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Abstract

Early-onset breast cancer (EOBC) causes substantial loss of life and productivity, creating a major

burden among women worldwide. We analyzed 1,265,548 Hapmap3 SNPs among a discovery set

of 3,523 EOBC incident case and 2,702 population control women aged <=51 years. The SNPs

with smallest P-values were examined in a replication set of 3,470 EOBC case and 5,475 control

women. We also tested EOBC association with 19,684 genes by annotating each gene with

putative functional SNPs, and then combining their P-values to obtain a gene-based P-value. We

examined the gene with smallest P-value for replication in 1,145 breast cancer case and 1,142

control women. The combined discovery and replication sets identified 72 new SNPs associated

with EOBC (P<4×10−8) located in six genomic regions previously reported to contain SNPs

associated largely with later-onset breast cancer (LOBC). SNP rs2229882 and 10 other SNPs on

chromosome 5q11.2 remained associated (P<6×10−4) after adjustment for the strongest published

SNPs in the region. Thirty-two of the 82 currently known LOBC SNPs were associated with

EOBC (P<0.05). Low power is likely responsible for the remaining 50 unassociated known LOBC

SNPs. The gene-based analysis identified an association between breast cancer and the

phosphofructokinase-muscle (PFKM) gene on chromosome 12q13.11 that met the genomewide

gene-based threshold of 2.5×10−6. In conclusion, EOBC and LOBC appear to have similar genetic

etiologies; the 5q11.2 region may contain multiple distinct breast cancer loci; and the PFKM gene

region is worthy of further investigation. These findings should enhance our understanding of the

etiology of breast cancer.

Introduction

Early-onset breast cancer (EOBC) leads to substantial loss of life and productivity, creating

a major public health and economic burden in both developed and developing countries.

Many patterns of breast cancer incidence, histopathological characteristics, clinical behavior

and risk factors, including the increase in risk associated with a family history, differ

between cases diagnosed during pre-menopausal and post-menopausal periods; a difference

that has prompted speculation that there might be some genetic etiologies that are different

for EOBC and later-onset breast cancer (LOBC) (1–4). For example, a study of Utah

families estimated that the risk of developing BC for sisters of EOBC cases was 3.70 (95%
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confidence interval (CI)=2.5–5.2) times that for the general Caucasian population, nearly

double the 1.83-fold relative risk (CI=1.65–2.01) among sisters of cases of all ages (5).

About 25% of the aggregation is explained by the high risks specific to carriers of

deleterious mutations in the major susceptibility genes BRCA1 and BRCA2, but even after

excluding carrier families, risks are higher for relatives of EOBC cases than among relatives

of LOBC cases (3,6,7). Recently, genome-wide association studies (GWASs) have reported

many single-nucleotide polymorphisms (SNPs) as associated with breast cancer risk (8). To

date however, no published GWASs have focused on EOBC. Here we report findings from

the first large-scale GWAS of EOBC involving a discovery set of 6225 young Caucasian

women from eight sites in the USA, Canada, Australia and Germany and two replication

sets of Caucasian women from Australia, the USA, the UK, and other European countries.

Materials and Methods

We used a case-control design to investigate EOBC risk among Caucasian women in

relation to 1,265,546 single-nucleotide polymorphisms (SNPs) included in the HapMap3

project (http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02phaseIII/

HapMap3_r2/). Specifically, we used Illumina SNP arrays to genotype 3523 EOBC cases

and 2702 control women and to impute their genotypes for the HaMap3 SNPs (hereafter

called the discovery set). We then conducted two SNP-based analyses and a gene-based

analysis. The results of these analyses were examined in two sets of independent data (called

replication sets). We begin with a description of subject recruitment, genotyping and quality

control for the discovery set. We then describe the SNP-based analysis and replication,

followed by the gene-based analysis and replication.

Discovery set

Subject recruitment—Population-based subjects were recruited from the eight sites

described in Supplementary Table S1, some of which oversampled cases with a personal or

family history suggesting a heritable basis for their disease (9–14). Eligible cases were non-

Hispanic White (NHW) women diagnosed with invasive breast cancer when 51 years or

younger and not known to carry pathogenic mutations in BRCA1 or BRCA2. Eligible

controls were NHW women aged 20–51 years without a history of breast cancer, who were

identified largely by random-digit dialing. Table S2 shows the numbers of eligible subjects

from each of the eight contributing sites after quality control.

