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Abstract

Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be
complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems
understanding. We present an active learning approach based on machine learning techniques as iterative surrogate
modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex
model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we
illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we
observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity.
Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic
model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic
regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided
insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning
is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational
expense, and can also be used as emulator to improve rapid policy making in various settings.
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Introduction

For many health care interventions, pre-introduction clinical

trials are unfeasible for budget or ethical reasons and mathemat-

ical models are used as pragmatic tools to inform policy [1]. This is

particularly the case for large-scale infectious disease interventions.

Simple static fixed risk models are commonly used for health

economic evaluation, and sometimes inappropriately so for

infectious diseases. Dynamic models representing transmission or

evolutionary dynamic systems contributed to our understanding of

biological mechanisms and the spread of infections. For instance,

in view of its global public health importance, influenza has been

the subject of many simulation studies [2–10]. The levels of

computational complexity and data capacity needs vary substan-

tially between deterministic compartmental models and stochastic

individual-based models, the two most widely used types of

dynamic models. Such models are developed through an iterative

process of designing, coding and validating with empirical data but

few have undergone sufficient testing across a range of settings and

situations to be fully validated [1]. In order to improve confidence

in model-based conclusions, it is necessary to gain a thorough

understanding of the system and assess how model assumptions

and parameters alter the results and policy decisions [9].

Individual-based models are computationally expensive and can

be too complex to fully explore and understand a systems behavior

[1]. Different scenarios and parameter values may be explored to

account for methodological, structural and parameter uncertainty

[3–5,11]. Parameter values can be drawn from a distribution or

changed at random over a plausible range. Parameter uncertainty

using linear regression in a Latin hypercube design (LHD) is now

routinely explored with static health economic models. Unfortu-

nately, these techniques are far less used in the context of dynamic

models due to the computational complexity and lack of

knowledge on some of the fundamental parameter values and

their distributions [12–14]. Nonetheless changes in a limited set of

parameters or the full set should be explored. Clearly, independent

of which method is chosen, it should be transparent and justified in

the context of the model [1].

To explore parameter influence, symbolic regression can be

used. Symbolic regression enables nonlinear response surface

modeling with automatic feature selection. It aims to capture

input-response behavior with algebraic expressions without a
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priori assumptions of model structure [15,16]. Many variants of

this method exist [17–19], but here we apply the Pareto-aware

symbolic regression (SR) that uses multiple selection objectives

[15,16,20]. The algebraic expressions are surrogate models for the

original computationally intensive simulation model. The model

responses can be instantaneously predicted for a set of inputs using

the algebraic expressions. These expressions provide information

on the relationships between inputs and responses. Ensemble-

based SR uses a collection of surrogate models as a final solution

and the accordance of the models defines a measure for the

prediction uncertainty. Input conditions that are hard to predict

indicate that more simulation samples are needed from the

corresponding input region.

The goal of this paper is to present an iterative modeling

approach with a model guided experimentation process to

systematically analyze both common and edge manifestations of

model runs. Figure 1 presents the methodology we recommend to

explore simulation models. First, inputs are sampled using a

maximin LHD design where the minimum distance between all

points is maximized. Second, each point of the input space is used

to initialize the simulation model. Next, the input–response data

from the simulations are modeled with SR to create surrogate

models which can be used for response predictions, feature

selection and to identify conditions with large prediction uncer-

tainty. Finally, these insights are used to enhance the experimental

design of subsequent simulations by adapting the sampling strategy

or reducing dimensionality.

While the general goal is to use a combination of previously

described methods from machine learning, known as sequential

experimental design [21–23] or active learning [24–26], we want

to emphasize that our approach with SR is an improvement in the

field of infectious disease modeling. An iterative modeling

approach from [13] was based on step-wise linear regression to

estimate response hypersurfaces and was limited to polynomials of

the third order. Okais et al [14] presented a framework to perform

a preliminary sensitivity analysis considering logic and scientific

relevance before conducting multivariate sensitivity analysis.

However, consistent reproducible methods for the latter were

not described. Longini et al [2] calculated confidence intervals for

disease burden estimates based on prior distributions instead of

fixed parameter values, but they did not describe variable

importance or system exploration analyses. Van Hoek et al [27]

performed variable importance analyses without feedback to the

experimental design.

