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Abstract

Early-onset breast cancer (EOBC) causes substantial loss of life and productivity, creating a major
burden among women worldwide. We analyzed 1,265,548 Hapmap3 SNPs among a discovery set
of 3,523 EOBC incident case and 2,702 population control women aged <=51 years. The SNPs
with smallest P-values were examined in a replication set of 3,470 EOBC case and 5,475 control
women. We also tested EOBC association with 19,684 genes by annotating each gene with
putative functional SNPs, and then combining their P-values to obtain a gene-based P-value. We
examined the gene with smallest P-value for replication in 1,145 breast cancer case and 1,142
control women. The combined discovery and replication sets identified 72 new SNPs associated
with EOBC (P<4x1078) located in six genomic regions previously reported to contain SNPs
associated largely with later-onset breast cancer (LOBC). SNP rs2229882 and 10 other SNPs on
chromosome 5q11.2 remained associated (P<6x10~4) after adjustment for the strongest published
SNPs in the region. Thirty-two of the 82 currently known LOBC SNPs were associated with
EOBC (P<0.05). Low power is likely responsible for the remaining 50 unassociated known LOBC
SNPs. The gene-based analysis identified an association between breast cancer and the
phosphofructokinase-muscle (PFKM) gene on chromosome 12g13.11 that met the genomewide
gene-based threshold of 2.5x107%, In conclusion, EOBC and LOBC appear to have similar genetic
etiologies; the 5g11.2 region may contain multiple distinct breast cancer loci; and the PFKM gene
region is worthy of further investigation. These findings should enhance our understanding of the
etiology of breast cancer.

Introduction

Early-onset breast cancer (EOBC) leads to substantial loss of life and productivity, creating
a major public health and economic burden in both developed and developing countries.
Many patterns of breast cancer incidence, histopathological characteristics, clinical behavior
and risk factors, including the increase in risk associated with a family history, differ
between cases diagnosed during pre-menopausal and post-menopausal periods; a difference
that has prompted speculation that there might be some genetic etiologies that are different
for EOBC and later-onset breast cancer (LOBC) (1-4). For example, a study of Utah
families estimated that the risk of developing BC for sisters of EOBC cases was 3.70 (95%
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confidence interval (Cl)=2.5-5.2) times that for the general Caucasian population, nearly
double the 1.83-fold relative risk (CI=1.65-2.01) among sisters of cases of all ages (5).
About 25% of the aggregation is explained by the high risks specific to carriers of
deleterious mutations in the major susceptibility genes BRCA1 and BRCA2, but even after
excluding carrier families, risks are higher for relatives of EOBC cases than among relatives
of LOBC cases (3,6,7). Recently, genome-wide association studies (GWASSs) have reported
many single-nucleotide polymorphisms (SNPs) as associated with breast cancer risk (8). To
date however, no published GWASs have focused on EOBC. Here we report findings from
the first large-scale GWAS of EOBC involving a discovery set of 6225 young Caucasian
women from eight sites in the USA, Canada, Australia and Germany and two replication
sets of Caucasian women from Australia, the USA, the UK, and other European countries.

Materials and Methods

We used a case-control design to investigate EOBC risk among Caucasian women in
relation to 1,265,546 single-nucleotide polymorphisms (SNPs) included in the HapMap3
project (http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02phaselll/
HapMap3_r2/). Specifically, we used lllumina SNP arrays to genotype 3523 EOBC cases
and 2702 control women and to impute their genotypes for the HaMap3 SNPs (hereafter
called the discovery set). We then conducted two SNP-based analyses and a gene-based
analysis. The results of these analyses were examined in two sets of independent data (called
replication sets). We begin with a description of subject recruitment, genotyping and quality
control for the discovery set. We then describe the SNP-based analysis and replication,
followed by the gene-based analysis and replication.

Discovery set

Subject recruitment—Population-based subjects were recruited from the eight sites
described in Supplementary Table S1, some of which oversampled cases with a personal or
family history suggesting a heritable basis for their disease (9-14). Eligible cases were non-
Hispanic White (NHW) women diagnosed with invasive breast cancer when 51 years or
younger and not known to carry pathogenic mutations in BRCAL or BRCAZ2. Eligible
controls were NHW women aged 20-51 years without a history of breast cancer, who were
identified largely by random-digit dialing. Table S2 shows the numbers of eligible subjects
from each of the eight contributing sites after quality control.

