophils and significantly

increased epithelial injury in comparison to that observed in FcRn−/+ mice. These results

indicate that FcRn−/− mice, which show an absence of transporting IgG and bacterial

antigen/IgG complexes, are more susceptible to C. rodentium-induced colitis. Both innate

and acquired immune responses are involved in the pathogenesis of infectious colitis [80,

81]. It has been hypothesized that FcRn also plays a role in infection-induced acquired

immune responses by delivering bacteria-derived antigens coupled to specific IgG into

mucosal immune cells in addition to potential local, immune protective effects of this

receptor in the epithelium. To show this, a genetically engineered C. rodentium strain (C.

rodentium-OVA) that constitutively expresses an OVA fragment containing the OT-II and

DO11.10 peptides was examined in a transgenic animal expressing mouse FcRn and mouse

β2m within the epithelium under the control of an IFABP. It was shown that FcRn-mediated

delivery of IgG was required for the effective induction of immune responses to an epithelial

pathogen in vivo by the ability to deliver epithelia-associated antigens to host immune cells

in the mesenteric lymph nodes as defined by the detection of multiple cell divisions in

CFSE-labeled transgenic, OVA-specific T cells [79]. These studies indicate that epithelial

FcRn can induce effective CD4+ T cell responses systemically to pathogen-derived antigens

associated with the lumen and/or intestinal epithelium when they are retrieved as

antigen/IgG complexes.
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FCRN AS A THERAPUTIC TARGET

These properties of FcRn have led to the concept of targeting FcRn for therapeutic purposes.

Such opportunities would include extension of the serum half-life of therapeutic antibodies

and Fc-fusion proteins to improve their efficacy or conversely decreasing the serum level of

pathogenic antibodies by inhibiting FcRn function. The latter would be important in

antibody mediated diseases such as myasthenia gravis, bullous pemphigoid, idiopathic

thrombocytopenic purpura (ITP) and systemic lupus erythematosus (SLE). Alternatively, the

transport functions of FcRn have lent themselves to enabling drug delivery across mucosal

surfaces. Fc-fusion proteins of erythropoietin (EPO-Fc) have been shown to be able to be

delivered across the epithelia of the lungs of mice [58], monkeys [63] and humans [62] in a

pathway that is mediated specifically by FcRn since mutation of the critical isoleucine 252,

histidine 433 and histidine 435 residues abrogates this transport. The clinical trials with

EPO-Fc [62] in humans in particular proves that the FcRn is active at mucosal surfaces in

adult human life.

The remainder of this discussion will focus on the manipulation of therapeutic and

pathogenic antibodies within the circulation. The half-life of IgG depends on its

concentration in the circulation in an inverse manner due to the saturability of the FcRn

receptor [82, 83]. The level of FcRn expression controls the serum concentration of IgG

such that excess IgG antibodies do not bind to FcRn and enter a degradative pathway. This

leads to a shortening of the serum IgG half-life. High-dose intravenous immunoglobulin

(IVIG) treatment [84, 85] is thought to exert an immunomodulatory effect by numerous

mechanisms, including engagement of the inhibitory FcγRIIb receptor and by FcRn

saturation. In mouse models such as bullous pemphigoid, ITP and auto-immune arthritis,

IVIG treatment is effective because of the decrease of the pathogenic antibodies. The

therapeutic effect for IVIG is maintained in FcγRIIb-deficient mice and its absence in FcRn

deficient mice is strong evidence that an important mechanism of action of IVIG is its ability

to compromise FcRn function [86, 87].

Another approach to reduce serum pathogenic antibodies is to block the FcRn–IgG

interaction using FcRn-specific monoclonal antibodies. A monoclonal antibody against β2m

has been reported to block the ability of FcRn to bind IgG in vitro [88] and in vivo [89]. β2m

is the common light chain for all MHC class I and many MHC class Ib molecules besides

FcRn. Therefore therapy using β2m specific monoclonal antibodies may incur unexpected

side effects. Indeed, a monoclonal antibody directed against the FcRn heavy chain has been

shown to reduce disease symptoms in rats with experimentally induced myasthenia gravis

[90]. Such FcRn specific antibodies and other targeting modalities may be used as

therapeutic agents in such contexts in the future. These alternative methods of targeting and

inhibiting FcRn include the creation through genetic engineering of antibodies with

increased binding to FcRn at both neutral and acidic pH (so-called “Abdegs”) [91, 92] or

cyclic peptides with similar properties [93].
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CONCLUSION

The FcγRs and FcRn are revealing themselves to be clinically useful targets in the treatment

of infection, cancer and autoimmune diseases. These approaches include the blockade of

inhibitory FcγRs for enhancing immune responses to infectious pathogens and cancer,

blocking activating FcγRs for the treatment of autoimmune diseases and targeting the

ectopic expression of particular FcγRs such as occurs in lymphomas for the elimination of

tumors. The manipulation of FcRn interactions with antibodies allows for the development

of designer antibodies that have particular pH dependent binding characteristics lends

themselves to enhancing therapeutic antibody half-life or promoting the degradation of

pathogenic antibodies. Finally, co-opting FcRn transport function is a means to enable the

mucosal delivery of therapeutic proteins.
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