We apply our methodology to the open-source model FluTE

[8], which is a stochastic individual-based model for pandemic

influenza. We illustrate a stepwise system exploration and

sensitivity analysis of a computationally expensive simulation

model. The model simulates a population with realistic social

contact networks and transmission based on the natural history of

influenza. Several parameters can be varied to modify the spread

of influenza, with the basic reproduction number R0 being

typically described as the most essential. R0 is defined as the

expected number of secondary infections caused by a primary

infection in a fully susceptible population. For the purpose of our

study, we focus on two main outcomes of this model: the clinical

attack rate and the day at which the influenza epidemic peaks.

High dimensionality and correlated inputs cause problems in

exploring system behavior, which can be resolved through iterative

modeling with SR. The approach we present is relevant for many

public health problems and we illustrate this through an example

of a previously published dynamic model-based economic

evaluation of varicella zoster virus (VZV) vaccination [27].

Varicella (chickenpox) is a typical childhood infection caused by

VZV and after recovery from chickenpox, the virus may reactivate

later in life to cause herpes zoster (shingles). The probability to

experience herpes zoster increases with time since the primary

VZV infection, but is reduced by natural re-exposure to VZV (e.g.,

typically parents are re-exposed when their child has chickenpox).

Although infant VZV vaccination was shown to dramatically

reduce chickenpox morbidity and mortality, there are lingering

concerns about its adverse impact on shingles as it reduces VZV

re-exposure opportunities [28]. Many modeling and economic

studies aimed to tackle this problem (reviewed in [29–31]) but the

van Hoek et al model [32] is of special interest because it includes

empirical observations on social mixing patterns and combined

childhood and adult vaccination strategies. This age-structured

Figure 1. Iterative active learning approach with a simulation
model. (1) A Latin hypercube design is used to make configuration
files. (2) These configurations are used for the simulation model. (3) All
input-response data are modeled with SR. (4) The surrogate models
obtained with SR are used to achieve system understanding. The
response prediction uncertainty can be used to adapt the experimental
design (1) for the following modeling cycle.
doi:10.1371/journal.pcbi.1003563.g001

Author Summary

Mathematical models are used as pragmatic tools to
inform policy makers on public health interventions and
many non-health problems. Considerable efforts have
been made to build realistic simulation models. Under-
standing the systems behavior and the effect of model
assumptions and parameter values on the results before
drawing conclusions for policy is crucial. Common and
edge manifestations of complex model runs should be
analyzed and therefore we present an active learning
approach, also known as a sequential design of exper-
iments, based on surrogate modeling and a model-guided
experimentation process. First, we illustrate our approach
with an individual-based model for influenza and demon-
strate the benefits compared to current complex modeling
practices. Second, we establish the power of our approach
with a high dimensional model with correlated inputs to
explore cost-effectiveness of varicella-zoster vaccination
programs. The most influential variables are identified with
the aim to reduce dimensionality and decrease decision
uncertainty. We also elaborate on the use of surrogate
models as an emulator to improve rapid policy making in
various settings. To this purpose we provide an interactive
platform through which the reader can explore instanta-
neously the sensitivity of the surrogate models to
parameter changes for both our applications.

Active Learning for Infectious Disease Modeling
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dynamic transmission model was used to perform cost-effective-

ness analysis for the United Kingdom [27] with 185 input

parameters, including 100 correlated transmission rates, to

calculate the incremental gain of Quality Adjusted Life Years

(QALY) and costs. Parameter uncertainty was incorporated and

conclusions were based on the results of 1000 runs. We analyzed

this input-response data with SR to identify driving parameters

and compared our findings with a linear regression analysis [33].

Reducing the dimensionality may improve uncertainty analysis

since the most influential parameters can be sampled more

intensively.

Methods

The method section follows the approach presented in Figure 1.

We provide a guided step-by-step example with basic simulation

model as supplementary information (Protocol S1).

Design of experiments
We used space-filling Latin hypercube designs (LHD) to create

parameter sets for the FluTE simulations. In the general case, a

sample value from the first interval of the first input parameter is

matched at random with sample values from intervals chosen for

the other input parameters [13]. Then the second interval of the

first input parameter is matched at random with sample values

from previously unused intervals of the other features. Each

interval of every input parameter will be sampled once and only

once. LHD has the advantage that the number of samples is

independent of the number of dimensions of the input space but

can be determined based on the computational budget, the input

dimensions and the complexity of the simulation. Computing a

space-filling LHD can be an onerous task and therefore we used

the maximin designs of spacefillingdesigns.nl [34,35]. Because our

designs have a rather limited number of sample points, we

extended the designs using the Intersite-projected distance method

of the Sequential Experimental Design (SED) toolbox [36–38].