Genotyping and quality control—DNA samples for subjects from all but one of the
sites were genotyped at the University of Chicago on Illumina 610-Quad and Cyto12 v2
BeadChips (lllumina Inc.), using the protocol described in the Supplement. Two hundred
and twenty seven population control subjects from the Colon Cancer Family Registry
(CCFR) were genotyped at TGEN (http://www.tgen.org) using the Illumina Human1M and
HumanOmnil-Quad BeadChips. In addition, 27 blinded and 22 un-blinded quality control
replicates from the study sample were genotyped on the Human1M. Replicates showed
concordance of called genotypes >99.94% (for samples with call rates >90%). Standard
laboratory quality control procedures were applied and have been described previously (15).
Quality control was implemented using a combination of PLINK (16) and custom programs
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written in C, R, Perl, and the Unix bash shell. Data quality control procedures are described
in more detail in the Supplement and summarized in Table S3. This table shows that
555,254 of the 1,298,078 SNPs remained after quality control, and that most SNPs were
deleted because they appeared only on the 1M and 1M Omni chips that were used to type
only 227 controls.

Analysis—We first identified principal components (PCs) representing axes of ancestral
variation to adjust for population stratification (17) and imputed untyped SNPs using the
HapMap3 data. We then conducted two SNP-based analyses and a gene-based analysis. The
first SNP-based analysis consisted of SNP-specific logistic regressions for each of the
1,265,548 typed or imputed HapMap3 SNPs using BEAGLE (18). We checked for
population stratification using graphical plots of test statistics and the lambda measure of
overdispersion (19). We used an additive regression model in which the logit of EOBC risk
was linearly related to the number of SNP minor alleles, and noted the SNPs with nominal
P-values less than 4x1078. These SNPs and their MAFs for cases and controls as well as the
discovery set p-values are shown in Table S4. The second SNP-based analysis was
conducted to examine association between EOBC and each of the 82 breast-cancer-
associated SNPs currently reported and validated in the literature. (We were unable to
impute one SNP that was not polymorphic in the HapMap3 data.) Here we used SNP
specific logistic regressions for each of the 82 SNPs in which the logit of EOBC risk was
linearly related to the number of SNP risk alleles, as reported in the literature.

The gene-based analysis was conducted in two steps. First, we attempted to annotate each
known human gene with one or more of the SNPs in the discovery set that could affect its
expression and/or function. Then we combined the EOBC discovery set P-values of these
expression-related SNPs into summary gene-based P-values. For step 1, we used eQTL
mapping of SNPs to genes, as implemented in the online database SCAN (20, 21) and used
the eQTL significance levels to quantify the likelihood that a SNP (or one in strong LD with
it) regulates gene transcript levels (22). That is, we assigned a SNP to a gene if the SNP
encoded a missense, nonsense or frameshift (MNF) variant in the gene, or if it met our
criteria for an expression-quantitative trait locus (e-QTL) SNP for the gene. While not all the
SNPs annotated to a gene are likely to be functional, they are clearly enriched for those with
functional consequence. We were able to annotate 19,684 genes with one or more putative
functional SNPs, 11,040 of which were annotated with at least one e-QTL SNP. In step 2 we
calculated a gene-based P-value for each of the 19,684 genes by combining the EOBC-
association P-values for all its putative functional SNPs using methods described elsewhere
(23).

The Supplement contains additional details about both SNP-based and gene-based analyses.

Replication sets

Replication of SNP-based results—Primary genotype data were obtained from three
early-onset breast cancer GWAS in populations of European ancestry (3, 24-28) as
described in Supplementary Tables S5-S6. For each typed or imputed SNP using
ProbABEL (29), we combined the SNP-specific regression coefficients obtained for the
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discovery and replication sets using the commonly-deemed inverse-weighted summary
statistic proposed by Cochran (30).