Genotyping and quality control—DNA samples for subjects from all but one of the

sites were genotyped at the University of Chicago on Illumina 610-Quad and Cyto12 v2

BeadChips (Illumina Inc.), using the protocol described in the Supplement. Two hundred

and twenty seven population control subjects from the Colon Cancer Family Registry

(CCFR) were genotyped at TGEN (http://www.tgen.org) using the Illumina Human1M and

HumanOmni1-Quad BeadChips. In addition, 27 blinded and 22 un-blinded quality control

replicates from the study sample were genotyped on the Human1M. Replicates showed

concordance of called genotypes >99.94% (for samples with call rates >90%). Standard

laboratory quality control procedures were applied and have been described previously (15).

Quality control was implemented using a combination of PLINK (16) and custom programs
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written in C, R, Perl, and the Unix bash shell. Data quality control procedures are described

in more detail in the Supplement and summarized in Table S3. This table shows that

555,254 of the 1,298,078 SNPs remained after quality control, and that most SNPs were

deleted because they appeared only on the 1M and 1M Omni chips that were used to type

only 227 controls.

Analysis—We first identified principal components (PCs) representing axes of ancestral

variation to adjust for population stratification (17) and imputed untyped SNPs using the

HapMap3 data. We then conducted two SNP-based analyses and a gene-based analysis. The

first SNP-based analysis consisted of SNP-specific logistic regressions for each of the

1,265,548 typed or imputed HapMap3 SNPs using BEAGLE (18). We checked for

population stratification using graphical plots of test statistics and the lambda measure of

overdispersion (19). We used an additive regression model in which the logit of EOBC risk

was linearly related to the number of SNP minor alleles, and noted the SNPs with nominal

P-values less than 4×10−8. These SNPs and their MAFs for cases and controls as well as the

discovery set p-values are shown in Table S4. The second SNP-based analysis was

conducted to examine association between EOBC and each of the 82 breast-cancer-

associated SNPs currently reported and validated in the literature. (We were unable to

impute one SNP that was not polymorphic in the HapMap3 data.) Here we used SNP

specific logistic regressions for each of the 82 SNPs in which the logit of EOBC risk was

linearly related to the number of SNP risk alleles, as reported in the literature.

The gene-based analysis was conducted in two steps. First, we attempted to annotate each

known human gene with one or more of the SNPs in the discovery set that could affect its

expression and/or function. Then we combined the EOBC discovery set P-values of these

expression-related SNPs into summary gene-based P-values. For step 1, we used eQTL

mapping of SNPs to genes, as implemented in the online database SCAN (20, 21) and used

the eQTL significance levels to quantify the likelihood that a SNP (or one in strong LD with

it) regulates gene transcript levels (22). That is, we assigned a SNP to a gene if the SNP

encoded a missense, nonsense or frameshift (MNF) variant in the gene, or if it met our

criteria for an expression-quantitative trait locus (e-QTL) SNP for the gene. While not all the

SNPs annotated to a gene are likely to be functional, they are clearly enriched for those with

functional consequence. We were able to annotate 19,684 genes with one or more putative

functional SNPs, 11,040 of which were annotated with at least one e-QTL SNP. In step 2 we

calculated a gene-based P-value for each of the 19,684 genes by combining the EOBC-

association P-values for all its putative functional SNPs using methods described elsewhere

(23).

The Supplement contains additional details about both SNP-based and gene-based analyses.

Replication sets

Replication of SNP-based results—Primary genotype data were obtained from three

early-onset breast cancer GWAS in populations of European ancestry (3, 24–28) as

described in Supplementary Tables S5–S6. For each typed or imputed SNP using

ProbABEL (29), we combined the SNP-specific regression coefficients obtained for the
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discovery and replication sets using the commonly-deemed inverse-weighted summary

statistic proposed by Cochran (30).