Simulation model
Influenza model. We made use of an open-source individ-

ual-based model for influenza epidemics written in C++, called

FluTE [8]. All individuals in the model are members of different

social mixing groups. Influenza transmission within each group is

based on random mixing. The geographical distribution, employ-

ment rates and commuting behavior of the population are based

on the 2000 Census data for Seattle (500 000 people) and the Los

Angeles County (11 million people), distributed together with the

source code of the model. The simulation runs in 12-hour time

steps, representing daytime (work, school and community contacts)

and nighttime (home and community contacts). Contact proba-

bilities were tuned such that the final age-specific clinical attack

rates were similar to past influenza pandemics and observed

household attack rates. The model can simulate several interven-

tion strategies based on changes in susceptibility and infectivity

due to vaccination or antivirals and on changes in contact

probabilities between individuals due to social distancing mea-

sures.

VZV model. The economic evaluation of VZV vaccination

was based on a deterministic dynamic compartmental model

[27,32] with 185 inputs, including 100 correlated transmission

rates between 10 age groups. Underlying contact rates were

estimated from a survey of social mixing patterns and boot-

strapping the original sample specified uncertainty. The model was

adapted and calibrated to data from the UK. Source code was not

available but we made use of a dataset with 1000 runs, previously

subjected to linear regression analysis [33].

Surrogate modeling with symbolic regression
Symbolic regression (SR) captures input-response behavior by

efficiently exploring hundreds of thousands of algebraic expres-

sions of the input variables [15,16]. Aside from choosing the

modeling primitives, no assumptions or restrictions are made on

the model structure and genetic programming is used to optimize

the search process. SR is a biologically inspired method that

imitates Darwin’s evolution theory by applying genetic variation

and natural selection on the modeling ensemble [39]. We used the

SR implementation from the DataModeler package in Mathema-

tica [40]. The result of a SR run is an ensemble of tree-based

regression models that give a good approximation of the response

variable. The algorithm consists of the following steps [41]:

Model initialization. In the first step of the algorithm, a

population of SR models is generated randomly and the algebraic

expressions of the models are represented by parse trees. Every

model is a potential solution that explains the response behavior

using the a subset of the input variables. The parse tree of every

model consists of terminals and primitive functions. A terminal is

either an input variable or a constant. We used a set of primitive

functions fz,{, � ,7,.{1,.2,.x,
ffip
,log,expg and summation

and multiplication have an arbitrary arity. These functions can

be adjusted according to the problem domain.

Model evaluation. The model fitness is determined by

minimizing two objective functions: the prediction error 1{R2,

with R being Pearson’s correlation coefficient of (Y ,ŶY ) and the

model complexity. We define model complexity as the sum of the

number of nodes in all possible subtrees of a given tree, which is

equivalent to the visitation length, i.e. the total number of links

traversed starting from the root node to each of the terminal nodes

of the parse tree. The complexity objective is used to avoid

excessive growth of the model expressions. Because of the

complexity objective, the presence of a variable in a sufficiently

evolved population indicates that the variable is relevant for

describing the response [20].

Model archiving and elitism. After the evaluation of all

models, a fixed-size archive of the best achieving models is

maintained. This is an elitism strategy that ensures that the best

achieving models are never lost after recombination. The archive

is populated by a selection of the least-dominated models from

both the population and the archive of the previous generation. A

model dominates another model if it performs better on at least

one objective and does not score worse on any of the other

objectives. A model is said to be Pareto optimal if any other model

does not dominate it. This way, we can define the Pareto front of a

model set.

Model evolution. A new population of SR models is

generated at every step of the algorithm. New models are created

with genetic operators like crossover and mutation. Crossover is

the process of combining parent models into child models by using

subtrees of both parents (Figure 2A). Mutation of a model

introduces random alterations in its expression tree (Figure 2B). To

select which models will generate offspring a Pareto tournament is

held. Models that compete for offspring in the tournament are

selected from both the current population and the archive. To

generate the offspring, 90% of the children are generated by

crossing over two parents obtained from the Pareto tournament.