Replication of gene-based results—To replicate the gene-based association analyses,
we used available GWAS data from the CGEMS breast cancer study of 1,145 Caucasian
case women and 1,142 Caucasian control women aged 55-74 years. Details of subject
selection, genotyping methods and QC analyses for CGEMS breast cancer project have been
published (31, 32). The identical gene-based analytic method, described above and in the
Supplement, was applied to the CGEMS data obtained from dbGaP. The gene-based P-
values from both discovery and replication datasets were combined for the gene with
smallest gene-based P-value in discovery data using Fisher’s method for meta-analysis (33).

Further details of both the SNP-based and gene-based replication sets can be found in the
Supplement.

SNP-based analysis

Association

Analysis of combined discovery and replication sets identified 96 SNPs from six
chromosomal regions as associated with EOBC risk with P<4x1078 (the threshold for
genome-wide significance at level 0.05 with 1.2 million independent tests). These results
were not driven by data from a single site. The six regions lie on chromosomes 3p24.1,
5911.2, 8924, 10g26.13, 11g13.2 and 16g12.1. Previous GWASSs have associated SNPs in
these regions with (largely later-onset) breast cancer; however they have reported only 24 of
these 96 SNPs (Table 1) (28, 31, 32, 34-60). To investigate how many of the remaining 72
unpublished SNPs are independently associated with EOBC, we evaluated each of them
using a regression model that also contained the published SNP in the region having the
smallest P-value in the combined discovery and replication data (called the index SNP).
These regressions identified 12 of the 72 SNPs as independently associated with EOBC at
significance level P<0.001 (listed in bold type in Table 1). Eleven of these 12 SNPs are in
the 5q11.2 region and almost all are within or near the MAP3K1 gene; eight are downstream
of the published index SNP (Figure 1). The strongest of these SNPs, is rs2229882 with
unadjusted P-value 1.02x10714 and squared correlation r?=0.10 with the published SNP
rs889312 (Figure 1 and Table 1).

To further explore the 5q11.2 association we examined 2,889 SNPs (278 typed and 2,611
imputed using 1KG data) within a 2Mb region centered at rs889312, the strongest published
SNP in the region. We found rs7709971 to have the smallest P-value (1.01x1079%). Adjusting
for this SNP in bi-variate regressions did not produce strong new associations for any of the
other SNPs in the region (results not shown).

with known breast cancer SNPs

Table 2 shows 83 SNPs reported in the GWAS catalog http://www.genome.gov/26525384#1
as associated with breast cancer at P<4x1078 in studies of predominantly LOBC (28, 31, 32,
34-60). We used the discovery set to examine association between EOBC and the 82 SNPs
that we could impute using HapMap3 and/or 1KG data. Table 2 shows that 32 SNPs were
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associated at P<0.05 (listed in bold type in the table). We also computed the probability that
a test of size 0.05 using 3523 cases and 2702 controls would detect association with each of
the 82 SNPs, given its published effect size as shown in the table. We found that the mean
power to detect the 50 missed SNPs was 44%, appreciably lower than the mean power of
77% for the 32 we detected. Thus our failure to confirm the remaining 50 SNPs seems due
to insufficient power to detect their small effect sizes. These results suggest that the genetic
etiology of EOBC is not different than that of LOBC.

Gene-based analysis

Analysis of the discovery set identified the phosphofructokinase muscle-type (PFKM) gene
on chromosome 12q13.11 region as associated with EOBC with P-value of 9x10~7, which
meets the genome-wide threshold of P<2.5x1076 for the 19,684 statistical tests performed.
This region is distinct from the regions 12922 and 12924 containing SNPs known to be
associated with breast cancer (Table 2). When we repeated the same analysis using the
predominantly LOBC breast cancer replication data from the CGEMS study, the PFKM
gene also was associated with breast cancer (P=3x1072). Combined analysis of the two data
sets yielded an overall gene-based Fisher’s meta-P-value of 5x10~7 for the PFKM gene. No
other genes met the genome-wide significance threshold.