Replication of gene-based results—To replicate the gene-based association analyses,

we used available GWAS data from the CGEMS breast cancer study of 1,145 Caucasian

case women and 1,142 Caucasian control women aged 55–74 years. Details of subject

selection, genotyping methods and QC analyses for CGEMS breast cancer project have been

published (31, 32). The identical gene-based analytic method, described above and in the

Supplement, was applied to the CGEMS data obtained from dbGaP. The gene-based P-

values from both discovery and replication datasets were combined for the gene with

smallest gene-based P-value in discovery data using Fisher’s method for meta-analysis (33).

Further details of both the SNP-based and gene-based replication sets can be found in the

Supplement.

Results

SNP-based analysis

Analysis of combined discovery and replication sets identified 96 SNPs from six

chromosomal regions as associated with EOBC risk with P<4×10−8 (the threshold for

genome-wide significance at level 0.05 with 1.2 million independent tests). These results

were not driven by data from a single site. The six regions lie on chromosomes 3p24.1,

5q11.2, 8q24, 10q26.13, 11q13.2 and 16q12.1. Previous GWASs have associated SNPs in

these regions with (largely later-onset) breast cancer; however they have reported only 24 of

these 96 SNPs (Table 1) (28, 31, 32, 34–60). To investigate how many of the remaining 72

unpublished SNPs are independently associated with EOBC, we evaluated each of them

using a regression model that also contained the published SNP in the region having the

smallest P-value in the combined discovery and replication data (called the index SNP).

These regressions identified 12 of the 72 SNPs as independently associated with EOBC at

significance level P<0.001 (listed in bold type in Table 1). Eleven of these 12 SNPs are in

the 5q11.2 region and almost all are within or near the MAP3K1 gene; eight are downstream

of the published index SNP (Figure 1). The strongest of these SNPs, is rs2229882 with

unadjusted P-value 1.02×10−14 and squared correlation r2=0.10 with the published SNP

rs889312 (Figure 1 and Table 1).

To further explore the 5q11.2 association we examined 2,889 SNPs (278 typed and 2,611

imputed using 1KG data) within a 2Mb region centered at rs889312, the strongest published

SNP in the region. We found rs7709971 to have the smallest P-value (1.01×10−9). Adjusting

for this SNP in bi-variate regressions did not produce strong new associations for any of the

other SNPs in the region (results not shown).

Association with known breast cancer SNPs

Table 2 shows 83 SNPs reported in the GWAS catalog http://www.genome.gov/26525384#1

as associated with breast cancer at P<4×10−8 in studies of predominantly LOBC (28, 31, 32,

34–60). We used the discovery set to examine association between EOBC and the 82 SNPs

that we could impute using HapMap3 and/or 1KG data. Table 2 shows that 32 SNPs were

Ahsan et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.genome.gov/26525384#1


associated at P<0.05 (listed in bold type in the table). We also computed the probability that

a test of size 0.05 using 3523 cases and 2702 controls would detect association with each of

the 82 SNPs, given its published effect size as shown in the table. We found that the mean

power to detect the 50 missed SNPs was 44%, appreciably lower than the mean power of

77% for the 32 we detected. Thus our failure to confirm the remaining 50 SNPs seems due

to insufficient power to detect their small effect sizes. These results suggest that the genetic

etiology of EOBC is not different than that of LOBC.

Gene-based analysis

Analysis of the discovery set identified the phosphofructokinase muscle-type (PFKM) gene

on chromosome 12q13.11 region as associated with EOBC with P-value of 9×10−7, which

meets the genome-wide threshold of P<2.5×10−6 for the 19,684 statistical tests performed.

This region is distinct from the regions 12q22 and 12q24 containing SNPs known to be

associated with breast cancer (Table 2). When we repeated the same analysis using the

predominantly LOBC breast cancer replication data from the CGEMS study, the PFKM

gene also was associated with breast cancer (P=3×10−2). Combined analysis of the two data

sets yielded an overall gene-based Fisher’s meta-P-value of 5×10−7 for the PFKM gene. No

other genes met the genome-wide significance threshold.