The remaining 10% is generated using the mutation operator.

Every 10 generations the population is re-initialized with random

Active Learning for Infectious Disease Modeling
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models to ensure diversity in the population and to counteract

inbreeding.

This evolutionary process is repeated over many generations. A

maximum number of generations, a time budget or a model

accuracy threshold can be used as criteria to stop the process. For

this paper we used time budgets based on the size and

dimensionality of the data sets. Timings are listed in Table 1

and an example with different time budgets for RUN 3 is

described in Text S1.

System understanding
Conclusions are based on a model selection from the knee of the

Pareto front and we perform nonlinear optimization of the

constants within these models. A model ensemble of high-quality

and minimal complexity obtained through an effective SR

algorithm can facilitate system understanding and focus the

research. Variable presence in the final ensemble (taken over

several independent SR runs) provides a robust indication of the

importance of input variables. Only inputs significantly related to

the response can survive a harsh evolutionary pressure and get to

the final ensembles [20]. Besides variable importance, final

ensembles also provide dimensionality trade-offs in complexity

and accuracy of models. Another example of system understand-

ing is the automatically generated hypotheses for meta-variables,

low order transformations of driver inputs, which can potentially

linearize the final models and enable further application of the

powerful linear and regularized linear learning. The sensitivity

analysis of constructed ensembles is the highlight of facilitated

system understanding. The prediction divergence of the model

ensemble is a measure for the prediction uncertainty. Conditions

that are hard to predict might be missing from the design.

Results

Transmission
We performed a stepwise exploration of the US-tailored

simulation model for pandemic influenza (FluTE), applied to

Seattle and Los Angeles county [8]. We first simulated epidemics

in the Seattle population using four basic model parameters: R0,

whether individuals can travel, the number of infected individuals

seeded into the population and whether this seeding occurs only

once (static) or on a daily basis (dynamic). Table 2 summarizes the

parameter ranges.

The surrogate models for the AR were of good quality (error ,

0.001). Although each configuration was executed 20 times, almost

no stochastic fadeout was observed. The dichotomous variable

indicating whether people can travel was absent in most surrogate

models. Given the inherent feature selection of the SR algorithm,

this parameter appears to be unimportant to predict the AR [20].

The response plot for the AR (Figure 3A) shows that the number

of infected people seeded into the population had almost no

impact when seeding once. Only very low numbers of seeded

individuals resulted in a different AR. The impact of the seeding

number on the AR increased with daily seeding. We observed a

correlation of 60% between the AR and the seeding number and

frequency though we expected a major role for R0.

The day of the epidemic peak advanced logarithmically with an

increasing number of infected seeds, although small numbers of

seeds could give rise to no or very late peaks (Figure 3B). There is

no consensus in the literature on pandemic influenza models about

how and to which extent infectious individuals should be seeded.

Some studies [4,8,42,43] have been published with static seeding

of 1, 10 and 100 individuals while others used dynamic seeding.

Figure 2. Recombination and modification of algebraic expres-
sions. (A) One point crossover example in symbolic regression. Two
individuals swap subtrees, resulting in two new expressions. (B) One
point mutation example in symbolic regression. The operator minus is
replaced by another operator of the same arity.
doi:10.1371/journal.pcbi.1003563.g002

Table 1. Symbolic regression settings.

Name Value

Population size 1000

Archive size 100

Crossover rate 0.9

Mutation rate 0.1

Population tournaments 5

Primitive functions z, {, �, 7,.{1 , .2 , .x ,
ffip
, log, exp

Time budget FluTE RUN 1,2,3 1000 s

Time budget FluTE RUN 4 7200 s

Time budget FluTE RUN 5 3600 s

Time budget QALY 3000 s

Independent evolutions FluTE 8

Independent evolutions QALY 12

doi:10.1371/journal.pcbi.1003563.t001

Active Learning for Infectious Disease Modeling
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There seems to be no concern about the potential impact of these

different seeding approaches, as only a shift of the epidemic curve

due to seeding has been reported [5]. We explored a wide range of

seeding values using both static and dynamic approaches, and

observed that the seeding approach has impact on the results. The

surrogate model divergence for small seeding values was very large

so these conditions needed to be sampled more intensively. Model

specifications and examples of surrogate models are given in Text

S1 and S2.