The association between PFKM and breast cancer risk was based on its annotation with the
35 putative functional SNPs shown in Table 3. This set consists largely of transe-QTL
SNPs rather than MNF SNPs in the coding region of the gene. Nevertheless, we also found
evidence implicating SNPs in the 1M region centered at the PFKM gene. We found that 27
of the 966 SNPs in this region that were included in the EOBC GWAS discovery set were
associated with EOBC at P<0.01. These SNPs are listed in Figure 2. Also shown in the
Figure are the genes in this region (Panel A), a Manhattan plot of the 966 P-values (Panel
B), and the D" measure of linkage disequilibrium between pairs of SNPs (Panel C). To
evaluate the statistical significance of this finding, we permuted subjects’ case-control
statuses 1000 times, and in each permutation we evaluated how many of the 966 SNPs were
associated with EOBC at P<0.01. We found that none of the 1000 permutations yielded 27
or more such SNPs, giving a significance level of P<0.001. Most of the 27 EOBC-associated
SNPs were located within other nearby genes, suggesting that EOBC risk could be due to
some complex gene expression pattern in this gene-rich region (see Panels A and B of
Figure 2). Panel C of the figure shows the correlations among the SNPs in the region.

Discussion

This study identified and replicated EOBC associations with 72 previously unpublished
SNPs in six regions known to harbor variants affecting breast cancer risk. Twelve of the 72
SNPs remained associated with EOBC after adjusting for the SNP with smallest published
P-value in the same region. Eleven of these 12 SNPs lie on chromosome 5¢g11.2 near the
MAP3K1 gene. Their lack of strong correlation with the strongest published SNP rs889312
suggests the presence of multiple causal variants in this region. Future sequence-based
studies, coupled with functional experiments, can exploit these associations to identify the
causal variant(s) in the region.
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We examined association between EOBC and 82 of the 83 common SNPs currently known
to be associated with largely LOBC. We found evidence for association with only 32 (39%)
of these SNPs. However comparison of detected and missed SNPs with respect to effect size
and power suggests that this low confirmation rate reflects the inadequate power to detect
the missed SNPs rather than systematic etiological differences between EOBC and LOBC.
These findings suggest that the genetic factors responsible for breast cancer affect risk at all
ages.

The gene-based GWAS analyses identified the PFKM gene region 12¢q13.11 as associated
with breast cancer risk, independently of the 12q22 and 1224 regions previously associated
with breast cancer. PFKM, one of the three phospho-fructose-kinase (PFK) isoenzymes, is
the key regulator of cellular glycolysis catalyzing the phosphorylation of fructose-6-
phosphate to fructose-1,6-bisphosphate. Disabling PFKM mutations lead to glycogen
storage diseases (especially type VII — Tarui’s disease) as well as cardiac and hematological
disorders (61-63). The association of PFKM expression with breast cancer risk is plausible
for several reasons. First, this gene is expressed in breast cancer cell lines (64). Second,
variants in the gene have been related to post-translational modifications, which have been
shown to alter the metabolism and promote the growth of cancer cells (65). Third, an
association between breast cancer risk and this gene is consistent with observations that
tumor cells can consume large amounts of glucose due to aberrant glucose metabolism,
especially through a glycolytic pathway that produces lactate (65). Finally, tumor suppressor
protein p53 has been shown to suppress PFKM expression in model system (66). Since the
biology of the PFKM gene and its modulators and inhibitors are well characterized (67, 68)
identification of PFKM gene region as a breast cancer susceptibility locus has potential
translational implications for breast cancer prevention and treatment.

The present study has several strengths including its large sample size, its focus on EOBC,
its homogenous Caucasian study population, and its novel gene-based analysis involving the
functional characteristics of gene-related SNPs. Study limitations include use of somewhat
different types of study populations between the discovery (population-based) and
replication (both population- and clinic-based) phases, and our inability to replicate the
gene-based analysis in an EOBC replication set due to lack of access to necessary relevant
data from replication cohorts.