The association between PFKM and breast cancer risk was based on its annotation with the

35 putative functional SNPs shown in Table 3. This set consists largely of trans e-QTL

SNPs rather than MNF SNPs in the coding region of the gene. Nevertheless, we also found

evidence implicating SNPs in the 1M region centered at the PFKM gene. We found that 27

of the 966 SNPs in this region that were included in the EOBC GWAS discovery set were

associated with EOBC at P<0.01. These SNPs are listed in Figure 2. Also shown in the

Figure are the genes in this region (Panel A), a Manhattan plot of the 966 P-values (Panel

B), and the D′ measure of linkage disequilibrium between pairs of SNPs (Panel C). To

evaluate the statistical significance of this finding, we permuted subjects’ case-control

statuses 1000 times, and in each permutation we evaluated how many of the 966 SNPs were

associated with EOBC at P<0.01. We found that none of the 1000 permutations yielded 27

or more such SNPs, giving a significance level of P<0.001. Most of the 27 EOBC-associated

SNPs were located within other nearby genes, suggesting that EOBC risk could be due to

some complex gene expression pattern in this gene-rich region (see Panels A and B of

Figure 2). Panel C of the figure shows the correlations among the SNPs in the region.

Discussion

This study identified and replicated EOBC associations with 72 previously unpublished

SNPs in six regions known to harbor variants affecting breast cancer risk. Twelve of the 72

SNPs remained associated with EOBC after adjusting for the SNP with smallest published

P-value in the same region. Eleven of these 12 SNPs lie on chromosome 5q11.2 near the

MAP3K1 gene. Their lack of strong correlation with the strongest published SNP rs889312

suggests the presence of multiple causal variants in this region. Future sequence-based

studies, coupled with functional experiments, can exploit these associations to identify the

causal variant(s) in the region.
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We examined association between EOBC and 82 of the 83 common SNPs currently known

to be associated with largely LOBC. We found evidence for association with only 32 (39%)

of these SNPs. However comparison of detected and missed SNPs with respect to effect size

and power suggests that this low confirmation rate reflects the inadequate power to detect

the missed SNPs rather than systematic etiological differences between EOBC and LOBC.

These findings suggest that the genetic factors responsible for breast cancer affect risk at all

ages.

The gene-based GWAS analyses identified the PFKM gene region 12q13.11 as associated

with breast cancer risk, independently of the 12q22 and 12q24 regions previously associated

with breast cancer. PFKM, one of the three phospho-fructose-kinase (PFK) isoenzymes, is

the key regulator of cellular glycolysis catalyzing the phosphorylation of fructose-6-

phosphate to fructose-1,6-bisphosphate. Disabling PFKM mutations lead to glycogen

storage diseases (especially type VII – Tarui’s disease) as well as cardiac and hematological

disorders (61–63). The association of PFKM expression with breast cancer risk is plausible

for several reasons. First, this gene is expressed in breast cancer cell lines (64). Second,

variants in the gene have been related to post-translational modifications, which have been

shown to alter the metabolism and promote the growth of cancer cells (65). Third, an

association between breast cancer risk and this gene is consistent with observations that

tumor cells can consume large amounts of glucose due to aberrant glucose metabolism,

especially through a glycolytic pathway that produces lactate (65). Finally, tumor suppressor

protein p53 has been shown to suppress PFKM expression in model system (66). Since the

biology of the PFKM gene and its modulators and inhibitors are well characterized (67, 68)

identification of PFKM gene region as a breast cancer susceptibility locus has potential

translational implications for breast cancer prevention and treatment.

The present study has several strengths including its large sample size, its focus on EOBC,

its homogenous Caucasian study population, and its novel gene-based analysis involving the

functional characteristics of gene-related SNPs. Study limitations include use of somewhat

different types of study populations between the discovery (population-based) and

replication (both population- and clinic-based) phases, and our inability to replicate the

gene-based analysis in an EOBC replication set due to lack of access to necessary relevant

data from replication cohorts.