Stochasticity
With the aim to include more edge cases from the FluTE model,

we adapted the initial design (Table 2) by oversampling small

numbers of infected seeds with successive powers of two until

1024. This resulted in more stochastic effects, with substantially

different output for each parameter set. The current standard is to

use average [2,13,42,43] or median [4] results from several

realizations of each scenario. Average responses can be very

misleading due to stochastic fadeout (AR = 0). Figure 4 presents

the median, minimum and maximum AR and epidemic peak day

for all configurations. We opted to use all responses for the

surrogate modeling to minimize the loss of valuable information.

Conditions with stochastic effects increase model divergence. In

published pandemic influenza models, the number of repetitions

for each scenario ranged from 1 to 1000 [3,4,8]. Small numbers

have been justified by observing that independent realizations with

a given set of parameters lead to very similar epidemic curves [5].

Nevertheless, we observed stochastic fadeout for scenario’s

resulting in different median AR and especially the day of the

epidemic peak seemed sensitive to stochasticity.

Population
In order to assess the effect of population size, we compared

FluTE simulations for Seattle (0.5 million people) and LA County

(11 million people). We used a single design with four transmission

Table 2. Parameter design for all modeling iterations with FluTE and obtained variable importance for the cumulative clinical
attack rate.

Parameter RUN 1 RUN 2 RUN 3 RUN 4 RUN 5

Region Seattle Seattle LA County Seattle LA County

Travel allowed? yes/no (2) yes/no (2) yes/no (2) yes yes/no (2)

R0 1.1–2.4 (++) 1.1–2.4 (++) 1.1–2.4 (++) 1.1–2.4 (++) 1.1–2.4 (++)

Infected seeds 0–5000 (+*) 0–1024 (+*) 0–1024 (+*) 0–1024 (+*) 0–1024 (+*)

Seeded daily? yes/no (++) yes/no (+) no yes/no (2) no

Ascertainment 0–90% (+) 80%

Ascertainment delay 1–5 d (2) 1 d

Response threshold 0–5% (+) instant

Response delay 0–30 d (2) instant

Vaccination coverage 0–90% (2) 0–90% (++)

VE susceptibility 0–66% (2) 0–66% (+)

VE infectiousness 0–66% (2) 0–66% (2)

VE symptoms 0–66% (2) 0–66% (2)

Scenarios 200 200 50 800 200

Repetitions 20 20 10 20 20

++ very important, + important, 2 almost no impact,
* only small values,

Figure 3. Response prediction plots of the high-quality
surrogate models obtained with SR. Response prediction plot for
the cumulative clinical attack rate (A) and the day on which the
epidemic reaches its peak (B) when seeding occurs only once (black) or
on a daily basis (gray). Predictions for R0 assume a fixed number of
infected seeds, indicated by the dot in the panel on the right, and vice
versa.
doi:10.1371/journal.pcbi.1003563.g003
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parameters for both populations (Table 2) and compared the

surrogate models of each dataset. We observed similar response

predictions for the AR (Figure 5A), indicating that this outcome is

insensitive to population size, when population size is already

substantial (i.e. 0.5 m). The travel parameter was absent in most

surrogate models for both populations, indicating that this is

inherent to the simulation model. The main difference for the

enlarged population was the timing of the epidemic (Figure 5B).

For example, a pandemic with R0 = 1.8 and 100 infected seeds

would result in an AR of 0.38 for both populations, but the

epidemic peak day in LA County is predicted to be 15 days later

compared to Seattle. The similar AR and postponed peak for the

larger population are in line with results of previous studies [8,44].

We did not compare urban and rural regions due to lack of data

although this may have a large impact [4]. Model ensemble

divergence for low seeding numbers was less for LA County, which

suggests that large populations absorb stochastic effects.

Vaccination
After adjusting the transmission settings, seven parameters for

reactive vaccination strategies were added to the design (Table 2).

The computational burden to simulate Seattle was much lower

compared to the LA County. Therefore, we used the Seattle

population for the initial exploration with vaccination parameters.

Based on the resulting input-response data, surrogate modeling

showed that mainly the response threshold and ascertainment

fraction were important to predict the AR. The importance of R0

and the vaccination coverage increased when the response

threshold and ascertainment parameters were set to mimic instant

reactive measures, immediately after emergence.