In conclusion, the study identified EOBC risks to be associated with 72 new SNPs in six
chromosomal regions which were previously associated with LOBC risks. Eleven of the 72
SNPs, all on chromosome 5q11.2, were associated with EOBC independently of previously
reported SNPs. These EOBC-associated SNPs may help in the search for causal variants in
the 5g11.2 region. In addition, we found little evidence to support genetic heterogeneity
between EOBC and LOBC. Finally, the gene-based analysis identified a region containing
the key glycolysis regulation gene PFKM that is worthy of further investigation as a
susceptibility locus for breast cancer in Caucasian women of all ages. Future studies need to
determine whether the current findings apply to non-Caucasian women.
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Manhattan plot of significance levels from combined discovery and replication data for
SNPs in the 5g11.2 region. Y-axis shows minus log P-value for association with EOBC, X-
axis shows chromosomal position, and SNP color reflects its correlation with SNP rs889312
(SNP with smallest P-value in discovery set, marked by arrow). SNPs in red boxes are
associated with P-value <0.001 from regression analyses adjusting for rs889312. Horizontal
bar denotes genome-wide significance threshold P=4x1078, Blue curve denotes

recombination rate.
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Order SNPs P -LOG10(P)
1 rs11168142 0.005 23
2 rs12830810 0.003 25
3 rs7303895  0.001 3.0
4 rs7304743  0.001 3.0
5 rs734706  0.008 21
6 rs17122311  0.002 2.7
7 rs875023  0.004 24
8 rs2544029  0.006 22
9 rs2544030  0.005 23

10 rs2070615  0.007 2.2
11 rs1054442  0.003 25
12 rs7975791  0.009 2.0
13 rs10875914  0.010 2.0
14 rs11168830  0.008 21
15 rs12580349  0.007 22
16 rs2241726  0.007 22
17 rs7969091  0.001 3.0
18 rs12821008  0.001 31
19 rs6580698  0.001 3.0
20 rs6580699  0.001 3.0
21 rs7296288  0.001 3.2
22 rs11168857  0.008 21
23 rs3741621  0.008 2.1
24 rs10783302 0.010 2.0
25 rs2279596  0.009 2.0
26 rs10747561  0.009 2.0
27 rs1274726  0.010 2.0
Figure 2.
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Significance levels from discovery and replication sets for association of EOBC with 35 putatively functional

PFKM SNPs
GWAS P-value

SNP

Discovery data  Replication data Combined
rs9895850 1.59E-04 1.35E-03 9.52E-07
1s6892066 3.85E-04 1.21E-01 1.44E-04
1s16959569 5.31E-04 9.70E-04 2.17E-06
rs4462967 1.03E-03 2.80E-02 9.26E-05
rs12190699 6.92E-02 4.23E-02 6.02E-03
rs4242252 2.00E-01 7.11E-02 2.36E-02
rs12442176 2.20E-01 5.38E-01 1.34E-01
rs16881917 3.23E-01 8.08E-01 2.43E-01
rs7096642 3.28E-01 8.83E-01 2.63E-01
rs10091208 3.31E-01 8.38E-01 2.54E-01
rs7006101 3.72E-01 5.95E-01 2.15E-01
rs2377800 4.14E-01 5.11E-01 2.08E-01
rs999450 4.85E-01 6.35E-01 2.74E-01
1s7597958 4.85E-01 4.82E-01 2.24E-01
12228500 4.89E-01 4.99E-01 2.32E-01
rs1468195 5.40E-01 8.59E-01 3.66E-01
s16955826 5.51E-01 6.99E-01 3.22E-01
rs8095381 5.57E-01 4.51E-01 2.37E-01
rs11114379 5.70E-01 4.99E-01 2.59E-01
1s6999405 5.81E-01 N/A* N/A®
rs1245012 5.86E-01 5.04E-01 2.66E-01
rs7199193 6.01E-01 1.85E-01 1.27E-01
rs11777718 6.76E-01 6.30E-01 3.45E-01
rs12470945 7.00E-01 8.83E-01 4.43E-01
rs1376386 7.45E-01 6.22E-01 3.66E-01
rs12476834 7.50E-01 9.22E-01 4.76E-01
rs9952079 8.14E-01 3.86E-01 2.78E-01
rs17775523 8.14E-01 6.57E-01 4.03E-01
rs17505688 8.38E-01 1.12E-01 1.12E-01
rs1920398 8.50E-01 5.16E-01 3.52E-01
rs8057807 9.08E-01 4.32E-01 3.26E-01
rs7031588 9.36E-01 1.48E-01 1.51E-01
rs12306431 9.43E-01 4.54E-01 3.46E-01
rs17505369 9.61E-01 1.53E-01 1.58E-01
rs6984368 9.98E-01 8.69E-01 5.48E-01

*

missing in replication dataset
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