In conclusion, the study identified EOBC risks to be associated with 72 new SNPs in six

chromosomal regions which were previously associated with LOBC risks. Eleven of the 72

SNPs, all on chromosome 5q11.2, were associated with EOBC independently of previously

reported SNPs. These EOBC-associated SNPs may help in the search for causal variants in

the 5q11.2 region. In addition, we found little evidence to support genetic heterogeneity

between EOBC and LOBC. Finally, the gene-based analysis identified a region containing

the key glycolysis regulation gene PFKM that is worthy of further investigation as a

susceptibility locus for breast cancer in Caucasian women of all ages. Future studies need to

determine whether the current findings apply to non-Caucasian women.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plot of significance levels from combined discovery and replication data for

SNPs in the 5q11.2 region. Y-axis shows minus log P-value for association with EOBC, X-

axis shows chromosomal position, and SNP color reflects its correlation with SNP rs889312

(SNP with smallest P-value in discovery set, marked by arrow). SNPs in red boxes are

associated with P-value <0.001 from regression analyses adjusting for rs889312. Horizontal

bar denotes genome-wide significance threshold P=4×10−8. Blue curve denotes

recombination rate.
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Figure 2.
Panel A: chromosomal positions of genes on chr12q13.11 in the 2MB region surrounding

the PFKM gene. Panel B: Manhattan plot of 27 SNPs in the region associated with EOBC

with combined discovery and replication P-values of 0.01 or less. These 27 SNPs and their

P-values are listed on the left in their order of appearance from left to right. SNP colors

reflect magnitudes of their squared correlation coefficients with SNP rs7296288 (marked by

arrow), which had the smallest discovery set P-value. Panel C: linkage disequilibrium

measures D′ for all 966 HapMap3 imputed SNPs in the chr12q13.11 region. Dark red

squares represent D′ values near 1 and white squares represent D′ values near zero.
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Table 3

Significance levels from discovery and replication sets for association of EOBC with 35 putatively functional

PFKM SNPs

SNP
GWAS P-value

Discovery data Replication data Combined

rs9895850 1.59E-04 1.35E-03 9.52E-07

rs6892066 3.85E-04 1.21E-01 1.44E-04

rs16959569 5.31E-04 9.70E-04 2.17E-06

rs4462967 1.03E-03 2.80E-02 9.26E-05

rs12190699 6.92E-02 4.23E-02 6.02E-03

rs4242252 2.00E-01 7.11E-02 2.36E-02

rs12442176 2.20E-01 5.38E-01 1.34E-01

rs16881917 3.23E-01 8.08E-01 2.43E-01

rs7096642 3.28E-01 8.83E-01 2.63E-01

rs10091208 3.31E-01 8.38E-01 2.54E-01

rs7006101 3.72E-01 5.95E-01 2.15E-01

rs2377800 4.14E-01 5.11E-01 2.08E-01

rs999450 4.85E-01 6.35E-01 2.74E-01

rs7597958 4.85E-01 4.82E-01 2.24E-01

rs2228500 4.89E-01 4.99E-01 2.32E-01

rs1468195 5.40E-01 8.59E-01 3.66E-01

rs16955826 5.51E-01 6.99E-01 3.22E-01

rs8095381 5.57E-01 4.51E-01 2.37E-01

rs11114379 5.70E-01 4.99E-01 2.59E-01

rs6999405 5.81E-01 N/A* N/A*

rs1245012 5.86E-01 5.04E-01 2.66E-01

rs7199193 6.01E-01 1.85E-01 1.27E-01

rs11777718 6.76E-01 6.30E-01 3.45E-01

rs12470945 7.00E-01 8.83E-01 4.43E-01

rs1376386 7.45E-01 6.22E-01 3.66E-01

rs12476834 7.50E-01 9.22E-01 4.76E-01

rs9952079 8.14E-01 3.86E-01 2.78E-01

rs17775523 8.14E-01 6.57E-01 4.03E-01

rs17505688 8.38E-01 1.12E-01 1.12E-01

rs1920398 8.50E-01 5.16E-01 3.52E-01

rs8057807 9.08E-01 4.32E-01 3.26E-01

rs7031588 9.36E-01 1.48E-01 1.51E-01

rs12306431 9.43E-01 4.54E-01 3.46E-01

rs17505369 9.61E-01 1.53E-01 1.58E-01

rs6984368 9.98E-01 8.69E-01 5.48E-01

*
missing in replication dataset
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