Emulation
After subsequent simulation and modeling iterations, we

obtained surrogate models for LA County that can be used to

explore reactive vaccination policies on the outcome of ongoing

pandemics. Figure 6 shows a basic interface to visualize the

response behavior by changing the surrogate model parameters.

When vaccination coverage is set to zero, the results from the

second design emerge again (Figure 3). Further exploration of the

surrogate models revealed a saturation effect of the vaccination

coverage on the AR. The predicted AR with a vaccination

coverage of 60% is almost zero for R0 = 1.8 and vaccine efficacies

Figure 4. Variability of the simulation model output due to
stochastic effects. Multiple executions of the stochastic FluTE model
with identical epidemiological configuration lead to different outcomes.
The variability is shown by the median, minimum and maximum AR
(left) and day of the epidemic peak (right) for each combination of the
R0, travel and seeding parameters. The configurations are sorted on
their median response value.
doi:10.1371/journal.pcbi.1003563.g004

Figure 5. Response prediction plots for Seattle and LA County.
Response prediction plots of the high-quality surrogate models
obtained with SR for the cumulative clinical attack rate (A) and the
day of the epidemic peak (B) in Seattle (black) or LA county (gray).
Predictions for R0 assume a fixed number of infected seeds, indicated
by the dot in the panel on the right, and vice versa.
doi:10.1371/journal.pcbi.1003563.g005

Active Learning for Infectious Disease Modeling
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of 0.5. The protection of the general population by vaccination of

a subset is known as herd immunity [45]. The clear visualization of

herd immunity with the surrogate models emphasizes the

usefulness of our approach since it is hard to observe this effect

directly from the numerous individual simulation results. An

interactive version of this plot is available at www.idm.uantwerpen.be

(more info in Text S4).

Feature selection
Timely and effective identification and easy exploration of

important variables enhances our understanding of the underlying

Figure 6. Response plot explorer for the cumulative clinical attack rate. An interactive version of this plot is available at www.idm.
uantwerpen.be (see Text S4).
doi:10.1371/journal.pcbi.1003563.g006

Active Learning for Infectious Disease Modeling
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system. SR can be used for feature selection and is capable to

handle high dimensionality and correlated variables [20]. Here,

we focus on the surrogate modeling step of our approach with a

dynamic transmission model to explore the cost-effectiveness of

infant and adult VZV vaccination options. We analyzed the results

from an economic evaluation described in van Hoek et al [27] with

185 inputs, 100 of which are correlated transmission rates.

Parameter uncertainty was explored by using 1000 different

configurations. One of the essential findings based on this model

[27,46] is that the incremental Quality Adjusted Life Years

(QALYs) might become negative, suggesting infant VZV vaccina-

tion might in some cases do more harm than good. Hence the

pivotal issue for policy making is to identify and explore the

variables that determine the incremental QALYs. Therefore, we

performed a SR analysis with all 185 variables to model the

vaccination benefits, expressed as incremental QALYs. The model

error and complexity of the surrogate models with the most

abundant variable combinations are presented in Figure 7. We

obtained surrogate models with only five variables with a model

error of 16% (panel A), which indicates strong correlation between

these inputs and the response. With the sixth variable in panel B, a

small reduction in model error can be achieved. The panel C

models show further decreases in model error, but also substan-

tially greater complexity due to the presence of additional

variables. Some of these variables are important to predict the

response, but others may mostly increase complexity without

explaining the response. Especially with high dimensionality and

model complexity, it is possible that some less important variables

remain captured in the surrogate models. To tackle this problem,

we performed a second SR analysis with the twelve variables from

panel C. This way, we reduced the number of drivers for the

incremental QALYs to eight and ended up with surrogate models

with an error of only 10%, which is an improvement compared to

the models from panel B. Surrogate model specifications and

examples are listed in Text S3 and a response plot interface is

presented in Text S4.

Marginal contributions were estimated with SR by inspecting

the decrease in model error by adding variables. We observed a

correlation of 47% between the incremental QALY and combi-

nations of the zoster immunity duration and the change in

reactivation due to vaccination. The zoster vaccine uptake for ages

75–79 y was responsible for another 11% increase in correlation.

Using linear regression, Bilcke et al [33] obtained similar results.

They estimated the marginal contribution of all transmission rates

at 29%, but they were unable to select particular age-specific

transmission rates due to their strong interdependency. Using SR

on the same data set, we found that this 29% contribution was

explained by just three of the 100 transmission rates.

High variable importance came from rates of transmission from

adults to children, despite the fact that mainly children would be in

the infectious state pre-vaccination. The transmission rates are

based on symmetric contact rates, implying only age-specific

differences in susceptibility and infectiousness account for this

observation. To study the age component of the transmission rates

we estimated the incremental QALYs once with the southwest

corner of the transmission matrix and once with the northeast

corner. Transmission rates between similar age groups were selected

in both experiments but the models with the adult-to-child

transmission had a slightly lower model error. It is not exactly clear

why this is the case. These variables may capture adult-child

interactions, which are relevant for re-exposure to VZV, as well as

the susceptibility of children in the presence of universal vaccina-

tion. However, this does not imply that transmission would occur

more often from adults to children than the other way around.

Discussion

We present an iterative process of active learning with SR for

the systematic exploration of simulation models. Our initial

experimental setup for the pandemic influenza model showed

only a subset of the systems behavior but provided insights leading

Figure 7. Model error (1”R2) and complexity of high-quality
models for the incremental QALY. Models with the variable
combinations presented on the left are shown in color (red = Pareto
front). Only the most abundant combinations are given: (A) Surrogate
models with five variables, (B) Surrogate models with extra variable
(to3.9) and decreased model error compared to (A), (C) Surrogate
models consisting of twelve variables with small model error but high
model complexity.
doi:10.1371/journal.pcbi.1003563.g007
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to an improved design. We explored common and edge

manifestations and ended up with an ensemble of surrogate

models for the complex simulation model. The surrogate models

for reactive immunization strategies revealed effects like herd

immunity and can be useful to instantly evaluate reactive strategies

for specific R0 values based on plausible estimates for vaccination

coverage and efficacy.

Although we demonstrated these methods on two vaccination

programs, based on two distinctly different dynamic models

(stochastic individual-based and deterministic compartmental), we

are certain that these methods are relevant to address a wide range

of public health problems that are informed by modeling.

Surrogate modeling with SR identified the most important

variables. A decrease in the uncertainty of these parameters would

improve the robustness of the simulation results. Also, the feature

selection can be useful during the development of the simulator.

E.g., the travel parameter does not seem important in the current

FluTE implementation although other studies have stressed the

role of travel restrictions on epidemics [5,6,44,47]. A revision of

the travel implementation may be required.

Considerable efforts have been made to build realistic

simulation models of high quality, but most of these are not fully

explored. Ideally, each model should be analyzed systematically to

understand system behavior and to assess the impact of model

assumptions and parameters on the results. The availability of

simple surrogate models based on complex simulation models not

only serves to understand the original complex model better, but

also to emulate it. Policy makers can easily use an interactive

interface, such as the ones we present in this paper, to mimic the

context in which their decisions take place (e.g., transfer model

outcomes between broadly comparable countries) and predict the

effectiveness or cost-effectiveness of health interventions. In that

sense, the use of surrogate models as emulators provides a great

opportunity to enhance both the understanding of these models

and improve the reliability and speed of policy making based on

existing elaborate model structures. Specifically, for FluTE we

could instantly formulate some insights from the emulator

(Figure 6) in clear language for policy makers. First, we predict

that without reactive measures 36% of the population will be

infected. Second, only a few imported cases are enough to start the

epidemic hence (complete) isolation may delay (prevent) the

epidemic. Third, 30% vaccination coverage (percentage of the

population vaccinated) may result in a 55% reduction in the

number of cases and 60% coverage in a 95% reduction due to

indirect protection because of the interruption of transmission

pathways in a partial immune population.

In future, we aim to automate the iterative surrogate modeling

approach in order to speed up the process and make it more

accessible. The number of realizations should be analyzed more

into detail. We acquired already substantial insights on the

transmission and vaccination dynamics implemented in the FluTE

model with five iterations. However this system exploration could

be further expanded, for instance by considering other interven-

tions (e.g. social distancing) separately or in combination with

vaccination. While the presented epidemiological results are

acquired using the previous generation of simulators, we argue

that our approach is applicable to all simulators and should be

used for testing and validation when new simulators are

developed, and for the emulation to aid policy making across

settings after that.
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